JPS6059052B2 - Rolling mill axis monitoring device - Google Patents

Rolling mill axis monitoring device

Info

Publication number
JPS6059052B2
JPS6059052B2 JP51147527A JP14752776A JPS6059052B2 JP S6059052 B2 JPS6059052 B2 JP S6059052B2 JP 51147527 A JP51147527 A JP 51147527A JP 14752776 A JP14752776 A JP 14752776A JP S6059052 B2 JPS6059052 B2 JP S6059052B2
Authority
JP
Japan
Prior art keywords
shaft
rolling mill
stress
rotational unevenness
monitoring device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51147527A
Other languages
Japanese (ja)
Other versions
JPS5370958A (en
Inventor
光夫 竹下
欣孝 松倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP51147527A priority Critical patent/JPS6059052B2/en
Publication of JPS5370958A publication Critical patent/JPS5370958A/en
Publication of JPS6059052B2 publication Critical patent/JPS6059052B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Description

【発明の詳細な説明】 この発明は圧延機の軸監視装置に関し、特に例えば圧
延機の軸に加わるトルクを求めて軸応力による軸部材の
疲労度を監視するような圧延機の軸監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a shaft monitoring device for a rolling mill, and more particularly to a shaft monitoring device for a rolling mill that monitors the degree of fatigue of a shaft member due to axial stress by determining the torque applied to the shaft of a rolling mill. .

第1図はこの発明の背景となる圧延機軸系機構の概略
構成図である。図において、1は駆動源となる電動機の
電機子、2は圧延機の圧延用ロール、3aおよび3bは
カップリング、4は電機子1とカップリング3a)カッ
プリング間、カップリング3bとロール2を結合してい
る軸である。このような構成において、ロール3が圧延
すべき鋼材(図示せず)をかみこんだとき、衝撃トルク
がロール2に加わる。このため、ロール2、カップリン
グ3aおよび3c)電機子などの慣性能率と軸4のねじ
りによつて生じる弾性力による等価はねじりはねとて構
成されるねじり振動系に起因して、軸4がねじり振動を
起す。このねじり振動によつて、軸材料が疲労すること
が知られている。ところが、衝撃的なトルクの大きさが
一定でなく、しかもねじり振動の持続回数が一定でない
ため、ねじり振動によつて生じる軸トルクの大きさとを
持続回数とか不確定であり、軸部材の疲労度を知ること
ができなかつた。このため、従来では軸部材の疲労度に
応じて適宜軸を交換して圧延機を安全に運転することが
できないという問題点があつた。 それゆえに、この発
明の主たる目的は、上述の問題点を解消し得る軸部材に
加わるトルクを計測して軸の疲労度を監視できるような
圧延機の軸監視装置を提供することである。
FIG. 1 is a schematic diagram of a rolling mill shaft system mechanism which is the background of the present invention. In the figure, 1 is the armature of the electric motor serving as the drive source, 2 is the rolling roll of the rolling mill, 3a and 3b are the couplings, 4 is between the armature 1 and the coupling 3a), between the coupling 3b and the roll 2 This is the axis that connects the . In such a configuration, when the roll 3 bites a steel material (not shown) to be rolled, an impact torque is applied to the roll 2. For this reason, the inertia factors of the rolls 2, couplings 3a and 3c) armature, etc. and the elastic force generated by the torsion of the shaft 4 are equivalent due to the torsional vibration system composed of torsional springs. causes torsional vibration. It is known that this torsional vibration causes fatigue of the shaft material. However, since the magnitude of the impact torque is not constant, and the number of sustained torsional vibrations is not constant, the magnitude of the shaft torque caused by torsional vibration is uncertain, such as the number of sustained times, and the degree of fatigue of the shaft member is uncertain. I couldn't know. For this reason, in the past, there was a problem in that it was not possible to safely operate the rolling mill by replacing the shaft as appropriate depending on the degree of fatigue of the shaft member. Therefore, the main object of the present invention is to provide a shaft monitoring device for a rolling mill that can eliminate the above-mentioned problems and can monitor the degree of fatigue of the shaft by measuring the torque applied to the shaft member.

この発明の上述の目的およびその他の目的と特徴は図面
を参照して行なう発明の詳細な説明から一層明らかとな
ろう。
The above objects and other objects and features of the present invention will become more apparent from the detailed description of the invention given with reference to the drawings.

第2図はこの発明の一実施例の圧延機の機構図を含む軸
監視装置のブロック図てある。
FIG. 2 is a block diagram of an axis monitoring device including a mechanical diagram of a rolling mill according to an embodiment of the present invention.

図において、11は軸4(図示ては電機子1の軸)に装
着された回転パルス検出用の歯車、12は回転数検出器
であつてマグネットセンサ等が用いられる。13は回転
むら計、14は記憶部を含む演算装置、15は指示計て
ある。
In the figure, reference numeral 11 is a gear for detecting rotational pulses mounted on a shaft 4 (the shaft of armature 1 in the figure), and 12 is a rotational speed detector for which a magnetic sensor or the like is used. 13 is a rotation irregularity meter, 14 is an arithmetic unit including a storage section, and 15 is an indicator.

その他の構成は第1図と同様であるため、同一部分は同
一参照符号で発明の詳細な説明を省略する。動作におい
て、前記電機子11が回転駆動し、その回転力を軸4お
よびカップリング3a,3bを介してロール2に伝達し
て、圧延動作を行なう。
Since the other configurations are the same as those in FIG. 1, the same parts are designated by the same reference numerals and detailed description of the invention will be omitted. In operation, the armature 11 is driven to rotate, and its rotational force is transmitted to the roll 2 via the shaft 4 and the couplings 3a, 3b to perform a rolling operation.

このとき、前記歯車11が軸4の回転に同期した速度て
回転しているため、前記回転数検出器12は歯車11の
回転に応じたパルスを発生して、軸4の回転数を検出す
る。この軸4の回転数に相関するパルスは、前記回転む
ら計13に与えられる。この回転むら計13は回転数に
相関するパルス回転むらを測定し、それによつて軸系の
ねしり振動を検出する。ところで、第1番目の慣性能率
Lについてのねじり振動の運動方程式は、第(1)式て
表わすことができる。
At this time, since the gear 11 is rotating at a speed synchronized with the rotation of the shaft 4, the rotation speed detector 12 generates a pulse according to the rotation of the gear 11 to detect the rotation speed of the shaft 4. . This pulse correlated to the rotational speed of the shaft 4 is given to the rotational unevenness meter 13. The rotational unevenness meter 13 measures pulsed rotational unevenness that correlates with the rotational speed, thereby detecting torsional vibration of the shaft system. By the way, the equation of motion of torsional vibration regarding the first inertia factor L can be expressed as Equation (1).

ただし、Qはi品〔IilKはねじりのばム定数、Cは
ねじりの減衰定数を示し、添字のiは.i番目を表すも
のとする。
However, Q is i product [IilK is the torsional Bum constant, C is the torsional attenuation constant, and the subscript i is . Let it represent the i-th.

また、各点(すなわちi=l−n)について第(1)式
の運動方程式をたてて解けば、軸のねじれ角、ねじれ角
速度(すなわち回転むら)および軸の相対ねじれ角が求
まり、軸4の相対ねじれ角と・ねじりばね定数とに基づ
いて軸トルクTが求められる。
In addition, by formulating and solving the equation of motion of equation (1) for each point (i = l - n), the torsion angle, torsion angular velocity (i.e. rotational unevenness), and relative torsion angle of the shaft can be found. The shaft torque T is determined based on the relative torsion angle of 4 and the torsional spring constant.

つまり、軸トルクと回転むらの関係が求まる。従つて、
歯車11に生じる回転むらに対して、各軸4に生じる軸
トルクTの特性を上述の関係に基づいて別に求めておき
、この特性を予め前記演算装置14に記憶させておく。
そこで、演算装置14は、回転むら計13の出力のねじ
り振動と上記第(1)式とに基づいて各軸14にかかる
軸トルクを演算導出し、さらに軸4の応力rを求める。
In other words, the relationship between shaft torque and rotational unevenness is determined. Therefore,
The characteristics of the shaft torque T generated in each shaft 4 with respect to rotational irregularities occurring in the gear 11 are separately determined based on the above-mentioned relationship, and this characteristic is stored in the arithmetic unit 14 in advance.
Therefore, the calculation device 14 calculates and derives the shaft torque applied to each shaft 14 based on the torsional vibration output from the rotation unevenness meter 13 and the above-mentioned equation (1), and further determines the stress r of the shaft 4.

例えば、中実軸の場合において軸トルクをT、軸4の直
径をdとすれば、軸応力rは第(2)式で求めることが
てきる。さらに、演算装置は、このようにして複数回求
めた応力の分布波形から、疲労の理論に基づいて応力頻
度を求める。
For example, in the case of a solid shaft, if the shaft torque is T and the diameter of the shaft 4 is d, then the shaft stress r can be determined by equation (2). Further, the arithmetic device calculates the stress frequency based on the fatigue theory from the stress distribution waveform obtained multiple times in this way.

この応力頻度の求め方としては種々の方法があるが、例
えは、時間順次て複数回検出された応力のレベルを数段
程度に分けて、応力波形のピーク値、応力振幅等を求め
て、その回数をカウントすることによつて応力頻度を求
める。この応力頻度と軸4の使用材料のS−N曲線に基
づいて軸4の疲労損傷を求める。以上のように、演算装
置14が演算処理によつて求めた結果を前記指示計15
て表示することによつて、軸4の監視を行なう。上述の
ごとく、軸4の疲労に対して該軸にかかつた応力と回数
を計測することによつて、軸の安全度を常に監視するこ
とができる。
There are various methods to determine this stress frequency, but for example, the stress levels detected multiple times in time order are divided into several stages, and the peak value of the stress waveform, stress amplitude, etc. are determined, The stress frequency is determined by counting the number of times. The fatigue damage of the shaft 4 is determined based on this stress frequency and the S-N curve of the material used for the shaft 4. As described above, the result obtained by the arithmetic processing by the arithmetic device 14 is sent to the indicator 15.
The axis 4 is monitored by displaying the following information. As described above, by measuring the stress and the number of times applied to the shaft 4 with respect to fatigue, the safety level of the shaft can be constantly monitored.

なお、前記回転むら計13として例えばワウ・フラツタ
ー・メータを用いる。
Incidentally, as the rotational unevenness meter 13, for example, a wow/flutter meter is used.

この回転むら計では軸のねじり振動を測定することはで
きるが、軸の2点間の相対ねじれ角を計測しているもの
てはないため、相対ねじれ角すなわち軸トルクを直接求
めることができない。しかしながら、軸トルクの振動成
分は、軸系の特性を予め求めておけばトルクの加わる点
が既知であるため、或る一点の軸のねじれ角から逆算す
れば軸トルクを知ることができ、かつ従つて軸の応力を
求めることができる。第3図はこの発明の他の実施例の
圧延機の機構図を含む軸監視装置のブロック図である。
Although this rotational unevenness meter can measure the torsional vibration of the shaft, it does not measure the relative torsion angle between two points on the shaft, so the relative torsion angle, that is, the shaft torque cannot be directly determined. However, the vibration component of the shaft torque can be determined by calculating backwards from the torsion angle of the shaft at a certain point, since the point at which the torque is applied is known if the characteristics of the shaft system are determined in advance. Therefore, the axial stress can be determined. FIG. 3 is a block diagram of an axis monitoring device including a mechanical diagram of a rolling mill according to another embodiment of the present invention.

この実施例では、回転むら計13と演算装置14との間
に、回転むらの特定周波数成分のみ抽出するためのフィ
ルタ16を設けたものである。すなわち、このフィルタ
16は回転むら計13出力の回転むらの特定周波数成分
(例えば軸系のねじりの1次の固有振動数成分)のみを
取り出して演算装置14へ入力することによつて、S/
N比を向上させる機能を有する。その他の構成と動作は
第2図と同様であるため、同一部分は同一参照符号で示
し詳細な説明を省略する。第4図はこの発明のさらに他
の実施例の圧延機の機構図を含む軸監視装置のブロック
図である。
In this embodiment, a filter 16 is provided between the rotational unevenness meter 13 and the arithmetic unit 14 for extracting only specific frequency components of rotational unevenness. That is, this filter 16 extracts only the specific frequency component of the rotational unevenness (for example, the first-order natural frequency component of the torsion of the shaft system) output from the rotational unevenness meter 13 and inputs it to the arithmetic unit 14.
It has the function of improving the N ratio. Other configurations and operations are the same as those in FIG. 2, so the same parts are designated by the same reference numerals and detailed explanations will be omitted. FIG. 4 is a block diagram of an axis monitoring device including a mechanical diagram of a rolling mill according to still another embodiment of the present invention.

この実施例では、回転むら計13と演算装置14との間
に、特定周波数成分の異なる複数(図示では2個の場合
を示す)のフィルタ16a,16bを設けたものである
。すなわち、フィルタ16a,16bは軸系のねじりの
1次、2次の異なる固有振動数成分を別々に通し、その
出力信号をそれぞれ演算装置14に入力するものてある
。また、回転むらに対する特性を各フィルタ毎に予め求
めておき、その特性を各フィルタの出力信号毎に乗算し
て、軸トルクを合成して求めてもよい。なお、上述の実
施例において、軸監視する指示計15の指示は、各部を
結合する各軸毎に指示するものてあつても、任意の軸の
み指示するものであつてもよい。なお、上述の実施例の
説明では、歯車11を軸系の一方端の電機子1側に取り
付けた場合について説明したが、軸系のどの位置であつ
てもよいことはもちろんてある。
In this embodiment, a plurality of (two filters are shown in the figure) filters 16a and 16b having different specific frequency components are provided between the rotation unevenness meter 13 and the arithmetic unit 14. That is, the filters 16a and 16b separately pass different natural frequency components of the first and second order of the torsion of the shaft system, and input their output signals to the arithmetic unit 14, respectively. Alternatively, the characteristics for rotational unevenness may be determined in advance for each filter, and the characteristics may be multiplied by the output signal of each filter to synthesize and determine the shaft torque. In the above-described embodiment, the instruction of the indicator 15 for axis monitoring may be given for each axis that connects each part, or it may be given only for an arbitrary axis. In addition, in the description of the above-mentioned embodiment, the case where the gear 11 is attached to the armature 1 side at one end of the shaft system has been described, but it goes without saying that the gear 11 may be mounted at any position on the shaft system.

例えは、電機子1とカップリング3aとの間の軸・カッ
プリング3a−3b間の軸・カップリング3bとロール
2との間の軸またはロール2の他方端のいずれでもよい
。また、軸の回転を検出するために歯車11を用いたが
、回転むらを計測可能なものであればよい。例えば、白
黒の縞摸様のテープ等を軸4に貼着し、光学的に縞摸様
を検出することによつて軸の回転に相関するパルスを導
出するものでもよい。また、一般に用いられているエン
コーダでもよい。この場合、回転数検出器12として光
学的センサが用いられる。なお、回転むら計としては、
ワウ●フラツター●メータやジッター●メータ等が用い
られる。また、歯車11と回転数検出器12と回転むら
計13とを用いて回転むらを検出しているが、圧延機に
関連して設けられるパイロット発電機で検出してもよい
。さらに、演算装置14としては、アナログ計算機また
はディジタル計算機もしくは両方を併用した演算装置等
か用いられる。以上のように、この発明によれば、圧延
機の軸の回転数を検出して回転むらを検出し、予め定め
られる回転むらと軸トルクとの関係の特性に基づいて軸
トルクと軸応力とを求め、応力の大きさと応力の加わる
頻度とを演算して軸材の疲労度を自動的に監視すること
ができる。
For example, it may be the shaft between the armature 1 and the coupling 3a, the shaft between the couplings 3a and 3b, the shaft between the coupling 3b and the roll 2, or the other end of the roll 2. Further, although the gear 11 is used to detect rotation of the shaft, any gear may be used as long as rotation unevenness can be measured. For example, a black and white striped tape or the like may be attached to the shaft 4, and the striped pattern may be optically detected to derive pulses that correlate with the rotation of the shaft. Alternatively, a commonly used encoder may be used. In this case, an optical sensor is used as the rotation speed detector 12. In addition, as a rotation unevenness meter,
Wah ● Flatter ● meters and Jitter ● meters are used. Further, although rotational unevenness is detected using the gear 11, the rotational speed detector 12, and the rotational unevenness meter 13, it may be detected using a pilot generator provided in association with the rolling mill. Further, as the arithmetic device 14, an arithmetic device that uses an analog computer, a digital computer, or a combination of both can be used. As described above, according to the present invention, the rotational speed of the shaft of a rolling mill is detected to detect rotational unevenness, and the shaft torque and axial stress are calculated based on the predetermined characteristics of the relationship between the rotational unevenness and the shaft torque. It is possible to automatically monitor the degree of fatigue of the shaft member by calculating the magnitude of stress and the frequency at which stress is applied.

このようにして、軸材の疲労度を監視てきるため、軸材
の疲労度に応じて適宜軸を交換することにより、圧延機
の安全運転が可能となる。
In this way, the degree of fatigue of the shaft material is monitored, and by appropriately replacing the shaft according to the degree of fatigue of the shaft material, safe operation of the rolling mill becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の背景となる圧延機軸系機構の概略構
成図である。 第2図はこの発明の一実施例の圧延機の機構図を含む軸
監視装置のフロック図てある。第3図および第4図はこ
の発明の他の実施例の軸監視装置のブロック図である。
図において、1は電機子、2はロール、3aおよび3b
はカップリング、4は軸、11は歯車、12は回転数検
出器、13は回転むら計、14はl演算装置、15は指
示計、16,16a,16bはフィルタを示す。
FIG. 1 is a schematic diagram of a rolling mill shaft system mechanism which is the background of the present invention. FIG. 2 is a block diagram of an axis monitoring device including a mechanical diagram of a rolling mill according to an embodiment of the present invention. FIGS. 3 and 4 are block diagrams of axis monitoring devices according to other embodiments of the present invention.
In the figure, 1 is the armature, 2 is the roll, 3a and 3b
1 is a coupling, 4 is a shaft, 11 is a gear, 12 is a rotation speed detector, 13 is a rotation unevenness meter, 14 is an l calculation device, 15 is an indicator, and 16, 16a, and 16b are filters.

Claims (1)

【特許請求の範囲】 1 圧延機の軸の疲労度を監視する圧延機の軸監視装置
であつて、前記圧延機の軸の回転数を検出する回転数検
出手段、前記回転数検出手段の経時的出力に応答して前
記軸の回転むらを検出する回転むら検出手段、および前
記回転むら検出手段出力に基づいて前記軸に加わるトル
クを演算し、該軸トルクに基づいて該軸に加わる応力を
演算して、その応力の大きさと応力の加わる頻度とを求
める演算装置を備えた圧延機の軸監視装置。 2 前記演算装置は、予め軸材のS−N曲線を設定記憶
する記憶手段を含み、前記軸にかかる応力の大きさと応
力の加わる頻度と該記憶手段に記憶されている軸材S−
N曲線とに基づいて軸材の疲労度を求めるようにしたこ
とを特徴とする特許請求の範囲第1項記載の圧延機の軸
監視装置。 3 前記回転むら検出手段は、該回転むら検出手段出力
の回転むら信号の或る周波数成分を導出して前記演算装
置へ与えるフィルタ装置を含むことを特徴とする特許請
求の範囲第1項または第2項記載の圧延機の軸監視装置
[Scope of Claims] 1. A rolling mill shaft monitoring device for monitoring the degree of fatigue of a shaft of a rolling mill, comprising a rotation speed detection means for detecting the rotation speed of the shaft of the rolling mill, and a rotation speed detection means for detecting the rotation speed of the rotation speed detection means. rotational unevenness detection means for detecting rotational unevenness of the shaft in response to an output from the rotational unevenness detection means, and a torque applied to the shaft based on the output of the rotational unevenness detection means, and a stress applied to the shaft based on the shaft torque. A rolling mill shaft monitoring device equipped with a calculation device that calculates the magnitude of stress and the frequency with which stress is applied. 2. The arithmetic device includes a storage means for setting and storing in advance the S-N curve of the shaft, and the magnitude of the stress applied to the shaft, the frequency of application of the stress, and the shaft material S-N curve stored in the storage means.
The shaft monitoring device for a rolling mill according to claim 1, wherein the degree of fatigue of the shaft member is determined based on the N curve. 3. The rotational unevenness detecting means includes a filter device that derives a certain frequency component of the rotational unevenness signal output from the rotational unevenness detecting means and supplies it to the arithmetic unit. The rolling mill shaft monitoring device according to item 2.
JP51147527A 1976-12-07 1976-12-07 Rolling mill axis monitoring device Expired JPS6059052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51147527A JPS6059052B2 (en) 1976-12-07 1976-12-07 Rolling mill axis monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51147527A JPS6059052B2 (en) 1976-12-07 1976-12-07 Rolling mill axis monitoring device

Publications (2)

Publication Number Publication Date
JPS5370958A JPS5370958A (en) 1978-06-23
JPS6059052B2 true JPS6059052B2 (en) 1985-12-23

Family

ID=15432319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51147527A Expired JPS6059052B2 (en) 1976-12-07 1976-12-07 Rolling mill axis monitoring device

Country Status (1)

Country Link
JP (1) JPS6059052B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6032045B2 (en) * 2013-02-14 2016-11-24 新日鐵住金株式会社 Fatigue evaluation method for spindle
JP2017156151A (en) * 2016-02-29 2017-09-07 三菱重工コンプレッサ株式会社 Torque measuring device, gear box, and torque measurement method
JP7353867B2 (en) * 2019-08-23 2023-10-02 株式会社プロテリアル Fatigue test method for cast materials

Also Published As

Publication number Publication date
JPS5370958A (en) 1978-06-23

Similar Documents

Publication Publication Date Title
EP0911119B1 (en) Method for determining the installed torque in a screw joint at impulse tightening and a torque impulse tool for tightening a screw joint to a predetermined torque level
US5438882A (en) Rotating shaft vibration monitor
US4169371A (en) Method and apparatus for measuring drive system characteristic data in dynamic operation
US4320662A (en) Failure detection analyzer
JP2006322934A (en) Test method of torsional vibration attenuator
US4591784A (en) Examination procedure for the spatial change of an object with respect to its initial condition
Wang et al. A torsional vibration measurement system
CN102901596A (en) Method for testing photoelectric reflection type dynamic torque of equal-diameter rotary shaft
JPS6059052B2 (en) Rolling mill axis monitoring device
EP0675784B1 (en) Angular motion detector
Hancke et al. The microprocessor measurement of low values of rotational speed and acceleration
JPH073360B2 (en) Shaft torsional vibration monitoring device
US6253620B1 (en) Device and method for measuring dynamic torsional characteristics of a damper assembly
JP6812438B2 (en) Impact wrench rotation detection
JP3395648B2 (en) Rotary torque measuring device
JPS61181904A (en) Measuring or monitoring axial displacement of rotating body without contacting
JPS6117402Y2 (en)
Seidlitz Engine torsional transducer comparison
JPS61182530A (en) Torsional oscillation detector
JPS5833781B2 (en) Turbine generator shaft monitoring device
JPS6246817B2 (en)
JPH028192Y2 (en)
JPS6259766B2 (en)
JPS62259039A (en) Monitoring device for shaft torsion fatigue
JPS5822925A (en) Twist vibration monitoring method of rotary shaft