JPS61170608A - Method for measuring erosion quantity of refractories - Google Patents

Method for measuring erosion quantity of refractories

Info

Publication number
JPS61170608A
JPS61170608A JP60012097A JP1209785A JPS61170608A JP S61170608 A JPS61170608 A JP S61170608A JP 60012097 A JP60012097 A JP 60012097A JP 1209785 A JP1209785 A JP 1209785A JP S61170608 A JPS61170608 A JP S61170608A
Authority
JP
Japan
Prior art keywords
cable
gutter
pulse
erosion
spout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60012097A
Other languages
Japanese (ja)
Inventor
Hirokichi Hashimoto
橋本 紘吉
Takashi Kobayashi
隆 小林
Norio Saito
斎藤 典生
Masaaki Sakurai
桜井 雅昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP60012097A priority Critical patent/JPS61170608A/en
Publication of JPS61170608A publication Critical patent/JPS61170608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

PURPOSE:To detect exactly the erosion quantity of a tapping spout of a furnace and to optimize the time for repair by embedding a cable which is eroded by a molten iron, etc. into the material of said spout, supplying to the cable and measuring the time when the pulse returns after reflection. CONSTITUTION:One end side of the cable 11 is embedded into the tapping spout 14 formed of refractories such as bricks like solid lines (b)-(c) in the sectional direction of the spout and like a dotted line (d) in the longitudinal direction thereof. A sheathed cable having 8mm outside diameter and consisting of an SUS316 conductor is used for the cable 11 and is made erodable by the molten iron. A means 15 for measuring the going and returning time of the pulse is connected to the other end of the cable 11. The going and returning time of the pulse decreases with a decrease in the length of the cable 11 on the gradual erosion thereof according to the erosion of the spout by the molten iron. The erosion quantity of the spout is thus measured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、レンガ等の耐火物によって形成される高炉等
出銑樋の侵蝕量を計測する耐火物の侵蝕量計測方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for measuring the amount of corrosion of a refractory material, which measures the amount of corrosion of a tap trough such as a blast furnace formed of a refractory material such as brick.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

一般に、炉の出銑樋は、溶銑と溶滓とを分離するために
必要な容量と艮ざのものが使用されるが、溶銑やスラグ
の侵入、流動による摩耗、機械的。
Generally, the tap runner of a furnace has the necessary capacity and slag to separate hot metal and slag, but it is prone to problems such as intrusion of hot metal or slag, wear due to flow, and mechanical damage.

熱的スポーリング、スラグによる化学的侵蝕等が原因と
なって、例えば第6図に示すようなレンガ等耐火物によ
って形成された出銑樋1は図示イの如く徐々に破損され
てい(。
Due to thermal spalling, chemical attack by slag, etc., the tap trough 1 made of a refractory material such as brick, as shown in FIG. 6, is gradually damaged as shown in the figure (A).

そこで、通銑樋1の侵蝕に伴って補修が必要になってく
るが、従来、この通銑樋1の補修時期は、通銑量や樋の
材質0種類等を基準とした長年の実績及び目視観察等に
基づいて経験的に判断している。
Therefore, repair is required due to corrosion of the pigtail drain 1. Conventionally, the timing for repairing the pig iron drain 1 has been determined based on long-standing results based on the amount of iron passing, zero types of material of the tube, etc. Judgment is made empirically based on visual observation, etc.

このため、過剰補修により樋材原単位の低減が困難であ
り、また、局部侵蝕等の場合には経験値より早期に樋の
破損が生じることがあり、溶銑。
For this reason, it is difficult to reduce the basic unit of gutter material due to excessive repair, and in the case of localized corrosion, gutter damage may occur earlier than experience shows.

溶滓の流出により事後処理に多大の工数を要する問題が
あった。
There was a problem in that the outflow of slag required a large amount of man-hours for post-processing.

〔発明の目的〕[Purpose of the invention]

本発明は以上のような問題点を除去するためになされた
もので、出銑樋の破損状況を正確に検出し、過剰補修を
なくして樋材の原単位の低減を図り、溶銑等の流出事故
を未然に防止する耐火物の侵蝕l計測方法を提供するこ
とにある。
The present invention has been made in order to eliminate the above-mentioned problems, and it is possible to accurately detect the state of damage in the tap trough, eliminate excessive repairs, reduce the basic unit of trough material, and prevent the outflow of hot metal etc. An object of the present invention is to provide a method for measuring corrosion of refractories to prevent accidents.

〔発明の概要〕[Summary of the invention]

本発明は、炉出鉄槌の樋材に溶銑等によって溶損するケ
ーブルを埋め込み、このケーブルに適宜または周期的に
送信パルスを供給し、このパルスが反射されてくる時間
から出銑樋の侵蝕量を計測する耐火物の侵蝕量計測方法
である。
The present invention embeds a cable that can be eroded by hot metal, etc. in the gutter material of a tapping hammer, supplies transmission pulses to this cable appropriately or periodically, and calculates the amount of corrosion in the tap hole from the time when the pulses are reflected. This is a method for measuring the amount of corrosion of refractories to be measured.

〔発明の実施例〕[Embodiments of the invention]

本発明方法の実施例を説明するにあたり、先ず、この計
測方法の原理について第1図を参照して説明する。即ち
、この計測方法は、予め出銑樋の樋材にケーブル11を
埋め込むとともに、ケーブル11の他端側にパルス発生
器12より送信パルスを供給する。このとき、パルスの
伝播速度を■(冨1♂TrL/5eC)、パルス往復時
間をTとすると、溶銑等により出銑樋が破損し、これに
伴って例えば図示点線のように溶損した残りのケーブル
11の長ざLは L−1/2・■・T で表わすことができる。従って、予めケーブル埋め込み
時のケーブル全長およびパルス伝播速度Vを知っていれ
ば、上式つまりTDK法によりパルス往復時間Tを波形
観測器13で観測することにより、Lを知り得、L−[
から樋の侵蝕量を計測することができる。
In describing an embodiment of the method of the present invention, first, the principle of this measurement method will be described with reference to FIG. That is, in this measurement method, the cable 11 is embedded in the gutter material of the tap trough in advance, and a transmission pulse is supplied from the pulse generator 12 to the other end of the cable 11. At this time, assuming that the pulse propagation speed is ■ (1♂TrL/5eC) and the pulse round-trip time is T, the tap hole is damaged by hot metal, etc., and as a result, for example, the melted and damaged remains as shown by the dotted line in the figure. The length L of the cable 11 can be expressed as L-1/2·■·T. Therefore, if the total length of the cable and the pulse propagation velocity V when the cable is embedded are known in advance, L can be known by observing the pulse round trip time T using the waveform observation device 13 using the above formula, that is, the TDK method, and L - [
The amount of erosion in the gutter can be measured from this.

次に、第2図および第3図を参照して本発明方法を適用
してなる装置の実施例を説明する。第2図は、ケーブル
11の埋め込み手段を概念的に示した図である。即ち、
2方向にレンガ等耐火物により通続tJi14が形成さ
れているとすると、ケーブル11の一端側を図示実線ロ
ームのように埋め込んで樋断面方向(×方向−y方向)
の侵蝕量を計測可能にし、また、図示点線二のように埋
め込んで一長手方向即ち2方向の侵蝕量を計測可能にす
るとともに、前記ケーブル11の他端側に前記TDR法
によるパルス往復時間計測手段15を設け、この計測手
段15のパルス発生器12から適宜または周期的に所望
の方向のケーブル11を選択して送信パルスを供給し、
ケーブル一端側で反射されてくるパルスを前記計測手段
15の波形観測器13によりパルス往復時間Tを測定し
、ケーブル11の長さLから前記所望方向の樋侵蝕量を
計測する。この場合、各方向に埋め込むケーブル11の
本数は1本でもよいが、例えば曲部的な侵蝕も有りうる
ので各方向共複数本埋め込んで所望のケーブルにパルス
を供給すれば、曲部的な侵蝕崖も計測することができる
Next, an embodiment of an apparatus to which the method of the present invention is applied will be described with reference to FIGS. 2 and 3. FIG. 2 is a diagram conceptually showing the means for embedding the cable 11. That is,
Assuming that the continuity tJi14 is formed in two directions by refractories such as bricks, one end of the cable 11 is buried like the solid line loam shown in the figure and the gutter cross section direction (x direction - y direction) is formed.
It is also possible to measure the amount of erosion in one longitudinal direction, that is, in two directions, by embedding it as shown in the dotted line 2 in the figure, and to measure the pulse round trip time using the TDR method at the other end of the cable 11. means 15 is provided, and the cable 11 in a desired direction is appropriately or periodically selected from the pulse generator 12 of the measuring means 15 to supply a transmission pulse;
The pulse round trip time T of the pulse reflected from one end of the cable is measured by the waveform observation device 13 of the measuring means 15, and the amount of gutter erosion in the desired direction is measured from the length L of the cable 11. In this case, the number of cables 11 to be buried in each direction may be one, but for example, erosion may occur at the curved portion, so if multiple cables are buried in each direction and pulses are supplied to the desired cable, erosion at the curved portion may occur. Cliffs can also be measured.

次に、第3図は、実際的に樋にケーブルを埋め込んだ場
合の図である。即ち、同図は、炉21から導出された大
樋21の端部に比重分離法等によって溶銑と溶滓に分離
するタンボ樋23が設けられ、このタンボロ123の端
部に所定の高さをもりた仕切板24を介して溶銑樋25
が連設されている。さらに、前記仕切板24の手前側か
ら溶滓樋26が導出されている。そして、以上のような
樋構成において、例えば大樋22とタンボ123の境界
部に相応する樋材にケーブル11を埋め込み、このケー
ブル11の他端部にパルス往復時間計測手段15が接続
されたものである。なお、ケーブル11としては、例え
ば外径8履、その材質として5us316導体、μgO
絶縁物よりなるシースケーブルが使用されている。
Next, FIG. 3 is a diagram showing a case where the cable is actually embedded in the gutter. That is, in the figure, a tank trough 23 is provided at the end of a large trough 21 led out from a furnace 21 to separate hot metal and molten slag by a specific gravity separation method, and a tumbler trough 23 is provided at the end of the tumbler 123 to a predetermined height. Hot metal trough 25 via partition plate 24
are installed in succession. Further, a slag gutter 26 is led out from the front side of the partition plate 24. In the gutter configuration as described above, for example, the cable 11 is embedded in the gutter material corresponding to the boundary between the gutter 22 and the tank 123, and the pulse round trip time measuring means 15 is connected to the other end of the cable 11. be. The cable 11 has an outer diameter of 8, for example, and its material is a 5us316 conductor, μgO
A sheathed cable made of insulating material is used.

しかして、以上のように樋材にケーブル11を埋める込
むことにより、炉21からの通続が大樋22を通ってタ
ンポ樋23に送られ、ここで溶銑と溶滓に分離されて、
溶銑は仕切板24を経て溶銑樋25へ送られる。一方、
タンボロ123によって分離せられた溶滓は溶滓樋26
へ送り込まれる。
By burying the cable 11 in the gutter material as described above, the flow from the furnace 21 is sent through the large gutter 22 to the tampo gutter 23, where it is separated into hot metal and slag.
The hot metal is sent to the hot metal trough 25 via the partition plate 24. on the other hand,
The slag separated by the tanboro 123 is transferred to the slag gutter 26.
sent to.

このとき、大樋22は通続量に応じかつ従来例で述べた
原因によって樋内面部が侵蝕していくが、この槌の侵蝕
に伴ってケーブル11がが徐々に溶損していき、ケーブ
ル11の長さLが短かくなつていく。従って、計測手段
15により予めパルス伝播速度■およびケーブル設置時
のケーブル全長を知っていれば、上式に基づいてパルス
往復時間Tからケーブル11の長さLひいては樋の侵蝕
量を計測することができる。
At this time, the inner surface of the gutter 22 is corroded depending on the amount of water flow and due to the reasons described in the conventional example, but the cable 11 gradually melts and is damaged due to the erosion of the mallet. The length L becomes shorter. Therefore, if the pulse propagation velocity ■ and the total length of the cable at the time of cable installation are known in advance by the measuring means 15, it is possible to measure the length L of the cable 11 and the amount of erosion of the gutter from the pulse round trip time T based on the above formula. can.

従って、以上のような耐火物の侵蝕量計測方法(第3図
)により樋侵蝕状況を計測すると、第4図および第5図
に示すような結果が得られる。第4図においてホはケー
ブル設置時の侵蝕前樋断面を示し、この樋断面ホから1
00m+内側に沿って所定長さのケーブル11を埋め込
んだとする。このような状態において樋22〜23に溶
銑等が流れると、日数が20日を経過し大樋内を5万ト
ンの通続量が流れたとすると図示点線31のように未だ
何等ケーブル11は溶損されないが、40日を経過し1
0万トンの通続量が流れると図示点線32のようにケー
ブル11は140jlIWI損する。
Therefore, when the gutter erosion condition is measured using the method for measuring the amount of corrosion of refractories as described above (FIG. 3), the results shown in FIGS. 4 and 5 are obtained. In Figure 4, Ho shows the cross section of the gutter before erosion when the cable is installed, and the gutter cross section is 1.
It is assumed that a predetermined length of cable 11 is embedded along the 00m+inner side. If hot metal, etc. flows into the gutter 22 to 23 in such a state, if 20 days have passed and 50,000 tons has flowed through the gutter, some of the cable 11 will still be eroded as shown by the dotted line 31 in the figure. However, after 40 days, 1
When a flow rate of 0,000 tons flows, the cable 11 suffers a loss of 140 jlIWI as indicated by the dotted line 32 in the figure.

同様に60日経過し15万トンの通続量が流れるとケー
ブルは図示点1133のように200m溶損し、72日
経過し17,5万トンの通続量が流れたとするとケーブ
ル11は図示点線34のように280mg+溶損する。
Similarly, if 60 days have passed and a flow rate of 150,000 tons has passed, the cable will be eroded for 200m as shown at point 1133, and if 72 days have passed and a flow rate of 175,000 tons has passed, the cable 11 will be damaged by the dotted line in the figure. 280 mg + melting loss like 34.

第5(A>、(B)は第4図に示す関係について横軸に
起算日数をとり、縦軸に通続置、ケーブル溶損量をとっ
て表わした図である。なお、第5図(A)の右側縦軸は
タップ数を示す。
5 (A>, (B)) is a diagram in which the relationship shown in FIG. 4 is expressed by taking the starting number of days on the horizontal axis and taking the continuous position and the amount of cable damage on the vertical axis. The right vertical axis in (A) indicates the number of taps.

なお、上記実施例は線断面方向(x方向−y方向)およ
び樋長手方向(2方向)にそれぞれケーブル11を埋め
込むようにしたが、X方向ある1いはy方向あるいは2
方向のいずれか1つの方向だけに埋め込んでもよく、ま
たは2つの方向に埋め込んでもよい。また、耐火物とし
てはレンガに限らないことは言うまでもない。その他、
本発明はその要旨を逸脱しない範囲で種々変形して実施
できる。
In the above embodiment, the cables 11 are embedded in the line cross-sectional direction (x direction - y direction) and in the longitudinal direction of the gutter (two directions).
It may be embedded in only one direction, or it may be embedded in two directions. Moreover, it goes without saying that the refractory material is not limited to bricks. others,
The present invention can be implemented with various modifications without departing from the gist thereof.

〔発明の効果〕〔Effect of the invention〕

以上詳記したように本発明方法によ、れば、出銑樋の樋
材に溶銑等によって溶損するケーブルを埋め込み、この
ケーブルの他端側からパルスを供給し、このパルスの反
射されてくるFRIBlつまりパルス往復時間からケー
ブルの長さを計算し樋の侵蝕量を計測するようにしたの
で、耐火物の侵蝕量を正確に検出でき、よって樋補修時
期の適正化によって樋材原単位の低減を図り得、また目
視観察等の悪作業環境条件から作業員を解放でき、溶銑
等の流出事故を未然に回避してプロセスの円滑な運用を
確保できる耐火物の侵蝕量計測方法を提供できる。
As described in detail above, according to the method of the present invention, a cable that is eroded by hot metal, etc. is embedded in the taper gutter material, a pulse is supplied from the other end of the cable, and the pulse is reflected. Since the length of the cable is calculated from the FRIBl, that is, the pulse round trip time, and the amount of erosion of the gutter is measured, the amount of corrosion of the refractory can be accurately detected, and the consumption of gutter materials can be reduced by optimizing the timing of gutter repair. In addition, it is possible to provide a method for measuring the amount of corrosion of refractories, which can relieve workers from adverse working environment conditions such as visual observation, and which can prevent spillage accidents of hot metal, etc., and ensure smooth operation of the process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第5図は本発明に係わる耐火物の侵蝕量計
測方法の実施例を説明するためのもので、第1図は本発
明方法による計測原理を説明する図、第2図は通続樋へ
のケーブル埋め込み状態図、第3図は本発明方法を適用
してなる具体的な構成図であって、同図(A)は平面的
に表わした図、同図(B)は同図(A)を断面にして表
わした図、第4図は樋侵蝕量とケーブルの溶損状態を示
す図、第5図(A)、(B)は起算日数に対する通続量
とケーブル溶損量との関係図、第6図は通続樋の侵蝕状
態を示す図である。 11・・・ケーブル、12・・・パルス発生器、13・
・・波形観測器、14・・・通続樋、15・・・パルス
往復時間計測手段、22.23.25.26・・・樋。 出願人代理人 弁理士 鈴江武彦 第2図 第4図    第5図 01020304050 Go 7#4R1t)第6図
1 to 5 are for explaining an embodiment of the method for measuring the amount of corrosion of refractories according to the present invention. FIG. 3 is a diagram of a state in which cables are embedded in a continuous gutter, and FIG. 3 is a concrete configuration diagram obtained by applying the method of the present invention. Figure (A) is a cross-sectional view, Figure 4 is a diagram showing the amount of gutter erosion and cable melting state, and Figures 5 (A) and (B) are the amount of continuous use and cable melting for the number of days. FIG. 6 is a diagram showing the corrosion state of the continuous gutter. 11... Cable, 12... Pulse generator, 13.
... Waveform observation device, 14... Continuous gutter, 15... Pulse round trip time measuring means, 22.23.25.26... Gutter. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 4 Figure 5 01020304050 Go 7#4R1t) Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)炉出銑樋の樋材にケーブルを埋め込むとともに、
このケーブルの他端側より送信パルスを供給し、このパ
ルスが反射されてくる時間から前記樋の侵蝕に伴って溶
損するケーブルの長さを求め、樋の侵蝕量を計測するこ
とを特徴とする耐火物の侵蝕量計測方法。
(1) In addition to embedding the cable in the gutter material of the furnace tapping gutter,
A transmission pulse is supplied from the other end of the cable, and the length of the cable that is melted due to erosion of the gutter is determined from the time when this pulse is reflected, and the amount of erosion of the gutter is measured. Method for measuring the amount of corrosion of refractories.
(2)ケーブルの埋め込み手段は、樋の断面方向(x方
向−y方向)および樋の長手方向(z方向)の何れか1
つの方向または複数の方向にケーブルを埋め込むもので
ある特許請求の範囲第1項記載の耐火物の侵蝕量計測方
法。
(2) The cable embedding means can be placed either in the cross-sectional direction of the gutter (x direction - y direction) or in the longitudinal direction (z direction) of the gutter.
The method for measuring the amount of corrosion of a refractory according to claim 1, wherein a cable is embedded in one direction or in a plurality of directions.
(3)前記1つの方向または複数の方向に埋め込むケー
ブルが複数本である場合、これらのケーブルを選択して
送信パルスを供給しかつ反射パルスを受信するものであ
る特許請求の範囲第1項または第2項記載の耐火物の侵
蝕量計測方法。
(3) When a plurality of cables are embedded in the one direction or in a plurality of directions, these cables are selected to supply the transmitted pulse and receive the reflected pulse. The method for measuring the amount of corrosion of a refractory according to item 2.
JP60012097A 1985-01-25 1985-01-25 Method for measuring erosion quantity of refractories Pending JPS61170608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60012097A JPS61170608A (en) 1985-01-25 1985-01-25 Method for measuring erosion quantity of refractories

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60012097A JPS61170608A (en) 1985-01-25 1985-01-25 Method for measuring erosion quantity of refractories

Publications (1)

Publication Number Publication Date
JPS61170608A true JPS61170608A (en) 1986-08-01

Family

ID=11796069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60012097A Pending JPS61170608A (en) 1985-01-25 1985-01-25 Method for measuring erosion quantity of refractories

Country Status (1)

Country Link
JP (1) JPS61170608A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586127A (en) * 1981-07-03 1983-01-13 Hitachi Ltd Method and apparatus for correcting defect of photo-mask
JPS59125003A (en) * 1982-12-29 1984-07-19 Nippon Steel Corp Method for measuring erosion rate of refractories
JPS59217102A (en) * 1983-05-26 1984-12-07 Kawasaki Steel Corp Erosion position detection of blast furnace refractory material

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS586127A (en) * 1981-07-03 1983-01-13 Hitachi Ltd Method and apparatus for correcting defect of photo-mask
JPS59125003A (en) * 1982-12-29 1984-07-19 Nippon Steel Corp Method for measuring erosion rate of refractories
JPS59217102A (en) * 1983-05-26 1984-12-07 Kawasaki Steel Corp Erosion position detection of blast furnace refractory material

Similar Documents

Publication Publication Date Title
CN101275829A (en) Method for measuring blast furnace lining corroding thickness
CN102399926B (en) Furnace halt residue iron outlet method for middle and large-sized blast furnaces
JPS61170608A (en) Method for measuring erosion quantity of refractories
CN110542485B (en) Measuring device and manufacturing method for lining temperature of main runner of blast furnace molten iron
KR100845040B1 (en) An apparatus for sampling and sensing temperature of the molten iron using dart throwing apparatus
CN215103364U (en) Main iron runner temperature measuring device
US2659121A (en) Pouring box for continuous casting machines
US2071531A (en) Temperature regulation
CN212451476U (en) Blast furnace iron runner
CN105195689A (en) Longitudinal cracking bleed-out detection and prediction device for continuous casting sheet billet and detection method thereof
CN210664800U (en) Measuring device for blast furnace molten iron main channel lining temperature
CN111944939A (en) Process for controlling slag content of main channel residual iron and discharging main channel residual iron
CN113913574B (en) Method for prolonging service life of main channel steel groove of blast furnace
US1376935A (en) Apparatus for and method of cutting drains in furnace-bottoms
Scholey et al. Heat-transfer phenomena in water-cooled zinc-fuming furnace jackets
CN204827325U (en) Pit shaft outlet protective apparatus
CN201208644Y (en) Refractory castable pouring tools for torpedo car circular furnace shell inner lining
KR101115699B1 (en) Oxygen lancing apparatus
JPH07146183A (en) Method and device for measuring temperature distribution of refractory
CN109469498A (en) A kind of water-conveyance tunnel narrow space lined steel pipe mounting structure and its construction method
RU2060106C1 (en) Casting ladle
CN210802036U (en) Heat-insulation wear-resistant single-layer furnace lining anchoring structure
JP2008156717A (en) Method for determining repairing-timing of molten steel tapping hole in converter
NO814009L (en) EQUIPMENT FOR THE EXTRA STRENGTH AND STRENGTH OF A SUBJECT PIPE
CN209243090U (en) The interim iron mouth device of gobbed up