JPS61169157A - Electrical heating method of refractory wall for molten metal - Google Patents

Electrical heating method of refractory wall for molten metal

Info

Publication number
JPS61169157A
JPS61169157A JP983685A JP983685A JPS61169157A JP S61169157 A JPS61169157 A JP S61169157A JP 983685 A JP983685 A JP 983685A JP 983685 A JP983685 A JP 983685A JP S61169157 A JPS61169157 A JP S61169157A
Authority
JP
Japan
Prior art keywords
nozzle
electrode
immersion nozzle
refractory wall
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP983685A
Other languages
Japanese (ja)
Other versions
JPS6343192B2 (en
Inventor
Nobuhiko Narita
成田 暢彦
Keisuke Asano
敬輔 浅野
Hiromi Fukuoka
福岡 弘美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP983685A priority Critical patent/JPS61169157A/en
Publication of JPS61169157A publication Critical patent/JPS61169157A/en
Publication of JPS6343192B2 publication Critical patent/JPS6343192B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D41/00Casting melt-holding vessels, e.g. ladles, tundishes, cups or the like
    • B22D41/50Pouring-nozzles
    • B22D41/60Pouring-nozzles with heating or cooling means

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)
  • Furnace Charging Or Discharging (AREA)
  • Control Of Resistance Heating (AREA)

Abstract

PURPOSE:To improve remarkably the efficiency of electricity conduction in a method for heating a refractory wall by making use of electric resistance by interposing a compressible conductive object between the refractory wall and electrodes and conducting electricity from the electrodes to the refractory wall through said conductive material. CONSTITUTION:A pair of electrode device C, C' are disposed to face each other in the air cooling area of an immersion nozzle 2 for passing a molten steel from a tundish into a casting mold and are pressed and fixed by an electrode supporting device 9 so as to clamp the nozzle 2 by the compressible conductive object 8. Electricity is then conducted in this state from a power source 11 to the refractory wall of the nozzle 2 through a copper electrode 6, a carbon electrode 7 and the conductive object 8 so that the nozzle 2 is heated up by electric resistance heating. The electrical heating efficiency of the immersion nozzle is thus remarkably improved and the quick heating up is made possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気伝導性を有する炭素含有耐火物自体に電流
を供給し、抵抗熱(ジュール熱)による発熱を利用して
該耐火物を加熱する耐火物の通電加熱方法に関するもの
であり、溶融金属の流通管あるいは容器の耐火壁の加熱
に用いて有効である。
Detailed Description of the Invention (Field of Industrial Application) The present invention supplies electric current to a carbon-containing refractory itself having electrical conductivity, and heats the refractory using heat generated by resistance heat (Joule heat). The present invention relates to a method for energizing refractories to heat refractories, and is effective for heating molten metal flow pipes or refractory walls of containers.

(従来技術) 例えば連続鋳造法によって溶鋼から鋳片を製造−]− する場合、鋼品質上の要語から溶鋼流と大気この接触を
避けるため溶鋼取鍋とタンディツシュ間、タンディツシ
ュとモールド間を耐火物製の長円筒形の耐火管、即ちロ
ングノズル、浸漬ノズルを用いていわゆる断気鋳造を行
なっている。これらのノズルは鋳込開始時に高温溶鋼が
その細長い内孔部を通過する際に、熱衝撃をうけるので
高耐熱衝撃性が要求され、また溶鋼による摩耗や溶鋼成
分、パウダー成分この反応に対し高耐食性も要求される
。従ってこれらのノズルの材質としてはアルミナP炭素
のような中性材料がもっている化学的安定性と炭素(黒
鉛)の低膨張性とを利用したアルミナ−カーボン質が多
く使用されている。
(Prior art) For example, when producing slabs from molten steel using the continuous casting method, fireproofing should be used between the molten steel ladle and the tundish, and between the tundish and the mold, to avoid contact between the molten steel flow and the atmosphere due to important considerations regarding steel quality. So-called insulation casting is carried out using a long cylindrical refractory tube made of wood, that is, a long nozzle or a submerged nozzle. These nozzles are required to have high thermal shock resistance because they are subjected to thermal shock when high-temperature molten steel passes through the long and narrow inner hole at the start of casting. Corrosion resistance is also required. Therefore, alumina-carbon materials are often used as materials for these nozzles, taking advantage of the chemical stability of neutral materials such as alumina P-carbon and the low expansion properties of carbon (graphite).

一方、連続鋳造では鋳造中の溶鋼温度が鋳入初期及び末
期に低下しその際、ノズル内壁に地金が大量に付着し安
定な鋳造が困難になることが多い。
On the other hand, in continuous casting, the temperature of the molten steel during casting decreases at the beginning and end of casting, and at that time, a large amount of base metal adheres to the inner wall of the nozzle, making stable casting often difficult.

従来これを防止する方法としては鋳造盆いったん停止し
ノズル内孔を酸素洗浄することによって地金を除去し再
訓造を行なう方法も採用されているが、この方法では鋳
造中断部の鋼に非金属介在物が増大し、銅の品質劣化を
引き起こすことがあっての対策が切望されていた。
Conventionally, a method to prevent this has been to stop the casting tray and clean the inside hole of the nozzle with oxygen to remove the bare metal and re-shape, but this method does not damage the steel at the interrupted part of the casting. There is a need for countermeasures against the increase in metal inclusions, which can lead to deterioration in the quality of copper.

ノズル内壁への地金付着は、ノズル外壁の温度と密接な
関係があり、例えば第3図に示すようにノズル外壁温度
が高い程地金付着量が少ない。
The amount of metal deposited on the inner wall of the nozzle is closely related to the temperature of the outer wall of the nozzle. For example, as shown in FIG. 3, the higher the temperature of the outer nozzle wall, the smaller the amount of metal deposited.

しだがってノズル耐火壁からの熱放散を減少させたり、
ノズル耐火壁自体を積極的に加熱すれば地金付着量を減
少できることが知られている。
thus reducing heat dissipation from the nozzle firewall,
It is known that the amount of metal deposited can be reduced by actively heating the nozzle fireproof wall itself.

従来、この知見に基づいて導電性のある物質からなるノ
ズル壁に電極を当接して通電し、該ノズルを抵抗熱によ
る発熱により直接的に加熱し、地金付着を減少させる方
法(特開昭55−64.857)も試みられている。
Conventionally, based on this knowledge, a method has been proposed in which an electrode is brought into contact with a nozzle wall made of a conductive material and electricity is applied to directly heat the nozzle by heat generated by resistance heat to reduce metal adhesion (Japanese Patent Application Laid-Open No. 55-64.857) has also been attempted.

この通電加熱方法において用いられている電極は銅電極
あるいは炭素電極であり、これをノズル外壁に均一に面
接触させるように形成することは難しい。
The electrodes used in this current heating method are copper electrodes or carbon electrodes, and it is difficult to form them so that they are in uniform surface contact with the outer wall of the nozzle.

したがって均一でかつ安定した通電ができず、加熱効率
も低く電力消費が大きいという欠点を残している。
Therefore, it is not possible to conduct electricity uniformly and stably, and the heating efficiency is low, resulting in high power consumption.

(発明が解決しようとする問題点) 本発明は上記のノズルのような例えば炭素を含有し導電
性を有する耐火物からなる溶融金属流通管あるいは容器
の耐火壁の通電加熱(lcおける上記従来の欠点を解消
するためになされたものである。
(Problems to be Solved by the Invention) The present invention solves the problem of the above-mentioned conventional method in which electrical heating of a fireproof wall of a molten metal flow pipe or container made of a carbon-containing, electrically conductive refractory, such as the above-mentioned nozzle, is achieved. This was done to eliminate the shortcomings.

(問題点を解消するだめの手段) 本発明は、溶融金属用の流通管あるいは容器の導電物質
からなる耐火壁の外表面と電極間に該削火壁と固有電気
抵抗値が同等もしくは不埒い可縮性の導電性物体を密に
介在させ、この導電体によって該耐火壁と該電極間にお
ける通電性全良好にしだところに特徴を有する。
(Means for Solving the Problems) The present invention provides a structure between the outer surface of a refractory wall made of a conductive material of a flow pipe or container for molten metal and an electrode, which has a specific electrical resistance equal to or unfavorable to that of the refractory wall. It is characterized in that a compressible electrically conductive material is closely interposed, and this electrical conductor ensures good electrical conductivity between the fireproof wall and the electrode.

以下に本発明を第1図〜第2図に示す本発明実施装置例
に基づいて説明する。本実施装置例は、本発明を連続鋳
造用の浸漬ノズルの通電加熱装置において適用した場合
のものである。
The present invention will be explained below based on an example of an apparatus for carrying out the present invention shown in FIGS. 1 and 2. This example of an apparatus is a case where the present invention is applied to an energization heating apparatus for a immersion nozzle for continuous casting.

第1図において、1はタンディツシュ2はタンディツシ
ュ1の底部に取付けた浸漬ノズルでその先端は、鋳型4
内に位置するようになっており連続鋳造中は鋳型4内の
溶鋼中S′に浸漬された状態でタンディツシュ1から溶
鋼Sを鋳型4内に流通させるものである。
In Figure 1, 1 is a tundish 2 is a submerged nozzle attached to the bottom of tundish 1, and its tip is connected to a mold 4.
During continuous casting, the molten steel S flows from the tundish 1 into the mold 4 while being immersed in the molten steel S' in the mold 4.

5は鋳型上部に設けた本発明を実施する浸漬ノズル加熱
用の通電加熱装置の支持体であり、この支持体5の中央
部に浸漬ノズルが挿通する空間部が形成されており、こ
の空間部を挾んで一対の電極C,C’が電極支持装置と
しての油圧シリンダーにより該空間部に対して水平方向
に進退し、その位置を調整できるように支持されている
Reference numeral 5 denotes a support for an energization heating device for heating an immersion nozzle according to the present invention, which is provided on the upper part of the mold, and a space is formed in the center of the support 5 through which the immersion nozzle is inserted. A pair of electrodes C and C' are supported by a hydraulic cylinder serving as an electrode support device so as to be able to move forward and backward in the horizontal direction with respect to the space and adjust their positions.

これらの電極C,C’の上下方向の位置は浸漬ノズルが
溶鋼Sを鋳型4に流通させる位置にあるとき、浸漬ノズ
ル2の大気冷却域を通電加熱できる位置になっている。
The vertical positions of these electrodes C and C' are such that when the immersion nozzle is in a position where the molten steel S flows through the mold 4, the atmospheric cooling area of the immersion nozzle 2 can be heated by electricity.

又これらの電極C’、C’は電源11に導線10により
接続された銅電極6と炭素電極7から彦り、前記空間部
に面する炭素電極7の先端面は浸漬ノズルの外周面に対
応する凹曲面を有し、この凹曲面には可縮性の導電性物
体8が貼着されている。
Further, these electrodes C' and C' extend from a copper electrode 6 and a carbon electrode 7 which are connected to a power source 11 by a conductive wire 10, and the tip surface of the carbon electrode 7 facing the space corresponds to the outer peripheral surface of the immersion nozzle. It has a concave curved surface, and a contractible conductive object 8 is adhered to this concave curved surface.

かくして本発明の通電加熱方法を実施する場合は、先ず
タンディツシュ1を下ろし、浸漬ノズル=5− 2の先端部を鋳型4内に位置させる。
Thus, when carrying out the electrical heating method of the present invention, first the tundish 1 is lowered and the tip of the immersion nozzle 5-2 is positioned within the mold 4.

この時浸漬ノズル20大気冷却域は一対のtf+極C,
C’間に形成される空間部に位置する。
At this time, the atmospheric cooling region of the immersion nozzle 20 has a pair of tf+poles C,
It is located in the space formed between C'.

ついで電極支持装置9を作動して電極C,C’で浸漬ノ
ズル2を挾み押圧状態にして固定し、電極の導電性物体
8を浸漬ノズル2の外周面と炭素電極7に密に接触させ
るこの状態で電源l]から銅電極6、炭素電極マ、導電
性物体8を経て浸漬ノズル2に通電し、該浸漬ノズル2
の電気抵抗熱による発熱を利用して、該浸漬ノズル2を
昇温させる。
Next, the electrode support device 9 is activated to hold the immersion nozzle 2 between the electrodes C and C' and fix it in a pressed state, so that the conductive object 8 of the electrode is brought into close contact with the outer peripheral surface of the immersion nozzle 2 and the carbon electrode 7. In this state, electricity is applied from the power source 1 to the immersion nozzle 2 via the copper electrode 6, the carbon electrode 1, and the conductive object 8, and the immersion nozzle 2
The temperature of the immersion nozzle 2 is raised using heat generated by electric resistance heat.

浸漬ノズル2に所定時間通電後、タンディツシュl底部
のスライディングノズル3を開状態にしてタンディツシ
ュ1内の溶鋼Sを浸漬ノズル2を経て鋳型4内に流通さ
せ鋳造作業を開始する。
After energizing the immersion nozzle 2 for a predetermined period of time, the sliding nozzle 3 at the bottom of the tundish 1 is opened to allow the molten steel S in the tundish 1 to flow through the immersion nozzle 2 into the mold 4 to start casting work.

鋳造作業中浸漬ノズル2への通電を継続し浸漬ノズル2
における溶鋼の温度降下を防止して、浸漬ノズル2内2
0への地金付着を軽減する。
During casting work, electricity is continued to be applied to the immersion nozzle 2.
In order to prevent the temperature drop of the molten steel in the immersion nozzle 2,
Reduces metal adhesion to 0.

タンディツシュ1から鋳型4への溶鋼S供給を終了した
ら浸漬ノズル2への通電を停止し、電極支持装置9を作
動して浸漬ノズル2から電極C1C′を退避させ通電加
熱作業を終了する。
When the supply of molten steel S from the tundish 1 to the mold 4 is finished, the energization to the immersion nozzle 2 is stopped, and the electrode support device 9 is activated to evacuate the electrode C1C' from the immersion nozzle 2, thereby completing the energization heating operation.

本発明における可縮性の導電性物体としては例えば炭素
積層体、炭素繊維積層体等の炭素質物質あるいは炭素質
物質を含有するセラミックスファイバーなどが好適であ
り、その他ZrB2. TiB2  等の良導電性耐火
物の繊維積層体などが用いられる。
Suitable examples of the compressible conductive object in the present invention include carbonaceous materials such as carbon laminates and carbon fiber laminates, and ceramic fibers containing carbonaceous materials. A fiber laminate of a highly conductive refractory such as TiB2 is used.

また高融点金属及び合金の繊維積層体であっても同様で
あるこれらの固有電気、抵抗値は通電効率を低下させな
いため被加熱耐火物の固有電気抵抗値と同等ないしは小
さいことが望捷しい。
The same is true for fiber laminates made of high-melting point metals and alloys, and it is desirable that their specific electrical resistance values be equal to or smaller than the specific electrical resistance value of the refractory to be heated, so as not to reduce current conduction efficiency.

又、本発明で加熱対象とする耐火物は、炭素等の導電性
物質を含有している必要があり、高温溶融金属と接触す
るので、耐熱性、側熱衝撃性、耐食性等の特性を満足す
るものである必要がある。
In addition, the refractory to be heated in the present invention must contain a conductive substance such as carbon, and since it comes into contact with high-temperature molten metal, it must satisfy properties such as heat resistance, side thermal shock resistance, and corrosion resistance. It needs to be something that does.

例えば炭素・アルミナ系の耐火物等が適している。For example, carbon/alumina-based refractories are suitable.

(実施例) 本発明を連続調造用浸漬ノズルに適用した例について述
べる。
(Example) An example in which the present invention is applied to a continuous preparation immersion nozzle will be described.

通電加熱装置の構成は第1図に示したものと略同様であ
る。
The configuration of the electrical heating device is substantially the same as that shown in FIG.

浸漬ノズル2は炭素・アルミナ系の耐火物、で形成した
。この耐火物の固有電気抵抗値d[]、 o−2Ωm、
である。
The immersion nozzle 2 was made of carbon/alumina refractory material. Specific electrical resistance value of this refractory d[], o-2Ωm,
It is.

通電加熱装置の銅電極6は高温の浸漬ノズルからの熱伝
導により高温化し、損傷するのを防ぐため、フィン構造
12を有し放熱面積を太きくした。
The copper electrode 6 of the current heating device has a fin structure 12 and has a large heat dissipation area in order to prevent the copper electrode 6 from increasing in temperature and being damaged due to heat conduction from the high-temperature immersion nozzle.

炭素電極7の固有電気抵抗値は]O−4Ωmである。The specific electrical resistance value of the carbon electrode 7 is ]O-4Ωm.

斤おこの炭素電極7と銅電極6とはピッチにより接合し
た。
The carbon electrode 7 and the copper electrode 6 of the oven were joined by a pitch.

炭素電極7の端面に(は炭素4截維をピッチにより積層
してなる可縮性の炭素繊維積層体8を当接し、接着テー
プで固定した。
A compressible carbon fiber laminate 8 made of carbon 4 cut fibers laminated at a pitch was brought into contact with the end face of the carbon electrode 7 and fixed with an adhesive tape.

この炭素繊維積層体8の固有電気抵抗値は]、O−4Ω
(7)である。又、この炭素繊維積層体8は]、OK9
/7の圧力で約4%体積収縮する可縮性のものである。
The specific electrical resistance value of this carbon fiber laminate 8 is] O-4Ω
(7). Moreover, this carbon fiber laminate 8 is ], OK9
It is a compressible material that shrinks in volume by about 4% at a pressure of /7.

このような構″成になる電極を電4全支持装置9を作動
して一対の電極C,C’で浸漬ノズルを挾み、]、 O
Kg/cdの圧力で加圧状態で電極C,C’を固定した
Activate the electrode 4 support device 9 to sandwich the immersion nozzle between the pair of electrodes C and C', ], O
Electrodes C and C' were fixed under pressure at a pressure of Kg/cd.

浸漬ノズル2と電極C,C’間の炭素繊維積層体8は圧
縮され、浸漬ノズル2と炭素繊維積層体8間の密着性が
保持された。
The carbon fiber laminate 8 between the immersion nozzle 2 and the electrodes C and C' was compressed, and the adhesion between the immersion nozzle 2 and the carbon fiber laminate 8 was maintained.

この状態で電源11から最大30Vで最大300OAの
電流を通電した。その結果、浸漬ノズルの表面の温度は
30分後1500℃に昇温した。
In this state, a maximum current of 30V and a maximum of 300OA was applied from the power supply 11. As a result, the temperature of the surface of the immersion nozzle rose to 1500° C. after 30 minutes.

この時の電極C,C’における温度に浸漬ノズル表面温
度を最高として銅電極6の後端において最低となり約1
00℃を示した。
At this time, the temperature at the electrodes C and C' is the highest at the surface temperature of the immersion nozzle, and the lowest at the rear end of the copper electrode 6, which is about 1
It showed 00℃.

そして、タンディツシュ1底部のスライディングノズル
3を開操作して、タンディツシュl内の溶鋼Sを浸漬ノ
ズル2を経て鋳型4に供給し、鋳造作業を実施した。
Then, the sliding nozzle 3 at the bottom of the tundish 1 was opened, and the molten steel S in the tundish 1 was supplied to the mold 4 through the immersion nozzle 2, and casting work was performed.

鋳造作業中通電加熱を継続し、鋳造末期に通電を停止し
電極支持装置9を作動して電極C,C’を退避させ、通
電加熱を終了した。
Electrical heating was continued during the casting operation, and at the end of casting, the electric current was stopped, the electrode support device 9 was activated, the electrodes C and C' were evacuated, and the electrical heating was ended.

本実施例による通電加熱結果を比較例と共に第1表に示
す。
The results of energization heating according to this example are shown in Table 1 along with comparative examples.

比較例Aは浸漬ノズルと炭素電極間に可縮性導電性物質
を介在させない場合のもので、他は本実流側と同じ構成
とした。
Comparative Example A is a case in which no compressible conductive material is interposed between the immersion nozzle and the carbon electrode, and the other configuration is the same as the actual flow side.

又比較例Bは浸漬ノズルを通電加熱しない場合のもので
ある。
Comparative Example B is a case where the immersion nozzle is not heated by electricity.

第1表 上表に示されるように本発明の実施例では浸漬ノズルの
外表面温度は30分で1500℃まで昇温しだが、比較
例Aの場合は1000℃までしか昇温せず通電を継続し
ても1000℃以上に昇温しなかった。
As shown in the upper table of Table 1, in the example of the present invention, the temperature of the outer surface of the submerged nozzle rose to 1500°C in 30 minutes, but in the case of Comparative Example A, the temperature rose only to 1000°C and no electricity was applied. Even if the test was continued, the temperature did not rise above 1000°C.

又本発明の実施例では浸漬ノズル内壁の地金付着量は比
較例への一以下に軽減された。
Further, in the example of the present invention, the amount of metal deposited on the inner wall of the immersion nozzle was reduced to one or less compared to the comparative example.

(発明の効果) 本発明においては被加熱体である耐火壁と電極間に可縮
性の導電性物体を介在させ電極と耐火壁間の密着性を良
好にしたので、通電効率が大巾に向上し、短時間で通電
加熱による耐火壁の昇温限界を大巾に拡大することがで
き、該耐火壁における高温溶融金属による熱衝撃゛を有
利に緩和して損傷を軽減すると共に地金付着を減少する
ことができ、溶融金属処理の歩留の向上、作業の安定化
、生産性の向上ができる。
(Effects of the Invention) In the present invention, a compressible conductive object is interposed between the fireproof wall, which is the object to be heated, and the electrode to improve the adhesion between the electrode and the fireproof wall, so the current conduction efficiency is greatly improved. It is possible to greatly expand the temperature rise limit of fireproof walls due to electrical heating in a short time, advantageously alleviating the thermal shock caused by high temperature molten metal on the fireproof walls, reducing damage and preventing base metal adhesion. It is possible to improve the yield of molten metal processing, stabilize work, and improve productivity.

又、通電効率が良く、電力消費量が少なくて済みコスト
低減となる。
In addition, the current flow efficiency is high, and the amount of power consumed is small, resulting in cost reduction.

等優れた効果が得られる。Excellent effects can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施する通電加熱装置等の一部切欠断
面説明図、第2図は第1図1−1’線矢視説明図、第3
図は浸漬ノズルの加熱温度と、地金付着量この関係を示
す説明図である。 2・・・浸漬ノズル    5・・・支持体6・・・銅
電極      7・・・炭素電極8・・・可縮性導電
性物体 9・・・電極支持装置コOパ・導線     
  11・・・電源φ O り八n I′ 2−−−一浸漬ノズル 5−・−支持体 6−−−− @電縫 7−・・炭搬電締 8−・−可縮性導電性物体 9−−−一電柚皮特装置 to−−−一導 繞 rt−−−一 重  ント1−
Fig. 1 is an explanatory partially cutaway cross-sectional view of an energization heating device etc. that implements the present invention, Fig. 2 is an explanatory view taken along the line 1-1' in Fig. 1, and Fig.
The figure is an explanatory diagram showing the relationship between the heating temperature of the immersion nozzle and the amount of deposited metal. 2... Immersion nozzle 5... Support body 6... Copper electrode 7... Carbon electrode 8... Contractible conductive object 9... Electrode support device Copa/conducting wire
11... Power supply φ O Ri 8 n I' 2---Immersion nozzle 5--Support 6--@Electrical sewing 7--Charcoal-carried electric clamp 8--Compressible conductive Object 9---Iden Yuzubari special equipment to---Ichidou rt---Ichinoki rt 1-

Claims (1)

【特許請求の範囲】[Claims] 導電物質において形成される溶融金属用の流通管あるい
は、容器の耐火壁に通電し、該耐火壁を電気抵抗による
発熱を利用して昇温させるに際し、該耐火壁と電極間に
可縮性の導電性物体を介在させ、この可縮性の導電性物
体を介して電極から該耐火壁に通電することを特徴とす
る溶融金属用耐火壁の通電加熱方法。
When electricity is applied to a flow pipe for molten metal formed of a conductive material or a refractory wall of a container to raise the temperature of the refractory wall using heat generated by electrical resistance, a compressible material is placed between the refractory wall and the electrode. 1. A method for energizing and heating a fireproof wall for molten metal, characterized by interposing a conductive object and passing electricity from an electrode to the fireproof wall through the contractible conductive object.
JP983685A 1985-01-24 1985-01-24 Electrical heating method of refractory wall for molten metal Granted JPS61169157A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP983685A JPS61169157A (en) 1985-01-24 1985-01-24 Electrical heating method of refractory wall for molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP983685A JPS61169157A (en) 1985-01-24 1985-01-24 Electrical heating method of refractory wall for molten metal

Publications (2)

Publication Number Publication Date
JPS61169157A true JPS61169157A (en) 1986-07-30
JPS6343192B2 JPS6343192B2 (en) 1988-08-29

Family

ID=11731209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP983685A Granted JPS61169157A (en) 1985-01-24 1985-01-24 Electrical heating method of refractory wall for molten metal

Country Status (1)

Country Link
JP (1) JPS61169157A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100652U (en) * 1987-12-24 1989-07-06
JPH01279589A (en) * 1988-04-30 1989-11-09 Hoya Corp Heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858236A (en) * 1981-10-01 1983-04-06 Matsushita Electric Ind Co Ltd Electrode for electrical heat treatment

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5858236A (en) * 1981-10-01 1983-04-06 Matsushita Electric Ind Co Ltd Electrode for electrical heat treatment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01100652U (en) * 1987-12-24 1989-07-06
JPH01279589A (en) * 1988-04-30 1989-11-09 Hoya Corp Heating device

Also Published As

Publication number Publication date
JPS6343192B2 (en) 1988-08-29

Similar Documents

Publication Publication Date Title
CN101468419B (en) Induction and electrical arc composite heat source stud welding method
EP1218152B1 (en) Process and apparatus for cutting or welding a workpiece
JP5015053B2 (en) Method of preheating immersion nozzle for continuous casting and continuous casting method
JPS61169157A (en) Electrical heating method of refractory wall for molten metal
JP2004060946A (en) Waste melting apparatus and waste melting method
EP1439041B1 (en) Apparatus for cutting or welding a workpiece with a metal jet
JPH0441062A (en) Method and apparatus for casting high melting point metal and active metal
JP4233036B2 (en) Method and apparatus for producing aluminum matrix composite
US3213188A (en) Composite electrical conductor for an electrolysis cell used in manufacture of aluminum and method for making same
JP3814044B2 (en) Method and apparatus for manufacturing metal-ceramic composite member
JPH07238327A (en) Vacuum electroslag remelting furnace
JP2626775B2 (en) Fixed electrode for plasma arc
JPH0442047Y2 (en)
JPH0479742B2 (en)
JPH07260543A (en) Molten metal level detecting sensor fitting structure
JPH01278944A (en) Heating mold for continuous casting
JPH0961063A (en) Electrical conductive arm of electric furnace
JPS6043887B2 (en) Method for refining molten steel in a ladle
JPH0511009Y2 (en)
JPS5894794A (en) Arc furnace electrode
JPS5870953A (en) Heating method for nozzle for charging molten steel
JP2598207B2 (en) Manufacturing method of electric heating nozzle for sheet casting
JPS63132763A (en) Water cooled copper mold
CN115325823A (en) Crucible structure for electroslag remelting liquid slag smelting
JPS6117352A (en) Riser heating method by electroslag

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees