JP3942949B2 - Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas - Google Patents

Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas Download PDF

Info

Publication number
JP3942949B2
JP3942949B2 JP2002135359A JP2002135359A JP3942949B2 JP 3942949 B2 JP3942949 B2 JP 3942949B2 JP 2002135359 A JP2002135359 A JP 2002135359A JP 2002135359 A JP2002135359 A JP 2002135359A JP 3942949 B2 JP3942949 B2 JP 3942949B2
Authority
JP
Japan
Prior art keywords
nitrogen
anode
gas
chamber
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002135359A
Other languages
Japanese (ja)
Other versions
JP2003326265A (en
Inventor
武勇 小室
伸一 市川
寿生 山下
隆則 中本
滋 野澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2002135359A priority Critical patent/JP3942949B2/en
Publication of JP2003326265A publication Critical patent/JP2003326265A/en
Application granted granted Critical
Publication of JP3942949B2 publication Critical patent/JP3942949B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、富栄養化の原因物質となる排水中の窒素化合物を窒素ガスに還元する排水処理プロセスに関する。排水中の窒素化合物としては、アンモニヤ態窒素、亜硝酸態窒素、硝酸態窒素または有機態窒素があり、本発明はこれらの一成分以上を含む排水処理プロセスに関する。
【0002】
また、本発明は、特にアンモニヤ態窒素、硝酸態窒素、有機態窒素などの窒素化合物が混在する排水処理に好適な電解還元と気相触媒還元を組み合わせた脱窒プロセスに関する。
【0003】
【従来の技術】
排水中の富栄養化を防止する目的で行われる排水処理プロセスとして、排水中の亜硝酸態、硝酸態、アンモニヤ態などの窒素化合物を除くために、一般的には、生物学的法や物理・化学的処理法などにより行われる。
【0004】
硝酸態窒素の生物学的処理法としては、嫌気性状態の排水中に水素を供与して有機物を酸化する生物学的法がある。この方法では還元剤として有機物の炭素源が必要であり、一般にはメタノールが使用される。
【0005】
一方、物理化学的な手法による脱窒プロセスとしては、陰イオン交換膜を用いる方法や白金を担持したパラジウムなどに代表される水素化触媒を用いる触媒還元法などがある。
【0006】
イオン交換樹脂を用いる吸着法は、再生操作で回収される濃厚な窒素化合物を含む廃液の二次処理が必要になるため、処理コストが高くなる問題点がある。また、触媒還元法は、高価な触媒が必要であり、装置自体も高温高圧の設備が必要になるなどの問題点がある。
【0007】
生物化学処理法に用いる微生物の活性は、中性域が最適であり、それ以外になると著しく低下する問題がある。たとえば酸性の被処理水は、そのまま処理することができないため、被処理水のpHを最適範囲内に調整する必要がある。そのための薬品や処理後のスラッジ量も多くなる問題点がある。
【0008】
また、生物学的処理法で用いる微生物は、急激な負荷変動があると、その負荷変動に追従することが難しく、活性を持続できない問題がある。高濃度の亜硝酸態窒素、硝酸態窒素あるいはアンモニヤ態窒素を含む排水を処理するには、的確な濃度調整が必要であり、それにより処理装置の規模も大きくなるという問題点がある。
【0009】
【発明が解決しようとする課題】
排水中のアンモニアヤ態窒素の脱窒プロセスとしては、生物学的法、イオン交換法、アンモニヤストリッピング法などがある。排水中のアンモニヤ態窒素は、水に溶解するとアンモニウムイオンと溶存アンモニヤに分かれ、それらは、温度、液pHにより解離平衡状態にある。しかし、液の温度が常温、pHが中性域では、ほとんどがアンモニウムイオンとして解離した状態で存在する。この状態では、空気を液に吹き込んでバブリングしてもアンモニヤガスを液から放散させることはできない。
【0010】
液中のアンモニウムイオンを気相に放散させるには、液のpHを高くするか、液温度を高くして平衡状態からずらし、溶存状態のアンモニヤを増やすことが必要になる。
【0011】
また、排水中の溶存アンモニヤのストリッピング法には、pHを調整して空気によりストリッピングさせるか、または水蒸気を吹き込んで温度を高めながらアンモニヤを放散する方法などがある。
【0012】
しかし、亜硝酸態窒素、硝酸態窒素、有機態窒素あるいはアンモニヤ態窒素が混在する窒素化合物を含む排水を一度に処理するには生物学的処理と別途、還元処理を行う必要がある。
【0013】
また、排水の生物学的処理は、脱窒速度が遅く、高濃度の排水中の窒素化合物を処理する場合、微生物の活性を脱窒処理するためには大量の微生物が必要であり、装置容量を大きくする必要があるなどの問題がある。
【0014】
本発明の課題は、排水中に混在する窒素化合物の無害化処理法として生物学的処理によらない新規な排水処理プロセスを提供する。
【0015】
【課題を解決するための手段】
本発明の上記課題は、次の構成により解決される。
請求項1記載の発明は、陽極材に可溶性固体金属、陰極材に不溶性固体材料をそれぞれ設置した電解槽に窒素化合物を含む排水を供給し、両極間に直流電圧を印加し、電解槽下部より液中に空気をバブリングさせ、該バブリング空気に同伴するアンモニアガスを含む混合ガスを電解槽から還元触媒層に流通させ、該還元触媒層で窒素ガスに還元する排水中窒素化合物の窒素ガスへの還元方法である。
【0016】
請求項2記載の発明は、不溶性の陽極と不溶性の陰極を備え、陽極室と陰極室の間に可溶性の金属片、及び/又は金属粒子を充填した隔壁構造物を備えた電解槽に窒素化合物を含む排水を供給し、両極間に直流電圧を印加し、電解槽の下部より空気をバブリングさせ、該バブリング空気に同伴するアンモニアガスを含む混合ガスを電解槽から還元触媒層に流通させ、該還元触媒層で窒素ガスに還元する排水中窒素化合物の窒素ガスへの還元方法である。
【0017】
請求項3記載の発明は、陽極材に可溶性固体金属、陰極材に不溶性固体材料をそれぞれ設置した陽極室と陰極室を有する電解槽と、該電解槽の陽極室と陰極室のうち、少なくとも陰極室の下部にバブリング用空気導入部を設け、陽極室に窒素化合物含有排水導入部と設け、陰極室には前記バブリング空気に同伴するアンモニアガスを含む混合ガス排出部を設け、該混合ガス排出部に接続して前記混合ガス導入部を備えたアンモニヤガスの還元触媒層を設けた排水中窒素化合物の窒素ガスへの還元装置である。
【0018】
前記還元装置には、電解槽の陽極と陰極間の仕切に電解液拡散防止膜あるいはイオン交換膜を用いてもよい。
【0019】
前記還元装置の陽極材の可溶性固体金属として、鉄、アルミニウム、銅、ニッケル、亜鉛から選ばれたいずれかの金属を用い、陰極材の不溶性固体材料として、チタン材に白金若しくはプラチナを添着させた電極材、ステンレス鋼、又はカーボンのいずれかを用いてもよい。
【0020】
前記還元装置の陽極材の可溶性固体金属として、鉄、アルミニウム、銅、ニッケル、亜鉛から選ばれた1以上の金属片及び/又は金属粒子を用いてもよい。
【0021】
前記還元装置の陽極材の陽極は、穴あき平板又は波板を用いてもよい。
【0022】
請求項8記載の発明は、陽極材と陰極材に不溶性固体材料をそれぞれ設置した陽極室と陰極室を有し、陽極室と陰極室の間に可溶性の金属片及び/又は金属粒子を充填した隔壁構造物を備えた電解槽と、電解層の陽極室と陰極室のうち、少なくとも陰極室の下部にバブリング用空気導入部を設け、陽極室に窒素化合物含有排出導入部を設け、陰極室には前記バブリング空気に同伴するアンモニアガスを含む混合ガス排出部を設け、該アンモニアガスを含む混合ガス排出部に接続してアンモニアガスを含む混合ガス導入部を備えたアンモニアガスの還元触媒層を設けたことを特徴とする排水中窒素化合物の窒素ガスへの還元装置である。
【0023】
【作用】
本発明は、硝酸態窒素、亜硝酸体窒素、アンモニヤ態窒素、有機態窒素などの窒素化合物を窒素ガスに還元する脱窒プロセスであり、まず、排水中の窒素化合物を電気化学的な還元反応によりアンモニウムイオンに還元し、該アンモニウムイオンを電解槽内の陰極部の高pH域に電気泳動させ、溶解平衡から溶存アンモニヤガスとして放散させる。次いで得られたアンモニヤを含むガスを還元触媒層に通し、アンモニヤガスを窒素ガスに還元する方法である。
【0024】
上記本発明の排水処理プロセスでは、排水中の窒素化合物を窒素ガスに還元するために、電解槽によるアンモニウムイオンへの還元と、アンモニヤガスの気相での触媒還元法を組み合わせている。
【0025】
アンモニヤガスの気相還元触媒は、コウジライト担体、ハニカム状担体に酸化チタン、バナジウム、ニッケル、白金などを担持した触媒などが用いられる。
【0026】
本発明では、電解槽内の陽極と陰極の液のpHに高低差を付けるために、陽極、陰極の液が急激に混ざらないように両極の中間部に拡散防止膜を設置する二室電解槽を用いる。前記拡散防止膜で仕切られた両極の液がヘッド差で自由に流通できる目開きの繊維などを拡散防止膜材料として用いることが有効である。
【0027】
電解槽の陽極部に供給された液中の窒素化合物は、アンモニウムイオンに還元され、電気的な泳動により陰極に移動する。通常、陰極室の液pHは11以上の高アルカリ状態にあるために、溶解平衡からアンモニウムイオンは液中に溶存アンモニヤ状態として存在しており、空気を陰極部にバブリングすることによりアンモニヤガスとして放散することができる。得られたアンモニヤを含む混合ガスを、還元触媒層に流通させ窒素ガスに還元することができる。
【0028】
本発明の電解槽の電極材は、陽極に可溶性固体金属を用いる点にも特徴がある。可溶性固体金属としては、鉄、アルミニウム、カドミウム、亜鉛などが使用できるが、常に液に溶出することから陽極の電極は消耗する。コスト面などを考えると最も安価な鉄材を陽極の電極材とすることが有効である。
【0029】
本発明の陽極に用いる電極板の形状は、電極材を電気化学的に鉄イオン、アルミニウムイオンとして溶出できればよく、必ずしも平板に限定されるものではない。
【0030】
また、陽極に用いる電極材としては、極端な場合、鉄やアルミニウムの機械加工で得られる屑材を充填した篭状のものを陽極に懸垂して使用しても本発明の目的を達成できる。
【0031】
陽極の液のpH域は重要であるが、通常、電解反応では陽極のpH1〜3と低くなり、陰極は11以上のpHになる。当然、液pHは、陽極の表面状態が最も低くなり、陰極の表面ほど高くなるpH分布が発生する。
【0032】
陽極でpHを低く維持できるので、鉄電極表面から溶出する鉄イオンは、水酸化鉄として沈降することなく、マグネタイト(Fe34)やヘマタイト(Fe23)に酸化される。この鉄イオンの酸化反応過程で排水中の亜硝酸態窒素、硝酸態窒素を還元する反応が起こる。
【0033】
亜硝酸態窒素、硝酸態窒素の還元反応では、一部、窒素ガスに還元するものもあるが、大部分が電解反応で生成する水素イオンと反応し、アンモニウムイオンに還元する反応が起こる。
【0034】
陽極から溶出したFe2+、Fe3+の還元力とpHを低く維持することにより、硝酸態窒素、亜硝酸態窒素から酸素が抜き取られる還元反応が進行する。
【0035】
前述したように、アンモニウムイオンはpH条件により、以下の溶解平衡状態にある(図1)。
【0036】
NH4 + + OH- ←→ NH3 + H2O (3)
アンモニウムイオンは、液pHが高いと前記式(3)の反応は右側に移動し、溶存アンモニヤ(NH3)を生成する。
【0037】
一連の反応による脱窒反応を進めるには、液のpH調整が必要であり、このためには、pHの高低差を自動調整できる二室電解槽構成が有効である。
【0038】
陰極の電極材は、陽極と同じ材料でも良いが、カーボンや不可溶性材料が有効である。前記不可溶性材料としては、チタンを基材とした材料に白金又はプラチナを添着させた電極材、ステンレス鋼などが有効である。
【0039】
本発明の二室電解槽の構成は、陽極、陰極、陽極室、陰極室、拡散防止膜、直流電圧印加部からなる。
【0040】
窒素化合物の電解反応により生成したアンモニウムイオンは、pHの高い陰極からアンモニヤガスとして空気と共に還元触媒層を通り、窒素ガスに還元される。 本発明の排水中の窒素化合物の窒素ガスへの還元反応の作動原理を以下に説明する。なお、窒素化合物を含む被処理排水は二室電解槽の陽極室に供給され、電極材として、陽極に鉄板、陰極にカーボンを用いた場合を代表例として窒素化合物の窒素ガスへの還元メカニズムを以下に説明する。
【0041】
電極間に直流電圧を印加すると、陽極の鉄板から鉄が液中に溶け出す。この状態で鉄は、Fe2+、Fe3+のイオンとして溶出し、pHが低い域で安定なヘマタイト(Fe23)、マグネタイト(Fe34)が生成する。窒素化合物としてNO3 -、NO2 -の酸素が引き抜かれ、H+と反応して大部分がNH4 +に還元する。
【0042】
陽極で生成したアンモニウムイオン(NH4 +)は、拡散防止膜を通過し、陰極に電気化学的に泳動し、濃縮される。陰極ではpHが11以上と高くできるので、アンモニウムイオンと溶存アンモニヤの溶解平衡状態関係は式(3)の右側にシフトする。
【0043】
陰極室に空気をバブリングすることで液中に溶存したアンモニヤは、アンモニヤガスとして脱気するので、脱気したアンモニヤガスを還元触媒層に導き、窒素ガスに還元することができる。前記還元触媒層の温度を200℃〜500℃に調整し、空間速度(SV)を5000〜20000h-1で反応させる。
【0044】
本発明の一連の脱窒反応では、陽極の電極材として鉄の外に、可溶性材料を用いることで本発明の陽極の電極から溶出した金属イオンが還元機能を発揮する。
【0045】
可溶性材料としては、鉄、アルミニウム、亜鉛などを電極材として用いることができる。その中でも鉄やアルミニウム電極は、材料コスト、沈降物の後処理が容易である点からも有効である。
【0046】
この一連の脱窒反応速度は、陽極の電極材とした金属の溶出速度に支配され、その際の硝酸態窒素の還元力が律速条件になる。前記脱窒反応の速度を上げるためには陽極の電極材の表面積を増大することが有効になる。平板電極の表面積を高めるために穴開き電極や波型構成などにすることが有効になる。
【0047】
陽極材は金属イオンの供給手段として考えることができ、機械工作で得られる金属の削り短片を充填したものに、カーボン電極又は鉄電極などで接続すれば電極にすることも可能である。
【0048】
また、鉄粉やアルミニウムの粉を流動化させることで、鉄粉やアルミニウム粉の複極化現象により、鉄あるいはアルミニウムを溶解させるのに有効な手段となる。
【0049】
また、拡散防止膜の代わりに鉄片を充填した電解室の隔壁部を設置することでも本発明の鉄イオンによる還元反応を進めることができる。
【0050】
陽極室で生成する金属酸化物は、マグネタイト、ヘマタイトなどの酸化物として沈降するので、陰極室の底部より窒素ガスや空気をバブリングさせることで電解槽内の液を混合させ、電極表面の界面を更新することが金属の溶解速度を高める点で有効である。
【0051】
本発明では、二室電解槽を構成させ、高低のpH領域を発生させている。従って、陽極の被処理排水のpHを低く維持し、電極から溶出するFe2+、Fe3+を充分に亜硝酸態窒素、硝酸態窒素の還元反応に供与することが有効な手段となる。
【0052】
当然、反応場のpH高低差を薬品により調整することも可能である。鉄イオンを硫酸第一鉄あるいは硫酸第二鉄として供与し、それぞれをpH調整することで、本発明の機能を達成できるが、鉄イオンのカウンターイオンとして硫酸イオンが共存することになり、電極から鉄イオンが溶出する際の還元力に比べると、亜硝酸態窒素、硝酸態窒素の還元は低下する。
【0053】
【発明の実施の形態】
実施例1
本発明の実施の形態の電解還元と気相触媒還元を組み合わせる排水中の窒素化合物の処理システムを図2に示す。
【0054】
前記処理システムは陽極室10、陰極室11からなる二室電解槽に沈殿する沈殿物の回収部、気相触媒還元部、被処理液の供給部からなる。
【0055】
前記二室電解槽の電解実験に用いた実験装置の構成を図3に示す。窒素化合物を含む被処理排水1は調整タンク2よりポンプ3を経て流れ8となり二室電解槽の陽極室10に供給される。
【0056】
図3の実験装置に示すように、二室電解槽は陽極室10と陰極室11、液の急激な拡散を防止する拡散防止膜25からなる。陽極室10と陰極室11の底部からは陽極室10と陰極室11内で液の混合を行うために空気12、13をぞれぞれ供給する。陽極室10と陰極室11にはそれぞれ可溶性固体金属26と不溶性固体材料27が設置される。
【0057】
陰極室11で発生したガスは、導入された空気12を同伴して陰極室11の上部出口ガス流れ22となり、加熱炉7の気相触媒層6に導入され、アンモニヤは窒素ガスになり、流れから抜き出される。触媒層出口ガス流れ5には未反応アンモニヤガスが含まれる場合があるので、その一部は循環流9として触媒層6の入口側の陰極室11の上部出口ガス流れ22と混合処理することも可能である。
【0058】
また、被処理排水1に塩素イオンが含まれる場合には塩素ガスが陽極室10で発生する。また、触媒層6ではアンモニヤガスの窒素ガスへの選択的な還元反応が起こるが、微量であるがアンモニヤガスの一部がNO2、NOxなどの窒素酸化物に酸化されるので、これらの混合ガスを陽極室10から排出する混合ガス流れ4として触媒層出口ガス流れ5に合流させ、一括酸性ガスを処理することもできる。
【0059】
陽極室10と陰極室11で沈降する沈殿物は、それぞれ電解槽の底部出口流路23、24より抜き出し、脱水機ベルトコンベヤ18、19により脱水し、沈殿物14、15を分離する。
【0060】
陽極室10の沈殿物を濾過した液は、一旦貯留室16に貯められ、その後ポンプ20より陽極室10内の液に戻される。一方、陰極室11の沈殿物を濾過した液は、一旦貯留室17に貯められ、その後、出口21より放流することができる。
【0061】
陽極26の電極材に鉄板、陰極27の電極材にカーボン板を用い、両極26、27に直流電圧を1〜30Vで印加すると、約10〜20分で陽極液、陰極液のpHが変化し始め、その後の電解時間の経過とともに変化する。その様子を図4のプロファイルに示す。陽極液のpHは1.9、陰極液のpHは11.8近傍で一定な値となる。
【0062】
被処理排水を電解槽内で処理し、両極26、27に通電して6時間経過した時の陽極26に用いた鉄板と陰極のカーボン板の表面状態を観察した結果を図5に示す。カーボン電極(陰極27)表面は初期状態とほとんど変化がないが、陽極26の鉄板の表面はケロイド状になっており、鉄板から鉄が溶出したことが観察できる。
【0063】
陽極室10に沈降した沈殿物についてX線回折結果と電子顕微鏡写真を図6(a)と図6(b)にそれぞれ示す。X線回折の結果によると、沈殿物の大部分は磁性を帯びたマグネタイトである。
【0064】
陽極室10より溶出する鉄イオン量は、図7に示す両極26、27間に通電する電流量に比例する。したがって、排水中の窒素化合物濃度に応じた還元反応を調整するには電流量による制御が可能である。
【0065】
図2、図3に示す陽極室10と陰極室11の間の拡散防止膜25の膜材質としては、耐酸、耐アルカリ材質であるシリカ系繊維、化学繊維、シリコン多孔膜、又はろ紙などを用いることができ、更に、拡散防止膜25をイオン交換膜に置き換えることも可能である。
【0066】
ただし、拡散防止膜25自体は、陽極室10と陰極室11に入れた液を保持する必要があり、シリカ系繊維、化学繊維、シリコン多孔膜、ろ紙などより大きな開口を有する多孔質の樹脂板などによりサンドイッチ構造に挟み機械的な強度を持たせる必要がある。
【0067】
次に、典型的な亜硝酸態又は硝酸態窒素イオンの還元反応特性を表1と図8、図9に示す。
【0068】
【表1】

Figure 0003942949
被処理排水の組成は亜硝酸イオン330mg/L、硝酸イオン280mg/Lをそれぞれ亜硝酸カルシウム、硝酸カルシウムにより濃度調整し、その状態で塩素イオン5000mg/Lになるように塩化カルシウムの濃度調整をした。陽極26の電極材は鉄板、陰極27の電極材はカーボン板を用いた。
【0069】
両極26、27に通電したときの電流値は6Aで一定とし、そのときの電極間電圧は9.9Vで時間的に変化させた。
【0070】
亜硝酸イオンは通電後1時間経過すると20mg/L以下に減少した。一方、硝酸イオンは280mg/Lから30mg/Lに減少した。一方、アンモニウムイオンは通電後、1時間すると87mg/Lに増えている。この結果、亜硝酸イオン、硝酸イオンは電解後に一部窒素ガスやアンモニヤ態窒素に還元していることが明らかである。
【0071】
亜硝酸イオン、硝酸イオンのそれぞれの電解時間に対する挙動について調べた結果を図8、図9に示す。図8、図9から明らかなように、亜硝酸イオン濃度、又は硝酸イオン濃度は通電と同時に急激な減少が起こり、2〜3時間後にはほぼ100%分解している。一方、アンモニウムイオン濃度は通電後に急激に上昇し、その後、アンモニウムイオンの生成が緩慢になる。これは亜硝酸イオン又は硝酸イオンがアンモニウムイオンに還元しているのであれば、亜硝酸イオン又は硝酸イオンの減少に反比例してアンモニウムイオンが上昇することが考えられる。しかし、図8に示すように通電後1.5時間位からアンモニウムイオンの生成量が緩慢になってくるのは、アンモニウムイオンがpHの高い陰極室11に電気泳動し、図1の平衡関係から溶存アンモニヤとして脱気しているためである。
【0072】
陰極室11より脱気した空気に同伴されるアンモニヤガスは、触媒層6に導入され、触媒により窒素ガスに還元されて無害化する。この場合の触媒層6は電気炉などで300℃〜500℃の範囲で加熱し、空間速度を5000h-1〜20000h-1で処理することで無害化できる。
【0073】
空間速度は単位流量あたりの処理ガス量を触媒体積で除した値であるので、触媒体積を大きくするか、又は被処理ガス量を少なくすることで気相還元効率を高めることができる。被処理ガス量を少なくするには陰極室11でバブリングする空気量を少なくすることなどにより空気に同伴するアンモニヤガスを効率よく窒素ガスに還元することができる。
【0074】
本発明の排水中窒素化合物の還元には、陽極26に可溶性電極として鉄電極を用いるのが有効であるが、陽極26の電極材に可溶性電極を用いることなく、図10に示す二室電解槽の実施例に示すように中央に鉄砕片或いは鉄粒子を充填した層100を設置してもよい。この場合には、鉄粒子或いは鉄砕片間で、一個一個の鉄粒子自体が陽陰極の分極現象で鉄が溶出し、効果的な窒素化合物の還元ができる。
【0075】
また、窒素化合物以外の排水中の富栄養化物となるリンやCOD物質であるニチオン酸イオンが共存する場合についても、電解液内での陽極室10の電極26、陰極室11の電極27で起こる酸化還元反応により、陽極26の鉄イオンがマグネタイトに沈降する際に共沈する現象がある。また、ニチオン酸イオンなどは鉄イオンがマグネタイトに酸化する際にニチオン酸イオンを分解して無害な硫酸イオンに酸化する。従って、排水中窒素化合物を含む排水にリン化合物、COD物質が共存する場合にも窒素化合物以外に同時にニチオン酸イオンやリン化合物を同時処理することができる。
【0076】
【発明の効果】
本発明は、亜硝酸態窒素、硝酸態窒素、アンモニヤ態窒素、有機体窒素が混在する排水中窒素酸化物を窒素ガスに還元するのに、電解還元によりアンモニウムイオンに液相還元し、電解槽のpHの高い域から空気をバブリングしてアンモニヤガスを脱気し、空気に同伴してくるアンモニヤガスを気相触媒層に通し窒素ガスに還元するようにしたものであるから、従来行われていた複雑な生物化学的な処理に代わり、高濃度で混在する窒素化合物の処理が可能になる。また、排水中窒素化合物以外にリン化合物、ニチオン酸イオンなどの排出規制物質を電極反応により液相で同時処理できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の排水中処理用の二室電解槽内の電解層内におけるアンモニヤ態窒素のpH、温度との溶解平衡関係を示す図である。
【図2】 本発明の実施の形態の二室電解槽を用いる排水中の窒素化合物の還元を行う排水処理システムの構成図である。
【図3】 本発明の実施の形態の排水中の窒素化合物の還元用の二室電解槽実験装置の構成図である。
【図4】 本発明の実施の形態の排水中処理用の二室電解槽内のpHプロファイルを示す図である。
【図5】 本発明の実施の形態の排水中処理用の二室電解槽の陽極(鉄板)、陰極(カーボン)の電解後の表面状態の写真を示す図である。
【図6】 本発明の実施の形態の排水中処理用の二室電解槽の陽極室に沈殿する鉄化合物のX線回折の結果(図6(a))とSEM写真(図6(b))を示す図である。
【図7】 本発明の実施の形態の排水中処理用の二室電解槽の陽極より溶出する電流値と鉄イオン量の関係を示す図である。
【図8】 本発明の実施の形態の排水中処理用の二室電解槽の電解反応による窒素化合物の電解特性を示す図である。
【図9】 本発明の実施の形態の排水中処理用の二室電解槽の窒素化合物の分解率を示す図である。
【図10】 本発明の実施の形態の排水中処理用の電極を複分極化して用いる二室電解槽の構成図を示す図である。
【符号の説明】
1 被処理排水 2 調整タンク
3 ポンプ 4 混合ガス流れ
5 触媒層出口ガス流れ 6 触媒層
7 加熱炉
8 流れ 9 循環流
10 陽極室 11 陰極室
12、13 空気 14、15 沈殿物
16、17 貯留室 18、19 脱水機ベルトコンベヤ
20 ポンプ 21 出口
22 ガス流れ 23、24 出口流路
25 拡散防止膜
26 陽極(可溶性固体金属) 27 陰極(不溶性固体材料)
100 層[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a wastewater treatment process for reducing a nitrogen compound in wastewater that is a causative substance of eutrophication to nitrogen gas. Nitrogen compounds in waste water include ammonia nitrogen, nitrite nitrogen, nitrate nitrogen or organic nitrogen, and the present invention relates to a waste water treatment process containing one or more of these components.
[0002]
The present invention also relates to a denitrification process that combines electrolytic reduction and gas phase catalytic reduction, particularly suitable for wastewater treatment in which nitrogen compounds such as ammonia nitrogen, nitrate nitrogen, and organic nitrogen are mixed.
[0003]
[Prior art]
As a wastewater treatment process performed for the purpose of preventing eutrophication in wastewater, in order to remove nitrogen compounds such as nitrite, nitrate, and ammonia in wastewater, in general, biological methods and physical・ Chemical treatment is used.
[0004]
As a biological treatment method of nitrate nitrogen, there is a biological method of oxidizing organic matter by donating hydrogen into anaerobic waste water. This method requires an organic carbon source as the reducing agent, and methanol is generally used.
[0005]
On the other hand, examples of the denitrification process using a physicochemical method include a method using an anion exchange membrane and a catalytic reduction method using a hydrogenation catalyst typified by palladium carrying platinum.
[0006]
The adsorption method using an ion exchange resin requires a secondary treatment of a waste liquid containing a concentrated nitrogen compound recovered by a regeneration operation, and thus has a problem that the treatment cost becomes high. Further, the catalytic reduction method has a problem that an expensive catalyst is required, and the apparatus itself requires high-temperature and high-pressure equipment.
[0007]
The activity of microorganisms used in the biochemical treatment method is optimal in the neutral range, and there is a problem that the activity is significantly reduced in other cases. For example, acidic treated water cannot be treated as it is, and therefore it is necessary to adjust the pH of the treated water within the optimum range. Therefore, there is a problem that the amount of chemicals and sludge after treatment increase.
[0008]
In addition, microorganisms used in biological treatment methods have a problem that if there is a sudden load change, it is difficult to follow the load change and the activity cannot be sustained. In order to treat wastewater containing high concentrations of nitrite nitrogen, nitrate nitrogen, or ammonia nitrogen, it is necessary to adjust the concentration accurately, thereby increasing the scale of the treatment apparatus.
[0009]
[Problems to be solved by the invention]
Examples of the denitrification process of ammonia nitrogen in wastewater include biological methods, ion exchange methods, and ammonia stripping methods. Ammonia nitrogen in the waste water is separated into ammonium ions and dissolved ammonia when dissolved in water, and they are in a dissociation equilibrium state depending on temperature and liquid pH. However, when the temperature of the liquid is normal temperature and the pH is neutral, most of the liquid exists in a dissociated state as ammonium ions. In this state, even if air is blown into the liquid and bubbling, the ammonia gas cannot be released from the liquid.
[0010]
In order to dissipate ammonium ions in the liquid into the gas phase, it is necessary to increase the pH of the liquid or increase the liquid temperature to shift from the equilibrium state to increase the dissolved ammonia.
[0011]
Further, the stripping method of dissolved ammonia in waste water includes a method of adjusting pH and stripping with air, or a method of blowing ammonia while raising the temperature by blowing water vapor.
[0012]
However, in order to treat waste water containing nitrogen compounds containing nitrite nitrogen, nitrate nitrogen, organic nitrogen, or ammonia nitrogen at the same time, it is necessary to perform reduction treatment separately from biological treatment.
[0013]
In addition, biological treatment of wastewater has a slow denitrification rate, and when treating nitrogen compounds in highly concentrated wastewater, a large amount of microorganisms are required to denitrify the activity of microorganisms, and the capacity of the equipment There is a problem that needs to be increased.
[0014]
An object of the present invention is to provide a novel wastewater treatment process that does not rely on biological treatment as a detoxification treatment method for nitrogen compounds mixed in wastewater.
[0015]
[Means for Solving the Problems]
The above-described problems of the present invention are solved by the following configuration.
According to the first aspect of the present invention, waste water containing a nitrogen compound is supplied to an electrolytic cell in which a soluble solid metal is installed in the anode material and an insoluble solid material is installed in the cathode material, and a DC voltage is applied between the two electrodes. Air is bubbled into the liquid, and a mixed gas containing ammonia gas accompanying the bubbling air is circulated from the electrolytic cell to the reduction catalyst layer, and reduced to nitrogen gas in the reduction catalyst layer. It is a reduction method.
[0016]
According to a second aspect of the present invention, there is provided a nitrogen compound in an electrolytic cell comprising an insoluble anode and an insoluble cathode, and comprising a partition wall structure filled with a soluble metal piece and / or metal particles between the anode chamber and the cathode chamber. Waste water containing, applying a DC voltage between the two electrodes, bubbling air from the bottom of the electrolytic cell, flowing a mixed gas containing ammonia gas accompanying the bubbling air from the electrolytic cell to the reduction catalyst layer, This is a method for reducing nitrogen compounds in waste water to nitrogen gas, which is reduced to nitrogen gas by the reduction catalyst layer.
[0017]
According to a third aspect of the present invention, there is provided an electrolytic cell having an anode chamber and a cathode chamber each having a soluble solid metal as an anode material and an insoluble solid material as a cathode material, and at least a cathode among the anode chamber and the cathode chamber of the electrolytic cell. A bubbling air introduction part is provided in the lower part of the chamber, a nitrogen compound-containing drainage introduction part is provided in the anode chamber, and a mixed gas discharge part containing ammonia gas accompanying the bubbling air is provided in the cathode chamber, the mixed gas discharge part The apparatus for reducing nitrogen compounds in the wastewater to nitrogen gas provided with a reduction catalyst layer of ammonia gas provided with the mixed gas introduction part.
[0018]
In the reducing device, an electrolyte diffusion preventing film or an ion exchange membrane may be used as a partition between the anode and the cathode of the electrolytic cell.
[0019]
As the soluble solid metal of the anode material of the reducing device, any metal selected from iron, aluminum, copper, nickel, and zinc was used, and platinum or platinum was added to titanium material as the insoluble solid material of the cathode material. Any of electrode material, stainless steel, or carbon may be used.
[0020]
As the soluble solid metal of the anode material of the reducing device, one or more metal pieces and / or metal particles selected from iron, aluminum, copper, nickel, and zinc may be used.
[0021]
As the anode of the anode material of the reducing device, a perforated flat plate or a corrugated plate may be used.
[0022]
The invention according to claim 8 has an anode chamber and a cathode chamber in which insoluble solid materials are respectively installed in the anode material and the cathode material, and a soluble metal piece and / or metal particles are filled between the anode chamber and the cathode chamber. An electrolytic cell provided with a partition structure, and a bubbling air introduction part is provided at least in the lower part of the cathode chamber among the anode chamber and the cathode chamber of the electrolytic layer, and a nitrogen compound-containing discharge introduction part is provided in the anode chamber. Is provided with a mixed gas discharge part containing ammonia gas accompanying the bubbling air, and connected to the mixed gas discharge part containing ammonia gas, and provided with a mixed gas introduction part containing ammonia gas provided with a reduction catalyst layer of ammonia gas An apparatus for reducing nitrogen compounds in waste water to nitrogen gas.
[0023]
[Action]
The present invention is a denitrification process for reducing nitrogen compounds such as nitrate nitrogen, nitrite nitrogen, ammonia nitrogen, and organic nitrogen to nitrogen gas. First, an electrochemical reduction reaction of nitrogen compounds in waste water Is reduced to ammonium ions, and the ammonium ions are electrophoresed in the high pH region of the cathode portion in the electrolytic cell, and are released as dissolved ammonia gas from the solution equilibrium. Next, the obtained ammonia-containing gas is passed through a reduction catalyst layer, and the ammonia gas is reduced to nitrogen gas.
[0024]
In the wastewater treatment process of the present invention, in order to reduce nitrogen compounds in the wastewater to nitrogen gas, the reduction to ammonium ions by an electrolytic cell and the catalytic reduction method in the gas phase of ammonia gas are combined.
[0025]
As a gas phase reduction catalyst for ammonia gas, a catalyst in which titanium oxide, vanadium, nickel, platinum or the like is supported on a cordierite carrier or a honeycomb carrier is used.
[0026]
In the present invention, a two-chamber electrolytic cell in which an anti-diffusion film is installed in the middle part of both electrodes so as to prevent the anode and cathode liquids from being mixed rapidly in order to make a difference in pH between the anode and cathode liquids in the electrolytic cell. Is used. It is effective to use, as the diffusion prevention film material, open fibers or the like in which the liquids of both electrodes partitioned by the diffusion prevention film can freely flow due to the head difference.
[0027]
The nitrogen compound in the liquid supplied to the anode part of the electrolytic cell is reduced to ammonium ions and moves to the cathode by electrophoretic migration. In general, since the pH of the cathode chamber is in a high alkali state of 11 or more, ammonium ions are present as dissolved ammonia in the solution due to dissolution equilibrium, and are diffused as ammonia gas by bubbling air to the cathode. can do. The obtained mixed gas containing ammonia can be passed through the reduction catalyst layer and reduced to nitrogen gas.
[0028]
The electrode material of the electrolytic cell of the present invention is also characterized in that a soluble solid metal is used for the anode. Iron, aluminum, cadmium, zinc and the like can be used as the soluble solid metal, but the anode electrode is consumed because it is always eluted into the liquid. Considering the cost and the like, it is effective to use the cheapest iron material as the anode electrode material.
[0029]
The shape of the electrode plate used for the anode of the present invention is not limited to a flat plate as long as the electrode material can be electrochemically eluted as iron ions and aluminum ions.
[0030]
Moreover, as an electrode material used for the anode, in the extreme case, the object of the present invention can be achieved even if a saddle-shaped material filled with scrap material obtained by machining of iron or aluminum is suspended from the anode.
[0031]
The pH range of the anolyte liquid is important, but usually, the electrolytic reaction lowers the pH of the anode from 1 to 3, and the cathode has a pH of 11 or higher. As a matter of course, the pH of the liquid is such that the surface state of the anode is lowest and the pH distribution increases as the surface of the cathode increases.
[0032]
Since the pH can be kept low at the anode, iron ions eluted from the surface of the iron electrode are oxidized to magnetite (Fe 3 O 4 ) and hematite (Fe 2 O 3 ) without being precipitated as iron hydroxide. During the oxidation reaction of iron ions, a reaction occurs to reduce nitrite nitrogen and nitrate nitrogen in the waste water.
[0033]
In the reduction reaction of nitrite nitrogen and nitrate nitrogen, there are some which are reduced to nitrogen gas, but most of them react with hydrogen ions generated by the electrolytic reaction, and a reaction to reduce to ammonium ions occurs.
[0034]
By keeping the reducing power and pH of Fe 2+ and Fe 3+ eluted from the anode low, a reduction reaction in which oxygen is extracted from nitrate nitrogen and nitrite nitrogen proceeds.
[0035]
As described above, ammonium ions are in the following dissolution equilibrium state depending on pH conditions (FIG. 1).
[0036]
NH 4 + + OH - ← → NH 3 + H 2 O (3)
When the pH of the ammonium ion is high, the reaction of the above formula (3) moves to the right side to generate dissolved ammonia (NH 3 ).
[0037]
In order to proceed with the denitrification reaction by a series of reactions, it is necessary to adjust the pH of the solution. For this purpose, a two-chamber electrolytic cell configuration capable of automatically adjusting the difference in pH is effective.
[0038]
The cathode electrode material may be the same material as the anode, but carbon and insoluble materials are effective. As the insoluble material, an electrode material obtained by adding platinum or platinum to a titanium-based material, stainless steel, or the like is effective.
[0039]
The configuration of the two-chamber electrolytic cell of the present invention comprises an anode, a cathode, an anode chamber, a cathode chamber, a diffusion prevention film, and a DC voltage application unit.
[0040]
Ammonium ions generated by the electrolytic reaction of the nitrogen compound pass through the reduction catalyst layer together with air as an ammonia gas from the cathode having a high pH and are reduced to nitrogen gas. The operating principle of the reduction reaction of nitrogen compounds in the waste water of the present invention to nitrogen gas will be described below. In addition, the wastewater to be treated containing nitrogen compounds is supplied to the anode chamber of the two-chamber electrolytic cell, and the reduction mechanism of nitrogen compounds to nitrogen gas is exemplified by the case of using an iron plate as the anode and carbon as the cathode as the electrode material. This will be described below.
[0041]
When a DC voltage is applied between the electrodes, iron is dissolved into the liquid from the iron plate of the anode. In this state, iron is eluted as Fe 2+ and Fe 3+ ions, and stable hematite (Fe 2 O 3 ) and magnetite (Fe 3 O 4 ) are generated in a low pH region. NO 3 and NO 2 oxygen are extracted as nitrogen compounds and react with H + to largely reduce to NH 4 + .
[0042]
Ammonium ions (NH 4 + ) generated at the anode pass through the diffusion prevention film, electrochemically migrate to the cathode, and are concentrated. Since the pH can be increased to 11 or higher at the cathode, the relationship between the dissolution equilibrium state of ammonium ions and dissolved ammonia shifts to the right side of Equation (3).
[0043]
Since the ammonia dissolved in the liquid by bubbling air into the cathode chamber is degassed as the ammonia gas, the degassed ammonia gas can be guided to the reduction catalyst layer and reduced to nitrogen gas. The temperature of the reduction catalyst layer is adjusted to 200 ° C. to 500 ° C., and the space velocity (SV) is reacted at 5000 to 20000 h −1 .
[0044]
In a series of denitrification reactions of the present invention, metal ions eluted from the anode electrode of the present invention exhibit a reducing function by using a soluble material in addition to iron as the anode electrode material.
[0045]
As a soluble material, iron, aluminum, zinc or the like can be used as an electrode material. Among these, iron and aluminum electrodes are effective from the viewpoint of material cost and easy post-treatment of sediment.
[0046]
This series of denitrification reaction rates is governed by the elution rate of the metal used as the anode electrode material, and the reducing power of nitrate nitrogen at that time becomes the rate-determining condition. In order to increase the speed of the denitrification reaction, it is effective to increase the surface area of the anode electrode material. In order to increase the surface area of the plate electrode, it is effective to use a perforated electrode or a corrugated configuration.
[0047]
The anode material can be considered as a means for supplying metal ions, and can be formed into an electrode by connecting it with a carbon electrode or an iron electrode or the like filled with a metal shaving short piece obtained by machining.
[0048]
Further, by fluidizing iron powder or aluminum powder, it becomes an effective means for dissolving iron or aluminum due to the bipolarization phenomenon of iron powder or aluminum powder.
[0049]
In addition, the reduction reaction by the iron ions of the present invention can also proceed by installing a partition wall of an electrolytic chamber filled with iron pieces instead of the diffusion prevention film.
[0050]
The metal oxide produced in the anode chamber settles as oxides such as magnetite and hematite, so the liquid in the electrolytic cell is mixed by bubbling nitrogen gas or air from the bottom of the cathode chamber, and the interface on the electrode surface is Renewal is effective in increasing the dissolution rate of the metal.
[0051]
In the present invention, a two-chamber electrolytic cell is configured to generate a high and low pH region. Therefore, it is an effective means to maintain the pH of the wastewater to be treated at the anode low and to sufficiently supply Fe 2+ and Fe 3+ eluted from the electrode to the reduction reaction of nitrite nitrogen and nitrate nitrogen.
[0052]
Naturally, it is also possible to adjust the pH difference of the reaction field with chemicals. By providing iron ions as ferrous sulfate or ferric sulfate and adjusting the pH of each, the function of the present invention can be achieved, but sulfate ions coexist as counter ions of iron ions, and from the electrodes Compared with the reducing power when iron ions are eluted, the reduction of nitrite nitrogen and nitrate nitrogen is reduced.
[0053]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
FIG. 2 shows a treatment system for nitrogen compounds in waste water that combines electrolytic reduction and gas phase catalytic reduction according to an embodiment of the present invention.
[0054]
The processing system includes a collection unit for depositing in a two-chamber electrolytic cell including an anode chamber 10 and a cathode chamber 11, a gas phase catalytic reduction unit, and a supply unit for a liquid to be processed.
[0055]
FIG. 3 shows the configuration of an experimental apparatus used for the electrolysis experiment of the two-chamber electrolytic cell. The wastewater 1 to be treated containing nitrogen compounds flows from the adjustment tank 2 through the pump 3 into the flow 8 and is supplied to the anode chamber 10 of the two-chamber electrolytic cell.
[0056]
As shown in the experimental apparatus of FIG. 3, the two-chamber electrolytic cell is composed of an anode chamber 10, a cathode chamber 11, and a diffusion preventing film 25 for preventing rapid diffusion of the liquid. Air 12 and 13 are supplied from the bottom of the anode chamber 10 and the cathode chamber 11 in order to mix the liquid in the anode chamber 10 and the cathode chamber 11. A soluble solid metal 26 and an insoluble solid material 27 are installed in the anode chamber 10 and the cathode chamber 11, respectively.
[0057]
The gas generated in the cathode chamber 11 entrains the introduced air 12 to become an upper outlet gas flow 22 of the cathode chamber 11 and is introduced into the gas phase catalyst layer 6 of the heating furnace 7, and the ammonia becomes nitrogen gas and flows. Extracted from. Since the catalyst layer outlet gas flow 5 may contain unreacted ammonia gas, a part thereof may be mixed with the upper outlet gas flow 22 of the cathode chamber 11 on the inlet side of the catalyst layer 6 as a circulating flow 9. Is possible.
[0058]
Further, when chlorine ions are contained in the wastewater 1 to be treated, chlorine gas is generated in the anode chamber 10. Further, in the catalyst layer 6, a selective reduction reaction of ammonia gas to nitrogen gas occurs, but a small amount of the ammonia gas is partially oxidized to nitrogen oxides such as NO 2 and NOx. It is also possible to process the batch acidic gas by combining the gas into the catalyst layer outlet gas flow 5 as the mixed gas flow 4 discharged from the anode chamber 10.
[0059]
Precipitates that settle in the anode chamber 10 and the cathode chamber 11 are extracted from the bottom outlet channels 23 and 24 of the electrolytic cell, and dehydrated by the dehydrator belt conveyors 18 and 19, respectively, to separate the precipitates 14 and 15.
[0060]
The liquid obtained by filtering the precipitate in the anode chamber 10 is temporarily stored in the storage chamber 16 and then returned to the liquid in the anode chamber 10 from the pump 20. On the other hand, the liquid obtained by filtering the precipitate in the cathode chamber 11 is temporarily stored in the storage chamber 17 and can then be discharged from the outlet 21.
[0061]
When an iron plate is used as the electrode material for the anode 26 and a carbon plate is used as the electrode material for the cathode 27 and a DC voltage is applied to the electrodes 26 and 27 at 1 to 30 V, the pH of the anolyte and catholyte changes in about 10 to 20 minutes. It begins and changes with the passage of the subsequent electrolysis time. This is shown in the profile of FIG. The pH of the anolyte is 1.9, and the pH of the catholyte is a constant value near 11.8.
[0062]
FIG. 5 shows the results of observing the surface states of the iron plate and the cathode carbon plate used for the anode 26 when the wastewater to be treated was treated in an electrolytic cell and the electrodes 26 and 27 were energized for 6 hours. The surface of the carbon electrode (cathode 27) is almost the same as the initial state, but the surface of the iron plate of the anode 26 is keloid, and it can be observed that iron is eluted from the iron plate.
[0063]
FIG. 6A and FIG. 6B show the X-ray diffraction results and electron micrographs of the sediment settled in the anode chamber 10, respectively. According to the results of X-ray diffraction, most of the precipitate is magnetite with magnetism.
[0064]
The amount of iron ions eluted from the anode chamber 10 is proportional to the amount of current flowing between the electrodes 26 and 27 shown in FIG. Therefore, in order to adjust the reduction reaction according to the nitrogen compound concentration in the wastewater, control by the amount of current is possible.
[0065]
As the film material of the diffusion preventing film 25 between the anode chamber 10 and the cathode chamber 11 shown in FIGS. 2 and 3, acid- and alkali-resistant silica-based fibers, chemical fibers, silicon porous films, filter paper, or the like is used. Further, the diffusion preventing film 25 can be replaced with an ion exchange film.
[0066]
However, the diffusion prevention film 25 itself needs to hold the liquid put in the anode chamber 10 and the cathode chamber 11, and is a porous resin plate having a larger opening than silica-based fiber, chemical fiber, silicon porous film, filter paper, etc. It is necessary to provide mechanical strength by sandwiching the sandwich structure.
[0067]
Next, typical reduction reaction characteristics of nitrite or nitrate nitrogen ions are shown in Table 1, FIG. 8, and FIG.
[0068]
[Table 1]
Figure 0003942949
The composition of the wastewater to be treated was nitrite ion 330 mg / L and nitrate ion 280 mg / L respectively adjusted with calcium nitrite and calcium nitrate, and the calcium chloride concentration was adjusted so that the chlorine ion was 5000 mg / L in that state. . The electrode material for the anode 26 was an iron plate, and the electrode material for the cathode 27 was a carbon plate.
[0069]
The current value when the two electrodes 26 and 27 were energized was fixed at 6A, and the voltage between the electrodes at that time was changed to 9.9V over time.
[0070]
Nitrite ions decreased to 20 mg / L or less after 1 hour had passed. On the other hand, nitrate ion decreased from 280 mg / L to 30 mg / L. On the other hand, ammonium ion increases to 87 mg / L in 1 hour after energization. As a result, it is clear that nitrite ions and nitrate ions are partially reduced to nitrogen gas or ammonia nitrogen after electrolysis.
[0071]
The results of examining the behavior of nitrite ions and nitrate ions with respect to electrolysis time are shown in FIGS. As is apparent from FIGS. 8 and 9, the nitrite ion concentration or the nitrate ion concentration rapidly decreases simultaneously with the energization, and is almost 100% decomposed after 2 to 3 hours. On the other hand, the ammonium ion concentration rapidly increases after energization, and thereafter the production of ammonium ions becomes slow. If nitrite ions or nitrate ions are reduced to ammonium ions, it is considered that ammonium ions rise in inverse proportion to the decrease in nitrite ions or nitrate ions. However, as shown in FIG. 8, the generation amount of ammonium ions becomes slow from about 1.5 hours after energization because the ammonium ions migrate to the cathode chamber 11 having a high pH, and the equilibrium relationship in FIG. It is because it deaerates as a dissolved ammonia.
[0072]
The ammonia gas entrained by the air deaerated from the cathode chamber 11 is introduced into the catalyst layer 6 and is reduced to nitrogen gas by the catalyst to be rendered harmless. The catalyst layer 6 in case heated in the range of 300 ° C. to 500 ° C. in an electric furnace, it harmless to treat the space velocity at 5000h -1 ~20000h -1.
[0073]
Since the space velocity is a value obtained by dividing the amount of the processing gas per unit flow rate by the catalyst volume, the gas phase reduction efficiency can be increased by increasing the catalyst volume or decreasing the amount of gas to be processed. In order to reduce the amount of gas to be treated, the ammonia gas accompanying the air can be efficiently reduced to nitrogen gas by reducing the amount of air bubbled in the cathode chamber 11.
[0074]
For the reduction of nitrogen compounds in waste water of the present invention, it is effective to use an iron electrode as a soluble electrode for the anode 26, but without using a soluble electrode for the electrode material of the anode 26, the two-chamber electrolytic cell shown in FIG. As shown in the embodiment, a layer 100 filled with iron fragments or iron particles may be provided at the center. In this case, between the iron particles or iron fragments, iron is eluted from each iron particle itself by the polarization phenomenon of the positive and negative electrodes, and the nitrogen compound can be effectively reduced.
[0075]
In addition, phosphorus, which is a eutrophication product in wastewater other than nitrogen compounds, and nithionate ions, which are COD substances, coexist in the electrode 26 of the anode chamber 10 and the electrode 27 of the cathode chamber 11 in the electrolytic solution. There is a phenomenon that the iron ions of the anode 26 co-precipitate when they settle to magnetite due to the oxidation-reduction reaction. Nithionate ions and the like are decomposed into harmless sulfate ions by decomposing nithionate ions when iron ions are oxidized to magnetite. Therefore, even when the phosphorus compound and the COD substance coexist in the waste water containing the nitrogen compound in the waste water, the nithionate ion and the phosphorus compound can be simultaneously treated in addition to the nitrogen compound.
[0076]
【The invention's effect】
The present invention reduces the nitrogen oxide in wastewater mixed with nitrite nitrogen, nitrate nitrogen, ammonia nitrogen, and organic nitrogen to nitrogen gas, liquid phase reduction to ammonium ions by electrolytic reduction, Since the ammonia gas is degassed by bubbling air from the high pH range, the ammonia gas accompanying the air passes through the gas phase catalyst layer and is reduced to nitrogen gas. Instead of complicated biochemical treatment, it is possible to treat nitrogen compounds that are mixed at high concentrations. Moreover, in addition to nitrogen compounds in wastewater, emission-regulating substances such as phosphorus compounds and nithionate ions can be simultaneously treated in the liquid phase by electrode reaction.
[Brief description of the drawings]
FIG. 1 is a diagram showing a dissolution equilibrium relationship between pH and temperature of ammonia nitrogen in an electrolytic layer in a two-chamber electrolytic cell for wastewater treatment according to an embodiment of the present invention.
FIG. 2 is a configuration diagram of a wastewater treatment system that reduces nitrogen compounds in wastewater using the two-chamber electrolytic cell according to the embodiment of the present invention.
FIG. 3 is a configuration diagram of a two-chamber electrolytic cell experimental apparatus for reducing nitrogen compounds in waste water according to an embodiment of the present invention.
FIG. 4 is a diagram showing a pH profile in a two-chamber electrolytic cell for wastewater treatment according to an embodiment of the present invention.
FIG. 5 is a view showing a photograph of a surface state after electrolysis of an anode (iron plate) and a cathode (carbon) of a two-chamber electrolytic cell for wastewater treatment according to an embodiment of the present invention.
FIG. 6 shows the result of X-ray diffraction of the iron compound precipitated in the anode chamber of the two-chamber electrolytic cell for wastewater treatment according to the embodiment of the present invention (FIG. 6A) and the SEM photograph (FIG. 6B). ).
FIG. 7 is a diagram showing the relationship between the current value eluted from the anode of the two-chamber electrolytic cell for wastewater treatment according to the embodiment of the present invention and the amount of iron ions.
FIG. 8 is a diagram showing electrolytic characteristics of a nitrogen compound by an electrolytic reaction of a two-chamber electrolytic cell for wastewater treatment according to an embodiment of the present invention.
FIG. 9 is a diagram showing a decomposition rate of nitrogen compounds in a two-chamber electrolytic cell for wastewater treatment according to an embodiment of the present invention.
FIG. 10 is a diagram showing a configuration diagram of a two-chamber electrolytic cell in which an electrode for wastewater treatment according to an embodiment of the present invention is double-polarized.
[Explanation of symbols]
1 Wastewater to be treated 2 Adjustment tank 3 Pump 4 Mixed gas flow 5 Catalyst layer outlet gas flow 6 Catalyst layer 7 Heating furnace 8 Flow 9 Circulating flow 10 Anode chamber 11 Cathode chamber 12, 13 Air 14, 15 Precipitate 16, 17 Storage chamber 18, 19 Dehydrator belt conveyor 20 Pump 21 Outlet 22 Gas flow 23, 24 Outlet passage 25 Diffusion prevention film 26 Anode (soluble solid metal) 27 Cathode (insoluble solid material)
100 layers

Claims (8)

陽極材に可溶性固体金属、陰極材に不溶性固体材料をそれぞれ設置した電解槽に窒素化合物を含む排水を供給し、両極間に直流電圧を印加し、電解槽下部より液中に空気をバブリングさせ、該バブリング空気に同伴するアンモニアガスを含む混合ガスを電解槽から還元触媒層に流通させ、該還元触媒層で窒素ガスに還元することを特徴とする排水中窒素化合物の窒素ガスへの還元方法。Supply the wastewater containing nitrogen compound to the electrolytic cell in which the soluble solid metal and the insoluble solid material are respectively installed in the anode material, apply DC voltage between both electrodes, and bubble air into the liquid from the bottom of the electrolytic cell, A method for reducing nitrogen compounds in wastewater to nitrogen gas, wherein a mixed gas containing ammonia gas accompanying the bubbling air is circulated from an electrolytic cell to a reduction catalyst layer and reduced to nitrogen gas by the reduction catalyst layer. 不溶性の陽極と不溶性の陰極を備え、陽極室と陰極室の間に可溶性の金属片、及び/又は金属粒子を充填した隔壁構造物を備えた電解槽に窒素化合物を含む排水を供給し、両極間に直流電圧を印加し、電解槽の下部より空気をバブリングさせ、該バブリング空気に同伴するアンモニアガスを含む混合ガスを電解槽から還元触媒層に流通させ、該還元触媒層で窒素ガスに還元することを特徴とする排水中窒素化合物の窒素ガスへの還元方法。A wastewater containing a nitrogen compound is supplied to an electrolytic cell comprising an insoluble anode and an insoluble cathode, and a partition structure filled with a soluble metal piece and / or metal particles between the anode chamber and the cathode chamber. A DC voltage is applied between them, air is bubbled from the lower part of the electrolytic cell, a mixed gas containing ammonia gas accompanying the bubbling air is circulated from the electrolytic cell to the reduction catalyst layer, and reduced to nitrogen gas by the reduction catalyst layer A method for reducing a nitrogen compound in waste water to nitrogen gas. 陽極材に可溶性固体金属、陰極材に不溶性固体材料をそれぞれ設置した陽極室と陰極室を有する電解槽と、該電解槽の陽極室と陰極室のうち、少なくとも陰極室の下部にバブリング用空気導入部を設け、陽極室に窒素化合物含有排水導入部と設け、陰極室には前記バブリング空気に同伴するアンモニアガスを含む混合ガス排出部を設け、該混合ガス排出部に接続して前記混合ガス導入部を備えたアンモニヤガスの還元触媒層を設けたことを特徴とする排水中窒素化合物の窒素ガスへの還元装置。An electrolytic cell having an anode chamber and a cathode chamber each having a soluble solid metal as an anode material and an insoluble solid material as a cathode material, and introducing bubbling air into at least the lower part of the cathode chamber among the anode chamber and the cathode chamber of the electrolytic cell The anode chamber is provided with a nitrogen compound-containing drainage introduction portion, the cathode chamber is provided with a mixed gas discharge portion containing ammonia gas accompanying the bubbling air, and the mixed gas introduction portion is connected to the mixed gas discharge portion. An apparatus for reducing nitrogen compounds in waste water to nitrogen gas, comprising a reduction catalyst layer for ammonia gas provided with a section. 電解槽の陽極と陰極間の仕切に電解液拡散防止膜あるいはイオン交換膜を用いることを特徴とする請求項3記載の排水中窒素化合物の窒素ガスへの還元装置。The apparatus for reducing nitrogen compounds in waste water to nitrogen gas according to claim 3, wherein an electrolyte diffusion preventing film or an ion exchange membrane is used as a partition between the anode and cathode of the electrolytic cell. 陽極材の可溶性固体金属としては、鉄、アルミニウム、銅、ニッケル、亜鉛から選ばれたいずれかの金属を用い、陰極材の不溶性固体材料としては、チタン材に白金若しくはプラチナを添着させた電極材、ステンレス鋼、又はカーボンのいずれかを用いることを特徴とする請求項3記載の排水中窒素化合物の窒素ガスへの還元装置。As the soluble solid metal of the anode material, any metal selected from iron, aluminum, copper, nickel and zinc is used, and as the insoluble solid material of the cathode material, an electrode material in which platinum or platinum is added to a titanium material. 4. The apparatus for reducing nitrogen compounds in waste water to nitrogen gas according to claim 3, wherein any one of stainless steel and carbon is used. 陽極材の可溶性固体金属としては、鉄、アルミニウム、銅、ニッケル、亜鉛から選ばれた1以上の金属片及び/又は金属粒子を用いることを特徴とする請求項5記載の排水中窒素化合物の窒素ガスへの還元装置。6. Nitrogen of nitrogen compound in waste water according to claim 5, wherein the soluble solid metal of the anode material is one or more metal pieces and / or metal particles selected from iron, aluminum, copper, nickel and zinc. Reduction device to gas. 陽極は穴あき平板又は波板を用いることを特徴とする請求項3記載の排水中窒素化合物の窒素ガスへの還元装置。4. The apparatus for reducing nitrogen compounds in waste water to nitrogen gas according to claim 3, wherein the anode is a perforated flat plate or a corrugated plate. 陽極材と陰極材に不溶性固体材料をそれぞれ設置した陽極室と陰極室を有し、陽極室と陰極室の間に可溶性の金属片及び/又は金属粒子を充填した隔壁構造物を備えた電解槽と、電解層の陽極室と陰極室のうち、少なくとも陰極室の下部にバブリング用空気導入部を設け、陽極室に窒素化合物含有排出導入部を設け、陰極室には前記バブリング空気に同伴するアンモニアガスを含む混合ガス排出部を設け、該アンモニアガスを含む混合ガス排出部に接続してアンモニアガスを含む混合ガス導入部を備えたアンモニアガスの還元触媒層を設けたことを特徴とする排水中窒素化合物の窒素ガスへの還元装置。An electrolytic cell having an anode chamber and a cathode chamber in which an insoluble solid material is respectively installed in an anode material and a cathode material, and a partition wall structure filled with a soluble metal piece and / or metal particles between the anode chamber and the cathode chamber And a bubbling air introduction part at least in the lower part of the cathode chamber of the electrolytic layer, a nitrogen compound-containing discharge introduction part in the anode chamber, and ammonia accompanying the bubbling air in the cathode chamber In the wastewater, characterized in that a mixed gas discharge part including gas is provided, and a reduction catalyst layer for ammonia gas provided with a mixed gas introduction part including ammonia gas connected to the mixed gas discharge part including ammonia gas is provided. Equipment for reducing nitrogen compounds to nitrogen gas.
JP2002135359A 2002-05-10 2002-05-10 Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas Expired - Fee Related JP3942949B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002135359A JP3942949B2 (en) 2002-05-10 2002-05-10 Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002135359A JP3942949B2 (en) 2002-05-10 2002-05-10 Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas

Publications (2)

Publication Number Publication Date
JP2003326265A JP2003326265A (en) 2003-11-18
JP3942949B2 true JP3942949B2 (en) 2007-07-11

Family

ID=29697707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002135359A Expired - Fee Related JP3942949B2 (en) 2002-05-10 2002-05-10 Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas

Country Status (1)

Country Link
JP (1) JP3942949B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007105673A (en) * 2005-10-14 2007-04-26 Nittetsu Mining Co Ltd Treating method and treating apparatus of waste water containing nitrate nitrogen and electrolytic cell for treating waste water
FR2917734B1 (en) * 2007-06-19 2010-09-10 Magnes Pierre Jean Maurice "PROCESS FOR ELECTROCHEMIC CHEMICAL MIXING TREATMENT OF A LIQUID MEDIUM CHARGED WITH NITRATE, DEVICE FOR TREATING SUCH A LIQUID MEDIUM AND APPLICATIONS"
JP5327856B2 (en) * 2009-04-01 2013-10-30 株式会社オメガ Water treatment method
JP2018137199A (en) * 2017-02-24 2018-08-30 ダイハツ工業株式会社 Fuel cell system
EP4079688A1 (en) * 2019-12-17 2022-10-26 Kabushiki Kaisha Toshiba Ammonia manufacturing device and ammonia manufacturing method
CN113620413A (en) * 2021-09-10 2021-11-09 北京交通大学 Method and device for removing nitrate nitrogen pollutants by using weak magnetic field to strengthen iron-carbon micro-electrolysis
CN116102130B (en) * 2023-04-13 2023-06-30 湖南博世科环保科技有限公司 Synchronous pollution-reducing, carbon-reducing, denitrification and dephosphorization three-dimensional electrocatalytic treatment device and process

Also Published As

Publication number Publication date
JP2003326265A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP4671743B2 (en) Electrolytic treatment method and apparatus for wastewater containing ammonia nitrogen
JP5881727B2 (en) Carbon bed electrolyzer for waste liquid treatment and its process
JP4040028B2 (en) Method and system for treating water to be treated containing organic matter and nitrogen compound
CA2159198A1 (en) Oxidative method of purifying highly contaminated waste water
CN101734779A (en) Method for preparing Fenton reagent on site for treating waste water
JPH10174976A (en) Method for treating water containing nitrogen compound
KR100310272B1 (en) Electrochemical Wastewater Treatment System
CN111039361B (en) Electrochemical water treatment device capable of removing ammoniacal nitrogen and oxidation by-products of ammoniacal nitrogen
US3788967A (en) Wastewater treatment using electrolysis with activated carbon cathode
JP3942949B2 (en) Method and apparatus for reducing nitrogen compounds in wastewater to nitrogen gas
CZ134094A3 (en) Process of electrochemical reduction of nitrates
CN105692972A (en) Industrial wastewater advanced treatment and cyclic utilization method
US3582485A (en) Water purification
JP3982500B2 (en) Method and apparatus for treating wastewater containing organic compounds
JP3788688B2 (en) Method and apparatus for electrolytic treatment of oxidized nitrogen-containing water
RU2207982C2 (en) Water treatment method
JPS6244995B2 (en)
JP2004073926A (en) Treatment method of nitrate nitrogen-containing wastewater
JP2603895B2 (en) Treatment of hypophosphite ions in plating aging solution
JP3601673B2 (en) Electrolytic treatment method for water containing oxidizable pollutants and electrode for electrolytic treatment
JPH11158681A (en) Treatment of selenium-containing water to be treated
US4248684A (en) Electrolytic-cell and a method for electrolysis, using same
JP4062690B2 (en) Organic wastewater treatment method
JP3358905B2 (en) Method for treating wastewater containing nitrate nitrogen and ammonia nitrogen
RU2149835C1 (en) Method of treating drinking water

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120413

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees