JPS6117232B2 - - Google Patents

Info

Publication number
JPS6117232B2
JPS6117232B2 JP54128645A JP12864579A JPS6117232B2 JP S6117232 B2 JPS6117232 B2 JP S6117232B2 JP 54128645 A JP54128645 A JP 54128645A JP 12864579 A JP12864579 A JP 12864579A JP S6117232 B2 JPS6117232 B2 JP S6117232B2
Authority
JP
Japan
Prior art keywords
thyristor
converter
power
unit
regenerative braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54128645A
Other languages
Japanese (ja)
Other versions
JPS5653579A (en
Inventor
Shigenori Kinoshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP12864579A priority Critical patent/JPS5653579A/en
Priority to DE19803037551 priority patent/DE3037551A1/en
Priority to DK417580A priority patent/DK417580A/en
Publication of JPS5653579A publication Critical patent/JPS5653579A/en
Publication of JPS6117232B2 publication Critical patent/JPS6117232B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/145Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/155Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/19Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only arranged for operation in series, e.g. for voltage multiplication

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Rectifiers (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【発明の詳細な説明】 本発明は交流電気車に適した半導体電力変換装
置に関する。この種の電力変換装置は(1)充分な回
生制動力が得られること、(2)回生制動時の力率が
出来るだけ大きいこと、(3)回生制動時でも力行時
程度に架線に流れる高調波電流が小さいこと等が
望まれる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor power conversion device suitable for AC electric vehicles. This type of power converter requires (1) sufficient regenerative braking force to be obtained, (2) the power factor during regenerative braking to be as large as possible, and (3) high power that flows through the overhead wires even during regenerative braking to the same degree as during power running. It is desirable that the wave current be small.

交流電気車にサイリスタ変換器を搭載する場
合、サイリスタ位相制御に伴う架線電流歪による
高調波電流が増大すると云う問題がある。このた
め車両に塔載した変圧器の二次巻線を複数個に分
割し、この二次巻線にサイリスタブリツジ構成の
単位変換器をそれぞれ接続し、これらを直流出力
側で縦続接続する方式が多用されている。このよ
うなサイリスタ変換器であればサイリスタの点弧
順序と点弧位相をかえるだけで容易に力行(サイ
リスタ変換器をコンバータ動作)および回生(サ
イリスタ変換器をインバータ動作)運転が出来
る。二次巻線の分割は架線に流れる高調波電流の
低減は効果的で4〜6分割が多い。ここでサイリ
スタブリツジ構成のサイリスタ変換器をインバー
タ運転して回生制動する場合、サイリスタのター
ンオタイムから決まる転流余裕時間を確保しなけ
ればならない。したがつてインバータ運転時の最
小点弧進み角βminはこの転流余裕時間に相当す
る角度と転流重なり角を加えたものとなる。すな
わち力行運転の場合最小点弧遅れ角αは零である
のに対し、回生運転の場合最小点弧進み角はβ
minとなる。このβminは転流重なり角が大きい
ほど大きくなり、力率、回生率、回生制動力が低
下すると共に架線に流れる高調波電流が増大す
る。特に交流電気車の場合、変電所から最遠地点
では交流リアクタンスが最も大きくなるためβ
minも最も大きくなる。このためこの地点では充
分な回生制動が得られなくなつたり、高調波電流
が大きくなる等車両性能が、著しく低下してしま
うことがある。
When a thyristor converter is mounted on an AC electric vehicle, there is a problem in that harmonic current increases due to overhead wire current distortion associated with thyristor phase control. For this purpose, the secondary winding of the transformer mounted on the vehicle is divided into multiple parts, a unit converter with a thyristor bridge configuration is connected to each secondary winding, and these are connected in cascade on the DC output side. is frequently used. With such a thyristor converter, power running (the thyristor converter operates as a converter) and regeneration (thyristor converter operates as an inverter) can be easily performed by simply changing the firing order and firing phase of the thyristors. The division of the secondary winding is effective in reducing harmonic current flowing through the overhead wire, and is often divided into 4 to 6 parts. When a thyristor converter having a thyristor bridge configuration is operated by an inverter for regenerative braking, commutation margin time determined from the turn-off time of the thyristor must be ensured. Therefore, the minimum ignition advance angle βmin during inverter operation is the sum of the angle corresponding to this commutation margin time and the commutation overlap angle. In other words, in power running operation, the minimum firing delay angle α is zero, while in regenerative operation, the minimum firing advance angle is β.
It becomes min. This βmin increases as the commutation overlap angle increases, and the power factor, regeneration factor, and regenerative braking force decrease, and the harmonic current flowing through the overhead wire increases. Especially in the case of AC electric vehicles, the AC reactance is greatest at the farthest point from the substation, so β
min is also the largest. Therefore, at this point, vehicle performance may be significantly degraded, such as insufficient regenerative braking or an increase in harmonic current.

第1図は従来のサイリスタブリツジ構成の変換
器による交流電気車の主回路図であり、リアクタ
ンス2を含む電源1に、一次巻線31および二次
巻線32〜35を有する変圧器3、単位変換器4
1〜44、平滑リアクトル5、駈動電動機6が図
示の如く接続されている。第2図は各変換器が最
小点弧進み角βminでインバータ運転されている
場合の動作波形の例を示す。これには電源電圧
e1、電流iS1〜iS4(i32〜i34)、各変換器の出力
電圧e41〜e44、合成出力電圧edが示されている。
FIG. 1 is a main circuit diagram of an AC electric vehicle using a converter having a conventional thyristor bridge configuration. unit converter 4
1 to 44, a smoothing reactor 5, and a cantering motor 6 are connected as shown. FIG. 2 shows an example of operating waveforms when each converter is operated by an inverter at the minimum firing advance angle βmin. This includes the power supply voltage
e 1 , currents i S1 to i S4 (i 32 to i 34 ), output voltages e 41 to e 44 of each converter, and combined output voltage ed are shown.

第2図に示すように各変換器41〜44とも同
一の点弧角で転流させても各巻線間の相互干渉に
よつて一律に転流が行われず、みかけ上の転流重
なり角は大きくなる。この場合でも最も遅く転流
動作が終了する巻線(第2図ではS4)転流余裕角
δが規定値以上になるように点弧角βminを大き
くしなければならない。一方インバータ運転によ
つて停止まで回生制動をかけようとすると力行と
同一の二次巻線電圧では上述の理由から充分な回
生制動力が得られない場合がある。このため回生
の場合は力行の場合より交流電圧を増す必要があ
る。第1図の例で示すと力行時は41〜43まで
を使用しS4はバイパス動作をさせ、回生時は41
〜44まで用いるようにする方法がある。この方
法によると力行時と制動時と巻線電圧が同一でも
制動時の方が、高調波電流を増す上に更に制動時
に巻線電圧を高くするので一次巻線に流れる高調
波電流は力行時に比べ非常に大きくなつてしまう
ため実用出来ない場合も生ずる。
As shown in Fig. 2, even if the transducers 41 to 44 are commutated at the same firing angle, the commutation is not performed uniformly due to mutual interference between the windings, and the apparent commutation overlap angle is growing. Even in this case, the firing angle βmin must be increased so that the commutation margin angle δ of the winding whose commutation operation ends latest (S 4 in FIG. 2) exceeds a specified value. On the other hand, if an attempt is made to apply regenerative braking to a stop through inverter operation, sufficient regenerative braking force may not be obtained with the same secondary winding voltage as in power running for the reasons mentioned above. Therefore, in the case of regeneration, it is necessary to increase the AC voltage compared to the case of power running. In the example shown in Figure 1, 41 to 43 are used during power running, S 4 is used for bypass operation, and 41 is used during regeneration.
There is a method of using up to 44. According to this method, even if the winding voltage is the same during powering and braking, the harmonic current increases during braking, and the winding voltage is further increased during braking, so the harmonic current flowing to the primary winding is lower during powering. In some cases, the size is so large that it cannot be put to practical use.

本発明は充分な回生制動力が得られ、且つ電源
に流れる高調波電流の少ないサイリスタ整流器を
提供するものである。
The present invention provides a thyristor rectifier that can provide sufficient regenerative braking force and that causes less harmonic current to flow through the power source.

本発明の一実施例を第3図に示す。第3図で、
第1図と同一記号のものは同一のものを示す。
An embodiment of the present invention is shown in FIG. In Figure 3,
The same symbols as in FIG. 1 indicate the same things.

本発明の基本は縦続接続された単位変換器の少
なくとも一組以上の単位変換器の直流端子間に並
列にサイリスタと抵抗の直列回路を単位変換器と
同一極性になるように接続し、回生制動時にはこ
のサイリスタを点弧させると共に単位変換器は動
作させずに負荷電流は電源に流さないでサイリス
タを介して抵抗に流し、力行時より使用巻線を等
価的に減らし電源に流れる電流と高調波電流の低
減を図つたところにある。
The basis of the present invention is that a series circuit of a thyristor and a resistor is connected in parallel between the DC terminals of at least one set of unit converters connected in cascade so as to have the same polarity as the unit converters, and regenerative braking is performed. Sometimes this thyristor is fired, the unit converter is not operated, and the load current is not passed to the power supply, but is passed to the resistor via the thyristor, which equivalently reduces the number of windings used during power running and reduces the current flowing to the power supply and its harmonics. The aim is to reduce the current.

第3図で制御動作を説明する。まず力行時はサ
イリスタ71はオフして単位変換器41〜44を
通常の縦続接続整流器の制御と同様に制御する。
力行時の最大出力の時は41〜44が各々最大出
力となる。この場合の単位変換器はダイオード整
流器と同様の動作となり、電源側に流れる高調波
電流も少ない。
The control operation will be explained with reference to FIG. First, during power running, the thyristor 71 is turned off and the unit converters 41 to 44 are controlled in the same manner as normal cascaded rectifiers.
At the maximum output during power running, 41 to 44 each have the maximum output. The unit converter in this case operates similarly to a diode rectifier, and the harmonic current flowing to the power supply side is also small.

次に回生制動の場合について説明する。最大回
生電力の時には変換器42〜44はβmin運転で
最大出力を出し、変換器41の各サイリスタはオ
フさせて、サイリスタ71を導通させて電源に回
生する電力を抵抗81に負わせる。このため単位
変換器41には交流電流は流れず、電源電流は1
巻線分だけ第4図に示すように少なくなる。第4
図は電源の電圧eと電流iの関係を示したもので
イが従来の場合、ロが本発明の場合の電流波形で
ある。巻線の高調波電流は増加しても電源に流れ
る合成された高調波電流は減少する。
Next, the case of regenerative braking will be explained. At the time of maximum regenerative power, the converters 42 to 44 output the maximum output in βmin operation, each thyristor of the converter 41 is turned off, and the thyristor 71 is made conductive, so that the power regenerated to the power source is applied to the resistor 81. Therefore, no alternating current flows through the unit converter 41, and the power supply current is 1
The number of windings is reduced as shown in FIG. Fourth
The figure shows the relationship between the voltage e and current i of the power supply, where A is the current waveform in the conventional case and B is the current waveform in the case of the present invention. Even though the harmonic current in the winding increases, the combined harmonic current flowing through the power supply decreases.

第5図は電源側に流れる等価妨害電流JPを変
換出力に対して一例を示したものでイが従来の場
合、ロが本発明による場合である。
FIG. 5 shows an example of the equivalent disturbance current J P flowing to the power supply side with respect to the converted output, where A is the conventional case and B is the case according to the present invention.

第3図の実施例ではサイリスタと抵抗の直列回
路を1組のみ単位変換器に接続する場合を示した
が同図に点線で示したように1組以上を接続し前
述と同様の動作をさせれば、より以上の効果が得
られる。
In the embodiment shown in Fig. 3, only one set of a series circuit of a thyristor and a resistor is connected to the unit converter, but one or more sets can be connected as shown by the dotted line in the figure, and the same operation as described above can be performed. If you do this, you will get even more benefits.

更に本発明では回生制動運転で回生制動電力も
下がつてくると(例えば単位変換器を順次バイパ
ス動作に移し、変換器出力を下げる)電源側の高
調波電流も低下してくるので、サイリスタと抵抗
の直列回路を切り離し、直列回路へ流れていた電
流を電源側へ移して回生電力の向上を図ることが
出来る。この場合71へのゲート信号をオフし単
位変換器41を通常のインバータ動作をさせるこ
とによりサイリスタ71には逆電圧が印加され自
動的に71はオフする。
Furthermore, in the present invention, when the regenerative braking power decreases during regenerative braking operation (for example, by sequentially moving the unit converters to bypass operation and lowering the converter output), the harmonic current on the power supply side also decreases, so the thyristor and It is possible to improve regenerative power by disconnecting the series circuit of resistors and transferring the current flowing through the series circuit to the power supply side. In this case, by turning off the gate signal to 71 and causing unit converter 41 to operate as a normal inverter, a reverse voltage is applied to thyristor 71 and 71 is automatically turned off.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の実施例の回路接続図、第2図は
従来の実施例接続図、動作波形図、第3図は本発
明の実施例の回路接続図第4図は従来と本発明実
施例の動作相違説明するための波形図、第5図は
従来と本発明の実施例の高調波電気特性の相違説
明するための特性図。 1……交流電源、2……電源リアクタンス、3
……変圧器、31……一次巻線、31〜35……
二次巻線、41〜44……単位変換器、5……平
滑リアクトル、6……電動機、71,72……サ
イリスタ、81,82……抵抗。
Fig. 1 is a circuit connection diagram of a conventional embodiment, Fig. 2 is a connection diagram of a conventional embodiment and an operation waveform diagram, and Fig. 3 is a circuit connection diagram of an embodiment of the present invention. FIG. 5 is a waveform diagram for explaining the difference in operation of the example, and FIG. 5 is a characteristic diagram for explaining the difference in harmonic electrical characteristics between the conventional example and the embodiment of the present invention. 1... AC power supply, 2... Power supply reactance, 3
...Transformer, 31...Primary winding, 31-35...
Secondary winding, 41 to 44... Unit converter, 5... Smoothing reactor, 6... Electric motor, 71, 72... Thyristor, 81, 82... Resistor.

Claims (1)

【特許請求の範囲】[Claims] 1 交流側では互いに絶縁されて交流電源に接続
され直流側では互いに直列接続されて負荷に接続
されている複数の単位変換器からなる半導体電力
変換装置において、少なくとも1つの単位変換器
の直流側端子間にサイリスタと抵抗との直列回路
を並列接続し、半導体電力変換装置の逆変換運転
時に、そのサイリスタを点弧してそのサイリスタ
が付属する単位変換器を不動作にすることによ
り、負荷電流をこの単位変換器に通さないで当該
サイリスタに直列な抵抗を通すことを可能にした
ことを特徴とする半導体電力変換器。
1. In a semiconductor power conversion device consisting of a plurality of unit converters that are insulated from each other and connected to an AC power source on the AC side and connected in series to each other and connected to a load on the DC side, the DC side terminal of at least one unit converter A series circuit of a thyristor and a resistor is connected in parallel between them, and when the semiconductor power conversion device is in reverse conversion operation, the thyristor is fired and the unit converter to which the thyristor is attached is made inoperable, thereby reducing the load current. A semiconductor power converter characterized in that it is possible to pass a resistor in series with the thyristor without passing through the unit converter.
JP12864579A 1979-10-05 1979-10-05 Semiconductor power converter Granted JPS5653579A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP12864579A JPS5653579A (en) 1979-10-05 1979-10-05 Semiconductor power converter
DE19803037551 DE3037551A1 (en) 1979-10-05 1980-10-03 AC=DC converter for electric locomotive - has resistor switched across one converter unit using thyristor to return power from braked motor to supply
DK417580A DK417580A (en) 1979-10-05 1980-10-03 Semiconductor POWER SUPPLY

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12864579A JPS5653579A (en) 1979-10-05 1979-10-05 Semiconductor power converter

Publications (2)

Publication Number Publication Date
JPS5653579A JPS5653579A (en) 1981-05-13
JPS6117232B2 true JPS6117232B2 (en) 1986-05-06

Family

ID=14989932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12864579A Granted JPS5653579A (en) 1979-10-05 1979-10-05 Semiconductor power converter

Country Status (3)

Country Link
JP (1) JPS5653579A (en)
DE (1) DE3037551A1 (en)
DK (1) DK417580A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06307025A (en) * 1993-04-23 1994-11-01 Masayuki Tokida Tile ridge reinforcing member and method forming thereof
JPH0682234U (en) * 1993-05-06 1994-11-25 常田 正行 Tile building door

Also Published As

Publication number Publication date
JPS5653579A (en) 1981-05-13
DE3037551A1 (en) 1981-04-16
DK417580A (en) 1981-04-06

Similar Documents

Publication Publication Date Title
JP4555445B2 (en) Modular multiphase adjustable power supply with parallel connected active inputs
US7170767B2 (en) System and method for regenerative PWM AC power conversion
US6542390B2 (en) System and method for regenerative PWM AC power conversion
US4020411A (en) Static power converter controlling apparatus for reducing noise generated by phase shift control
US4021721A (en) AC-to-DC converter
JPS6117232B2 (en)
JPS6117231B2 (en)
JP2980426B2 (en) AC electric vehicle control device
JPS61240829A (en) Operation of pump-up generator motor
JP2005045999A (en) Operation method of serial multiplexing three-phase circuit pulse width modulation cyclo-converter arrangement, and serial multiplexing three-phase circuit pulse width modulation cyclo-converter arrangement
JP2573229B2 (en) Variable voltage and variable frequency power supply
JPS582041Y2 (en) AC electric car transformer
JPS62268303A (en) Auxiliary power circuit for rolling stock
JPH06141559A (en) Power converter
JPS638710B2 (en)
JP2007082399A (en) Serial multiplexing three-phase pwm cyclo-converter
JPS58151879A (en) Control circuit for alternating current/direct current converting circuit
JPS6111070B2 (en)
JPH0246237Y2 (en)
SU752675A1 (en) Dc voltage-to-dc voltage converter
JPS636000B2 (en)
JP2641852B2 (en) Frequency converter
JPS6013278Y2 (en) Dual type thyristor rectifier
JPS638711B2 (en)
JPS5917880A (en) Regenerative brake system for motor driven by inverter