JPS61173468A - Electrolytic equipment or cell - Google Patents

Electrolytic equipment or cell

Info

Publication number
JPS61173468A
JPS61173468A JP60013889A JP1388985A JPS61173468A JP S61173468 A JPS61173468 A JP S61173468A JP 60013889 A JP60013889 A JP 60013889A JP 1388985 A JP1388985 A JP 1388985A JP S61173468 A JPS61173468 A JP S61173468A
Authority
JP
Japan
Prior art keywords
negative electrode
catholyte
negative
electrode
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60013889A
Other languages
Japanese (ja)
Inventor
Osamu Hamamoto
修 浜本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP60013889A priority Critical patent/JPS61173468A/en
Publication of JPS61173468A publication Critical patent/JPS61173468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

PURPOSE:To reactivate a carbon electrode during cell operation by using a catholyte which can activate a carbon electrode, and reactivating a negative electrode by introducing the catholyte into a negative chamber. CONSTITUTION:In an iron-chromium redox flow type secondary battery, stop valves 14a, 14b are closed, and each active material is supplied to a positive chamber and a negative chamber to repeat charge-discharge cycles. When the battery performance is deteriorated with the passage of time, a valve 15a is closed and the valve 14b is opened, and a valve 15b is closed and the valve 14a is opened to oppositely supply catholyte and anolyte. The catholyte is supplied to the negative chamber 3, and the surface of a negative electrode is oxidized by the catholyte which has oxidizing ability and the negative electrode is reactivated. A solution by which the surface of the carbon electrode (negative electrode) is oxidized is used as the catholyte, for example, a solution containing three valent iron ion such as ferric chloride solution is used.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電解または電池装置に関し、特に電極の賦活
再生を正、負極液の逆転によって行なう電解または電池
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an electrolytic or battery device, and more particularly to an electrolytic or battery device in which electrode activation and regeneration are performed by reversing the positive and negative electrolytes.

(従来の技術) 電解槽もしくは電池内を電解液が流通するフロー型セル
スタックは、各種の電解合成プロセスや湿式燃料電池、
レドックス・フロー型二次電池等に広く用いられている
。この場合、電解液が塩酸などの酸性液で腐食性が強い
場合、セルスタックの電極部は通常、貴金属系または、
炭素系(炭素または炭化物など)の物質で作られるが、
耐酸化性や価格の点で炭素系が好ましく用いられている
(Prior art) Flow type cell stacks, in which electrolyte flows through electrolytic cells or batteries, are used in various electrolytic synthesis processes, wet fuel cells,
Widely used in redox flow type secondary batteries, etc. In this case, if the electrolyte is a highly corrosive acidic liquid such as hydrochloric acid, the electrode part of the cell stack is usually made of noble metal or
Made from carbon-based (such as carbon or carbide) substances,
Carbon-based materials are preferably used in terms of oxidation resistance and cost.

しかし、炭素は、導電率が一般に金属化合物より悪く、
また電極触媒性に乏しいため、炭素を電極とするセルス
タックは、電圧降下のための効率低下を抑えるために、
あまり大きな電流密度をとらず、かつ炭素電極を処理し
て触媒機能を持たせるようにするのが通常である。この
方法の一つとしてセルスタックの負極側の炭素電極表面
を酸化性雰囲気下で処理して、電極に反応活性を与える
方法がある。
However, carbon generally has poorer conductivity than metal compounds;
In addition, since it has poor electrocatalytic properties, cell stacks using carbon as electrodes have
Usually, the current density is not too large, and the carbon electrode is treated to have a catalytic function. One method for this is to treat the surface of the carbon electrode on the negative electrode side of the cell stack in an oxidizing atmosphere to impart reaction activity to the electrode.

第4図は、触媒活性を与えた炭素質電極を負極として用
いる湿式燃料電池の構成を示す図である。
FIG. 4 is a diagram showing the configuration of a wet fuel cell using a catalytically activated carbonaceous electrode as a negative electrode.

負極側電解液である負極活物質溶液は、タンク8からポ
ンプ9bによって送液され、セルスタック1の負極室3
に入り、電池反応を行い、再びタンク8に戻される。タ
ンク8では還元剤をライン11より導入して、負極活物
質を再生する。正極液側もライン10から酸化剤を供給
し、正極活物質を再生する。
The negative electrode active material solution, which is the negative electrode side electrolyte, is sent from the tank 8 by the pump 9b to the negative electrode chamber 3 of the cell stack 1.
The cell enters the tank 8, undergoes a battery reaction, and is returned to the tank 8 again. In the tank 8, a reducing agent is introduced through a line 11 to regenerate the negative electrode active material. An oxidizing agent is also supplied to the positive electrode liquid side from line 10 to regenerate the positive electrode active material.

(発明が解決しようとする問題点) しかし、負極側炭素質電極を酸化性雰囲気で処理して活
性化したセルスタックにおいては、電極の反応活性低下
が電池の長時間使用と共に現れ、再生する必要を生じる
。この再生賦活は炭素電極を再び酸化性雰囲気下で処理
すればよいが、そのためには逆転を一端中止して再生用
の処理液を系外から負極室に導入するか、また電極を交
換しなければならず、操作が煩雑であるとともに、稼動
率が低下するという欠点があった。
(Problem to be solved by the invention) However, in a cell stack in which the negative carbonaceous electrode is activated by being treated in an oxidizing atmosphere, the reaction activity of the electrode decreases as the battery is used for a long time, and it is necessary to regenerate it. occurs. This regeneration and activation can be done by treating the carbon electrode again in an oxidizing atmosphere, but to do so, it is necessary to temporarily stop the reversal and introduce a regeneration processing solution into the negative electrode chamber from outside the system, or to replace the electrode. However, there are disadvantages in that the operation is complicated and the operating rate is reduced.

本発明の目的は、上記従来技術の欠点をなくし、特別な
設備を要することなく、セルスタック稼動中に炭素電極
の再生賦活を容易に行なうことができる電解または電池
装置を提供することにある。
An object of the present invention is to eliminate the drawbacks of the above-mentioned conventional techniques and to provide an electrolytic or battery device in which carbon electrodes can be easily reactivated during cell stack operation without requiring special equipment.

(問題点を解決するための手段) 本発明は、正、負極ともに炭素を基材とする電極を有す
る電解または電池装置において、少なくて正極液として
炭素電極を賦活再生させるものを用い、かつ該装置に流
入する正、負極液を互いに逆転することが可能な切替用
の流路および弁を設けたことを特徴とする。
(Means for Solving the Problems) The present invention provides an electrolytic or battery device having carbon-based electrodes for both the positive and negative electrodes, in which at least a positive electrode liquid that activates and regenerates the carbon electrode is used. The device is characterized by providing a switching flow path and a valve that can reverse the positive and negative electrode liquids flowing into the device.

前記正極液としては、炭素電極(負極)の表面を酸化態
にするものであればよく、例えば鉄−クロム型二次電池
においては、正極液である3価の鉄イオンを含む液(例
えば塩化第2鉄液)が用いられる。
The positive electrode liquid may be any material as long as it makes the surface of the carbon electrode (negative electrode) oxidized. For example, in an iron-chromium secondary battery, a positive electrode liquid containing trivalent iron ions (e.g. chloride) may be used as the positive electrode liquid. A ferric liquid) is used.

以下、本発明の実施例を図面により詳細に説明する。Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施例) 第1図は、本発明を鉄−クロム型レドックスフロー型二
次電池に適用した構成を示す図である。
(Example) FIG. 1 is a diagram showing a configuration in which the present invention is applied to an iron-chromium redox flow type secondary battery.

第4図の装置と異なる点は、レドックスフロー系である
ことから、酸化剤および還元剤供給ライン10.11が
不要になり、正極液および負極液ライン6aおよび6b
間に正負極逆転用配管13aおよび13b、および関連
バルブ14a、14b、15a、15bを設け、またこ
れに伴い、正負極液が元のタンクに戻るように戻りの配
管にもバルブ16a、16b、17a、17bを設けた
ことである。このような構成において、ストップバルブ
14a、14bを閉じ、正極室および負極室へそれぞれ
活物質を供給して充放電を繰返すと、経時的に電池抵抗
が低下してくる。このとき、バルブ15aを閉、バルブ
14bを開とし、一方、バルブ15bを閉、バルブ14
aを開として正、負極液の流路を逆転する。またこれに
対応して戻りの配管の弁16bを閉、17aおよび17
bを開、16 a−を閉とし、正極液および負□極液が
それぞれのタンク7.8に戻るようにする。その結果、
負極室3内に正極液が流入し、負極は酸化性の正極液に
より表面が酸化処理され、賦活再生される。
The difference from the apparatus shown in FIG. 4 is that it is a redox flow system, so the oxidizing agent and reducing agent supply lines 10 and 11 are no longer necessary, and the positive and negative electrode liquid lines 6a and 6b are
In between, positive and negative electrode reversal pipes 13a and 13b and related valves 14a, 14b, 15a, and 15b are provided, and along with this, valves 16a, 16b, and valves are also provided in the return pipes so that the positive and negative electrode liquid returns to the original tank. 17a and 17b are provided. In such a configuration, when the stop valves 14a and 14b are closed and charging and discharging are repeated by supplying the active material to the positive electrode chamber and the negative electrode chamber, respectively, the battery resistance decreases over time. At this time, the valve 15a is closed and the valve 14b is opened;
Open a and reverse the flow paths of the positive and negative electrode liquids. In addition, in response to this, valve 16b of return piping is closed, and valves 17a and 17 are closed.
b is opened and 16 a- is closed so that the positive electrode liquid and the negative electrode liquid return to their respective tanks 7.8. the result,
The positive electrode liquid flows into the negative electrode chamber 3, and the surface of the negative electrode is oxidized by the oxidizing positive electrode liquid, thereby being reactivated and regenerated.

実施例1 鉄−クロム系レドックス・フロー型二次電池システムに
本発明を通用した。正極液は、3規定塩FIR性−1モ
ル/Il塩化第ニクロム、1モル/1、 塩化第二鉄水
溶液、負極液は3規定塩酸酸性1モル/l塩化第一鉄と
1モル/Il塩化第一クロム水溶液とした。セルスタッ
クの電極は正、負極共に炭素繊維布とし、グラファイト
化焼成時に少量の二酸化窒素を導入して、繊維表面に酸
素原子を付与したものを使用した。この処理によって酸
素原子が付与されたことは、X線光電子分光法等で確認
された0本二次電池を充電終止電圧1.2V、放電終止
電圧0.8vで、自動連続充放電を行い、電池抵抗(単
セルにおける平均充放電電圧差をみかけの電流密度で割
った値)を測定した。その結果を第2図に示す、電池抵
抗が上昇した適当な時点で、前記のバルブ操作により送
液流路6aおよびbを切替えて正、負極液を逆転させた
。逆転回数は全部で4回行った(第2図の128−d)
。その結果、第2図に示すように各逆転俊速やかに電池
抵抗が低下し、電極が賦活再生されたことがわかった。
Example 1 The present invention was applied to an iron-chromium redox flow type secondary battery system. The positive electrode liquid is 3N salt FIR-1 mol/Il nichrome chloride, 1 mol/1, ferric chloride aqueous solution, and the negative electrode liquid is 3N hydrochloric acid acidic 1 mol/l ferrous chloride and 1 mol/Il chloride. It was made into an aqueous solution of first chromium. The electrodes of the cell stack were made of carbon fiber cloth for both the positive and negative electrodes, and oxygen atoms were added to the fiber surface by introducing a small amount of nitrogen dioxide during graphitization firing. The fact that oxygen atoms were added through this treatment was confirmed by X-ray photoelectron spectroscopy, etc. by automatically and continuously charging and discharging 0 secondary batteries at an end-of-charge voltage of 1.2V and an end-of-discharge voltage of 0.8V. Battery resistance (a value obtained by dividing the average charge/discharge voltage difference in a single cell by the apparent current density) was measured. The results are shown in FIG. 2. At an appropriate point when the battery resistance rose, the liquid feeding channels 6a and 6b were switched by operating the valve to reverse the positive and negative electrode liquids. The number of reversals was performed a total of 4 times (128-d in Figure 2)
. As a result, as shown in FIG. 2, it was found that the battery resistance rapidly decreased with each reversal, indicating that the electrodes were reactivated and regenerated.

このため、運転を停止したり、スタック構成材料の交換
等を要することなく、バルブの切替えという簡単な操作
で電極の賦活を行なうことができる。
Therefore, the electrodes can be activated by a simple operation of switching the valve without stopping the operation or replacing the stack constituent materials.

実施例2 実施例1と同様のセルスタックを用いて、2規定塩酸酸
性2モル/l塩化第ニクロム水溶液の電解還元を行った
。対極反応は2規定塩酸水溶液を正極液とし、塩素ガス
を発生させて酸化性とした。
Example 2 Using the same cell stack as in Example 1, electrolytic reduction of a 2 mol/l dichromium chloride aqueous solution acidified with 2N hydrochloric acid was carried out. In the counter electrode reaction, a 2N hydrochloric acid aqueous solution was used as a positive electrode liquid, and chlorine gas was generated to make it oxidizing.

長時間運転の結果を第3図に示す。正、負極液ラインの
切替による正負極液の逆転操作により(図中、12e、
12f)セル印加電圧が低下し、所要エネルギーが小さ
くなることが明らかである。
Figure 3 shows the results of long-term operation. By reversing the positive and negative electrolyte lines by switching the positive and negative electrolyte lines (in the figure, 12e,
12f) It is clear that the cell applied voltage decreases and the required energy decreases.

(発明の効果) 本発明によれば、酸化処理による負極の賦活を負極室内
への正極液の導入によって行なうため、特別な処理装置
を要することなく、また運転を停止したり、スタック構
成材料を交換することなく、長期にわたり電極活性を良
好に維持し、高効率の電解(または電池反応)を続行す
ることができる。一本発明は、特に湿式燃料電池やレド
ックス・フロー型二次電池などに好適に使用される。
(Effects of the Invention) According to the present invention, since the activation of the negative electrode through oxidation treatment is performed by introducing the positive electrode liquid into the negative electrode chamber, there is no need for special processing equipment, and there is no need to stop operation or remove the stack constituent materials. Without replacement, electrode activity can be maintained well for a long period of time, and highly efficient electrolysis (or battery reaction) can be continued. The present invention is particularly suitable for use in wet fuel cells, redox flow type secondary batteries, and the like.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例を示す二次電池装置の系統
図、第2図および第3図は、本発明の実施例における電
極の再生サイクルを示す図、第4図は、従来の二次電池
装置の系統図である。 1・・・セルスタック、2・・・正極室、3・・・負極
室、4・・・隔膜、5a・・・正極端子板、5b・・・
負極端子板、6a・・・正極液ライン、6b・・・負極
液ライン、7・・・正極活物質再生タンク、8・・・負
極活物質再生タンク。 代理人 弁理士 川 北 武 長 3・・・・負極! 4・・・・v8原 5a・−・・■塙手版 5b・・・・丸極清子板 6a・・・・王手に浪ライン 8・・・・負右七4牧υL斗生タンク ′fi、、方11駁〔ブイクル〕 第3図 FItrHll(hr、]
FIG. 1 is a system diagram of a secondary battery device showing an embodiment of the present invention, FIGS. 2 and 3 are diagrams showing an electrode regeneration cycle in the embodiment of the present invention, and FIG. 4 is a diagram showing a conventional FIG. 2 is a system diagram of a secondary battery device. DESCRIPTION OF SYMBOLS 1... Cell stack, 2... Positive electrode chamber, 3... Negative electrode chamber, 4... Diaphragm, 5a... Positive electrode terminal plate, 5b...
Negative electrode terminal plate, 6a... Positive electrode liquid line, 6b... Negative electrode liquid line, 7... Positive electrode active material regeneration tank, 8... Negative electrode active material regeneration tank. Agent Patent Attorney Takeshi Kawakita 3...Negative pole! 4...v8 Hara 5a...■Hanawa hand version 5b...Marugoku Kiyoko plate 6a...Kingen Nami line 8...Negative right seven 4 Maki υL Tosei tank'fi ,, way 11 [vehicle] Figure 3 FItrHll (hr,]

Claims (1)

【特許請求の範囲】[Claims] (1)正、負極ともに炭素を基材とする電極を有する電
解または電池装置において、正極液として炭素質電極を
賦活再生させるものを用い、かつ該装置に流入する正、
負極液を互いに逆転することが可能な切替用の流路およ
び弁を設けたことを特徴とする電解または電池装置。
(1) In an electrolytic or battery device having carbon-based electrodes for both the positive and negative electrodes, a positive electrode liquid that activates and regenerates the carbonaceous electrode is used as the positive electrode liquid, and the positive electrode that flows into the device
An electrolytic or battery device characterized by being provided with a switching flow path and a valve that can reverse the direction of negative electrode liquid.
JP60013889A 1985-01-28 1985-01-28 Electrolytic equipment or cell Pending JPS61173468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60013889A JPS61173468A (en) 1985-01-28 1985-01-28 Electrolytic equipment or cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60013889A JPS61173468A (en) 1985-01-28 1985-01-28 Electrolytic equipment or cell

Publications (1)

Publication Number Publication Date
JPS61173468A true JPS61173468A (en) 1986-08-05

Family

ID=11845760

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60013889A Pending JPS61173468A (en) 1985-01-28 1985-01-28 Electrolytic equipment or cell

Country Status (1)

Country Link
JP (1) JPS61173468A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012160406A1 (en) * 2011-05-26 2012-11-29 Krisada Kampanatsanyakorn Method of conducting an all vanadium redox flow battery and implementing system
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
JP2016517137A (en) * 2013-03-15 2016-06-09 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Reactivation of flow battery electrodes by exposure to oxidizing solutions.
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497737A (en) * 1976-05-10 1979-08-02 Jiiiieru Inc Energy converter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5497737A (en) * 1976-05-10 1979-08-02 Jiiiieru Inc Energy converter

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8906529B2 (en) 2008-07-07 2014-12-09 Enervault Corporation Redox flow battery system for distributed energy storage
US8916281B2 (en) 2011-03-29 2014-12-23 Enervault Corporation Rebalancing electrolytes in redox flow battery systems
US8980484B2 (en) 2011-03-29 2015-03-17 Enervault Corporation Monitoring electrolyte concentrations in redox flow battery systems
WO2012160406A1 (en) * 2011-05-26 2012-11-29 Krisada Kampanatsanyakorn Method of conducting an all vanadium redox flow battery and implementing system
JP2016517137A (en) * 2013-03-15 2016-06-09 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation Reactivation of flow battery electrodes by exposure to oxidizing solutions.
US10044058B2 (en) 2013-03-15 2018-08-07 United Technologies Corporation Reactivation of flow battery electrode by exposure to oxidizing solution
US11056698B2 (en) 2018-08-02 2021-07-06 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11637298B2 (en) 2018-08-02 2023-04-25 Raytheon Technologies Corporation Redox flow battery with electrolyte balancing and compatibility enabling features
US11271226B1 (en) 2020-12-11 2022-03-08 Raytheon Technologies Corporation Redox flow battery with improved efficiency

Similar Documents

Publication Publication Date Title
US3262868A (en) Electrochemical conversion of electrolyte solutions
US4596641A (en) Electrochemical deionization
JPH01307173A (en) Electrolyte regenerating device for redox flow battery
GB2319040A (en) Radioactive effluent electrolytic treatment
CN105849050A (en) CDI-type water treatment device
US3788967A (en) Wastewater treatment using electrolysis with activated carbon cathode
JPS61173468A (en) Electrolytic equipment or cell
KR100519196B1 (en) Electrochemical treatment of ion exchange material
US3941677A (en) Electrolytic regeneration cell
US2799638A (en) Purification of solutions by ionic transfer
JPH0227668A (en) Battery capacity maintaining method for redox flow battery
Ahmed et al. Electrochemical chromic acid regeneration process with fuel-cell electrode assistance. Part I: Removal of contaminants
JPH03192662A (en) Cell capacity recovery method for redox-flow cell
US3896013A (en) Process for removing metallic ions from an electrolytic solution
JP2002219464A (en) Electrolytic treatment method and system
KR870000111B1 (en) Method for electrolyzing dilute caustic alkali aqueous solution and apparatus thereof
JP3942949B2 (en) Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas
CN114590873A (en) Three-dimensional electro-catalysis device and method for synchronously removing organic pollutants and total nitrogen
JPS63205057A (en) Redox-flow cell
US11739433B2 (en) Method for removing non-proton cationic impurities from an electrochemical cell and an electrochemical cell
KR101914027B1 (en) Method for electrochemical water treatment using carbon electrodes and system thereof
CN103435132B (en) Activated carbon fiber for treating oily wastewater as well as regeneration method and device of activated carbon fiber
JPH01146267A (en) Operation of redox-flow cell
KR102479848B1 (en) RED stack capable of electrode replacement during operation
CN212293136U (en) Device for removing organic matters in high-salinity wastewater