JP2004060946A - Waste melting apparatus and waste melting method - Google Patents

Waste melting apparatus and waste melting method Download PDF

Info

Publication number
JP2004060946A
JP2004060946A JP2002217781A JP2002217781A JP2004060946A JP 2004060946 A JP2004060946 A JP 2004060946A JP 2002217781 A JP2002217781 A JP 2002217781A JP 2002217781 A JP2002217781 A JP 2002217781A JP 2004060946 A JP2004060946 A JP 2004060946A
Authority
JP
Japan
Prior art keywords
crucible
wall
waste
furnace
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002217781A
Other languages
Japanese (ja)
Inventor
Hiroaki Oka
岡 浩章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Dengyo Co Ltd
Original Assignee
Sanki Dengyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Dengyo Co Ltd filed Critical Sanki Dengyo Co Ltd
Priority to JP2002217781A priority Critical patent/JP2004060946A/en
Publication of JP2004060946A publication Critical patent/JP2004060946A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Gasification And Melting Of Waste (AREA)
  • Processing Of Solid Wastes (AREA)
  • Crucibles And Fluidized-Bed Furnaces (AREA)
  • Furnace Details (AREA)
  • General Induction Heating (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a waste melting apparatus and a waste melting method even without any thin crucibles. <P>SOLUTION: In the waste melting apparatus 10 having a vertical type furnace wall section 20 where a heating coil 21 is incorporated and an elevatable furnace bottom section 30, a conductive high melting point member such as carbon is adopted for an inner wall 24 at the furnace wall section, the inner wall surface is formed in a tapered shape, and heat generated on the inner wall 24 due to induction heating is retained in the furnace by alumina felt 22 or the like. Additionally, another high melting point member such as SiN is adopted for the crucible 40. Then, when waste 50 is thrown into the crucible 40 for melting, the outer wall surface of the crucible 40 is brought into contact with the inner wall surface of the furnace wall section 20 for heating. Then, the crucible 40 is hardened together with a melt hardened object 50 for taking out of the furnace. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
この発明は、放射性廃棄物その他の廃棄物を溶融・固化して減容・安定化するための装置および方法に関し、詳しくは、るつぼ(坩堝)に廃棄物を投入して誘導加熱しうる技術に関する。
【0002】
【従来の技術】
るつぼに廃棄物を投入して溶融させてから一緒に固化させるのに用いられる廃棄物溶融装置として、密閉できる縦型の炉壁部に加熱コイルを組み込んだものが知られている(例えば、特許文献1参照。)。さらに、るつぼを載せて昇降可能な炉底部を備えたものも知られている(例えば、特許文献3参照。)。これらは、るつぼの壁部も炉壁部も径一定の筒状体からなり、るつぼの径より炉壁部の径が少し大きくて両者に間隙が確保されており、るつぼが誘導加熱されるようになっている。
【0003】
また、そのような坩堝は用いないが固化後取出の可能な廃棄物溶融装置として、加熱コイルが組み込まれた縦型の炉壁部と、昇降可能な炉底部とを備えたものが知られている(例えば、特許文献2参照。)。これは、炉壁部の内壁面がテーパ状に形成され、そこへ直に放射性廃棄物を投入するようになっているが、炉壁部の内壁は、高融点部材では無い導電性材料からなり、内部水冷にて熱を取り去るようになっている。
【0004】
【特許文献1】
特開平8−248189号公報 フロントページ等
【特許文献2】
特開2000−292594号公報 フロントページ等
【特許文献3】
特開2002−30354号公報 フロントページ等
【0005】
【発明が解決しようとする課題】
このような従来の廃棄物溶融装置では、るつぼ使用の場合、るつぼを誘導加熱する間接加熱が可能なことから導電性の廃棄物はもちろん絶縁性の廃棄物も溶融することができるので利用範囲が広いという長所がある一方、るつぼの壁厚が数十mmもあり、これが固化時に廃棄物の周りに付くので、その分だけ減容効果が減殺されるという短所がある。また、るつぼが使い捨てなので、そのコストも掛かる。
これに対し、上記るつぼ不使用の場合、それに起因する欠点は無いが、直接加熱しかできないため、廃棄物が金属等に限られる。
【0006】
そこで、溶融材料に雑多な廃棄物が入り交じっていても溶融固化や固化後取出が可能なように、るつぼを廃棄物と一緒に固化させて使い捨てにする手法を前提として、るつぼの壁厚を薄くすることで、減容効果を高めるとともにランニングコストも下げることが期待される。
しかしながら、るつぼの壁厚を単に薄くしたのでは、るつぼの強度も間接加熱の能力も低下して足りなくなってしまうので、不都合である。
【0007】
そこで、使い捨てのるつぼを薄くしても、るつぼが不所望に変形したり割れたりしないよう、さらに間接加熱も十分に行えるように、るつぼや炉壁の構造等を改良することが技術的な課題となる。
この発明は、このような課題を解決するためになされたものであり、るつぼが薄くても良い廃棄物溶融装置および廃棄物溶融方法を実現することを目的とする。
【0008】
【課題を解決するための手段】
このような課題を解決するために発明された第1乃至第3の解決手段について、その構成および作用効果を以下に説明する。
【0009】
[第1の解決手段]
第1の解決手段の廃棄物溶融装置は、出願当初の請求項1に記載の如く、加熱コイルが組み込まれた縦型の炉壁部と、昇降可能な炉底部とを備えた廃棄物溶融装置において、前記炉壁部の内壁が導電性の第1高融点部材からなり、その内壁面がテーパ状に形成されており、前記炉壁部が誘導加熱による前記内壁の発熱を炉内に滞留させるようになっている、というものである。
また、第1の解決手段の廃棄物溶融方法は、出願当初の請求項2に記載の如く、坩堝に廃棄物を投入して前記廃棄物を誘導加熱にて溶融させてから前記廃棄物を前記坩堝と一緒に固化させる廃棄物溶融方法において、その誘導加熱の実行手段には、請求項1記載の廃棄物溶融装置を用い、前記坩堝には、前記炉壁部の前記内壁とは別の第2高融点部材からなり外壁面が前記炉壁部の内壁面に適合するものを用い、前記誘導加熱を行う時には、前記坩堝の外壁面を前記炉壁部の内壁面に接触させる、というものである。
【0010】
このような第1の解決手段の廃棄物溶融装置およびそれを用いた廃棄物溶融方法にあっては、誘導加熱時に、炉壁部の内壁が発熱し、その熱が水冷等で炉外に取り去られることなく炉内に滞留する。しかも、るつぼが炉壁に接触するので、炉壁部の熱が、溶融材料である廃棄物に、熱伝導等にて効率良く伝達される。また、廃棄物の投入時や溶融時に、るつぼに内圧が掛かっても、るつぼは外側から炉壁部にて支えられているので、るつぼが薄くても破損のおそれは無い。むしろ、るつぼが薄いほど、間接加熱は効率良く行われる。直接加熱も可能である。
【0011】
さらに、廃棄物の固化時に、るつぼと炉壁部との接触状態を固定しておくと、熱膨張率の相違等から抜き取りが困難になるような場合、溶融した廃棄物が十分に固化するまではそれに随伴して徐々に炉底部を上昇または下降させる。るつぼと炉壁部との接触面がテーパ状になっているので、両者の接触状態を適切な状態に保つことが容易かつ確実に行える。廃棄物が十分に固化した後は、るつぼにひびが入っても昇降を素早く行っても不都合は無い。
【0012】
これにより、るつぼが薄くても、強度面での問題が生じないうえ、直接加熱ばかりか間接加熱も十分になされるので、るつぼを使い捨てにしながら、それでいて安価に、廃棄物の溶融固化を行うことが可能となる。
したがって、この発明によれば、るつぼが薄くても良い廃棄物溶融装置および廃棄物溶融方法を実現することができる。
【0013】
[第2の解決手段]
第2の解決手段の廃棄物溶融装置は、出願当初の請求項3に記載の如く、上記の第1の解決手段の廃棄物溶融装置であって、高融点部材からなり外周面が前記炉壁部の内壁面に対向可能なテーパ状に形成された内型を備えたものである。
また、第2の解決手段の廃棄物溶融方法は、出願当初の請求項4に記載の如く、上記の第2の解決手段の廃棄物溶融装置を用い、前記内型を前記炉壁部に進入させてその対向間隙に坩堝材料を投入し、それを誘導加熱にて焼結させてから前記内型を退出させ、その後、その焼結体を前記坩堝の壁部として上記の第1の解決手段の廃棄物溶融方法を実行する、というものである。
【0014】
このような第2の解決手段の廃棄物溶融装置およびそれを用いた廃棄物溶融方法にあっては、内型と対向しているときの炉壁部の内壁を外型にして、るつぼが対向間隙に形成される。
これにより、るつぼの外壁面が炉壁部の内壁面に完全に適合して、両者の接触が確実になされることとなる。これは、炉壁部の内壁面が使用に伴って変形したようなときでも、維持される。そして、るつぼの安全性も伝熱能力も向上し而も高水準を維持する。
したがって、この発明によれば、るつぼが更に薄くても良い廃棄物溶融装置および廃棄物溶融方法を実現することができる。
【0015】
[第3の解決手段]
第3の解決手段の廃棄物溶融方法は、出願当初の請求項5に記載の如く、上記の第1,第2の解決手段の廃棄物溶融方法であって、前記加熱時における前記坩堝の外壁面と前記炉壁部の内壁面との接触部位に、前記炉壁部の前記内壁および前記坩堝の何れとも異なる第3高融点部材からなる膜状体または粉粒体を介在させる、というものである。
【0016】
このような第3の解決手段の廃棄物溶融方法にあっては、るつぼが誘導加熱によって炉壁部に融着した場合でも、るつぼを移動させると、るつぼと炉壁部とが介在物のところで剥離し易くなる。なお、るつぼと炉壁部との接触状態が直接的なものでなく間接的なものになるが、機械的な接触状態が維持されているので、るつぼの安全性や伝熱能力が損なわれることは無い。
これにより、るつぼを溶融時に炉壁へ接触させても、固化後の取出が確実に行えて、炉壁部の損耗が少なくて済むこととなる。
したがって、この発明によれば、るつぼが薄くても良く装置寿命も長い廃棄物溶融装置および廃棄物溶融方法を実現することができる。
【0017】
【発明の実施の形態】
このような解決手段で達成された本発明の廃棄物溶融装置および廃棄物溶融方法について、これを実施するための具体的な形態を、以下の第1〜第4実施例により説明する。
図1,図2に示した第1実施例は、上述した第1の解決手段(当初請求項1,2)を具現化したものであり、図3,図4に示した第2実施例は、上述した第2の解決手段(当初請求項3,4)を具現化したものであり、図5の第3実施例、及び図6の第4実施例は、上述した第3の解決手段(当初請求項5)を具現化したものである。
なお、それらの図示に際しては、簡明化等のため、筐体パネルや,ボルト等の締結具,ヒンジ等の連結具,ギヤ等の伝動機構,電気回路,ガス配管などは図示を割愛し、発明の説明に必要な要部を模式的に示した。
【0018】
【第1実施例】
本発明の第1実施例について、廃棄物溶融装置の具体的な構成を、図面を引用して説明する。図1は、廃棄物溶融装置の要部の縦断面模式図である。
【0019】
この廃棄物溶融装置10は、るつぼ40に放射性廃棄物50を投入して溶融させてから放射性廃棄物50をるつぼ40と一緒に固化させるのに有用であり、そのために、密閉壁11と炉壁部20と炉底部30とを備えている。密閉壁11は、耐火性の丈夫な構造物で、上から下へ順に投入室12と溶融室13と搬出室14とが形成されており、密閉して窒素パージができるようになっている。投入室12と溶融室13との間には、放射性廃棄物50の投入が行えるよう、連通する投入口が形成されている。溶融室13には、炉壁部20が縦置きに据え付けられている。搬出室14には、炉底部30が収納されている。溶融室13と搬出室14との間にも連通口が形成されており、そこには炉壁部20の中空・内腔の下端側が位置していて、炉底部30が上昇して炉壁部20に当接すると炉の底が塞がるようになっている。
【0020】
炉壁部20は、多層の筒状体になっており、外周から内周へ順にコイル21とアルミナフェルト22と窒化珪素ブロック23とカーボンサセプタ24とを具えている。
コイル21(加熱コイル)は、誘導加熱用の高周波電流を流すのに適した電気良導体の線材を巻回して形成され、図示しない鉄心等にて支持されている。
アルミナフェルト22(熱滞留手段)は、コイル21と窒化珪素ブロック23との間隙に充填装着されて緩衝材の役目を果たすとともに、その断熱性に基づき、誘導加熱によってカーボンサセプタ24や窒化珪素ブロック23などに発生した熱を炉内に滞留させるようになっている。
【0021】
窒化珪素ブロック23は、カーボンサセプタ24を補強しつつ支持するものであり、高強度の高融点部材であれば窒化珪素(SiN)以外のもの例えばSiCやBN等でも良く、それらの複層材等でも良い。
カーボンサセプタ24(内壁)は、炉壁部20の最も内側すなわち中空側に位置して炉壁部20の内壁となっており、誘電加熱によって発熱するとともに、発熱しても放射性廃棄物50より先には溶融しないよう、導電性の第1高融点部材で出来ている。十分な導電性と耐熱性とを具えたものであれば、黒鉛(C)以外のもの例えば導電性セラミック等でも良く、それらの複合材等でも良い。その内壁面は、テーパ状に形成されており、一例を挙げると高さが90cmで外径が75cmで上端の内径が65cmで下端の内径が67cmである。
このような炉壁部20は、水冷するようにはなっていない。
【0022】
炉底部30は、図示しない昇降機構によって昇降可能に支持されたシャフト31と、その上端に広がるテーブル32と、その上に順に積層されたアルミナ床33,窒化珪素ブロック34,及びカーボン床35とを具えている。カーボン床35は、カーボンサセプタ24と同じ部材からなり、カーボンサセプタ24の下端面に対応して形成され、そこに押し当てられると、カーボンサセプタ24の下端面を塞ぐようになっている。
【0023】
るつぼ40は、導電性よりも高温での強度が重視されるため、カーボンサセプタ24とは別の第2高融点部材からなる。具体的には約1600℃まで耐えられる窒化珪素(SiN)が好適であるが、高強度の高融点部材であれば、それ以外のもの例えばSiCやBN等でも良く、それらの複合材等でも良い。るつぼ40の全体形状は、上面が開放され底面が閉塞された筒状体に形成されており、るつぼ40の高さは、カーボンサセプタ24より少し低く、つぼ40の外壁面は、底を基準にして、カーボンサセプタ24の内壁面に適合している。すなわちカーボンサセプタ24が上述した一例のような場合、るつぼ40は、高さが85cmで上端の外径が65.3cmで下端の外径が67.3cmである。るつぼ40の厚さは、壁部も底部も、従来例の数十mmより薄く、数mmになっている。2mmも可能である。
【0024】
この第1実施例の廃棄物溶融装置について、その使用態様及び動作を、図面を引用して説明する。図2(a)〜(f)は、いずれも装置要部の模式図であり、廃棄物の溶融・固化の処理手順を時系列に示している。密閉壁11や溶融室13等は図示を割愛した。
【0025】
投入に先立って、炉底部30を下降させ(図2(a)参照)、るつぼ40をその上に載せる(図2(b)参照)。それから、炉底部30を炉壁部20の下端に当接するまで上昇させる(図2(c)参照)。これによって、るつぼ40は、壁部の外壁面が炉壁部20の内壁面に接触してカーボンサセプタ24によって外側から押さえられるとともに、底部が炉底部30によって支えられる。
その状態で、放射性廃棄物50からなる溶融材料51が、るつぼ40に上方の投入室12から投入される(図2(d)参照)。そのとき、るつぼ40が薄くても炉壁部20や炉底部30によって外側から支えられているので、溶融材料51を従来同様に投入しても、るつぼ40が破損する心配は無い。
【0026】
それから、必要であれば窒素パージ等も行って、コイル21に高周波大電流を通電すると、誘導加熱によって、溶融材料51のうちの金属部分等が発熱するとともに、カーボンサセプタ24が発熱する。そのカーボンサセプタ24の熱は、るつぼ40を介して溶融材料51に伝導される。るつぼ40が薄いので、溶融材料51への熱伝導は効率良く行われる一方、厚い窒化珪素ブロック23や,断熱性のアルミナフェルト22に遮られて、コイル21やその外へは熱が大して逃げない。こうして、るつぼ40内で溶融材料51が速やかに融けて溶融固化物52となる(図2(e)参照)。
【0027】
その後、コイル21の通電を停止すると、溶融固化物52が固まる。そのときに、るつぼ40の内壁に溶融固化物52が融着した状態のままそれらが一緒に固まるが、熱膨張率の相違等に起因して、るつぼ40にひび割れ等が発生したとしても、固化した溶融固化物52に張り付いているので、るつぼ40が不所望に飛散するようなことは無い。また、やはり熱膨張率の相違等に起因して、炉壁部20との間に不所望な応力が生じるような場合には、それと冷却速度とに応じた速度でゆっくり炉底部30を下降させると良い。るつぼ40及び炉壁部20の内壁面がテーパ状になっているので、縦移動にて横方向間隙を加減することができ、これによってカーボンサセプタ24の破損等が回避される。
【0028】
そして、必要であれば冷却用窒素ガスの吹付等も行って、溶融固化物52が十分に冷めたところで、炉底部30を下降させ、それから、るつぼ40付きの溶融固化物52を取り出す(図2(f)参照)。
こうして、この廃棄物溶融装置10及びるつぼ40を用いた廃棄物溶融方法にあっては、放射性廃棄物50を効率良く溶融固化するとともに、るつぼ40を放射性廃棄物50と共に使い捨てにしても高い減容効果が達成される。また、放射性廃棄物50に金属等の導電性部材が含まれていない又は少ないときでも、カーボンサセプタ24の発熱による間接加熱にて確実に、放射性廃棄物50を溶融することができる。
【0029】
【第2実施例】
本発明の廃棄物溶融装置の第2実施例について、その具体的な構成を、図面を引用して説明する。図3は、装置要部の模式図である。
この廃棄物溶融装置が上述した第1実施例のものと相違するのは、炉底部30に加えて別の炉底部60も設けられている点である。
【0030】
炉底部60は、炉底部30と同様の基部に対し中子61(内型)を載置して固定したものであり、図示しない進退機構あるいは回転台などで、随時、炉底部30と入れ換えられるようになっている。炉壁部20の下方で昇降可能なのも、炉底部30と同じである。
中子61は、るつぼ40とは異なる高融点部材たとえば黒鉛等からなり、外周面が炉壁部20の内壁面に僅かな隙間を残して対向可能なテーパ状に形成されている。具体的には、るつぼ40の厚さ分の隙間を残して対向するようになっている。
【0031】
この第2実施例の廃棄物溶融装置について、その使用態様及び動作を、図面を引用して説明する。図4は、(a)〜(d)いずれも装置要部の模式図であり、るつぼ製造手順を示している。
【0032】
この場合、放射性廃棄物50の投入に先だって、るつぼ40が炉底部60,30の連携により炉壁部20のところで動的に作られる。
詳述すると、先ず、炉底部60を上昇させて、上述した炉壁部20の中空・内腔に中子61を進入させる(図4(a)参照)。
次に、それによって出来た両者の対向間隙に坩堝材料を投入する。坩堝材料には、窒化珪素(SiN)の粉粒体が用いられ、それを誘導加熱にて焼結させると、例えば1800℃程度で焼くと、るつぼ壁部41が出来上がる(図4(b)参照)。
【0033】
それから、炉底部60を下降させて中子61を炉壁部20の中から退出させ、その代わりに、るつぼ底部42を乗載した炉底部30を炉壁部20に向ける(図4(c)参照)。
最後に、その炉底部30を上昇させて、るつぼ壁部41の下端に、るつぼ底部42を当接させると、るつぼ40が組上がる(図4(d)参照)。
【0034】
こうして、外壁面が炉壁部の内壁面に対して完璧に適合する坩堝が出来上がるので、その後は、上述した第1実施例における後半部分の手順(図2(c)〜(f)参照)と同様にして、放射性廃棄物50を溶融させ、るつぼ40と一緒に固化して取り出す。
【0035】
【第3実施例】
図5に装置要部を模式的に示した本発明の廃棄物溶融装置が上述した第1実施例のものと相違するのは、るつぼ40の外面に薄く剥離材70が着けられている点である。
剥離材70は、るつぼ40及びカーボンサセプタ24の何れとも異なる第3高融点部材からなり、例えば、るつぼ40が窒化珪素で、炉壁部20の内壁が黒鉛の場合、剥離材70には窒化硼素(BN)が好適である。剥離材70は、貼り付け易い膜状体に形成されるか、薄く塗布可能な粉粒体になっている。
【0036】
この場合、るつぼ40の外壁面と炉壁部20の内壁面との接触部位に剥離材70が介在し、その状態で誘電加熱が行われる。
そして、溶融後の固化時や取出時に、るつぼ40と一緒に放射性廃棄物50を炉壁部20から抜き出すと、るつぼ40とカーボンサセプタ24とが剥離材70のところで容易かつ確実に分離する。
こうして、るつぼ40と炉壁部20とを熱伝導可能に接触させる間接加熱方式の下でも、炉壁部20の内壁の損耗を少なくして、炉壁部20の寿命を伸ばすことができる。
【0037】
【第4実施例】
図6にるつぼ製造手順を模式的に示した本発明の廃棄物溶融方法が上述した第2実施例のものと相違するのは、炉壁部20の中空・内腔に中子61を進入させるのに先だってカーボンサセプタ24の内壁面に剥離材70を着けておくことである(図6(a)参照)。
【0038】
それ以外は、上述した第2実施例と同様にして、中子61を炉壁部20に進入させ(図6(b)参照)、それから対向間隙に坩堝材料を投入し、それを誘導加熱にて焼結させて、るつぼ壁部41を形成する(図6(c)参照)。
こうして、るつぼ40を炉壁部20内で動的に作る方式でも、誘電加熱時における炉壁部20の内壁面と坩堝40の外壁面との接触部位に、第3高融点部材からなる膜状体または粉粒体を介在させることができる。
【0039】
【その他】
なお、上記の各実施例では、放射性廃棄物50を溶融固化する場合を述べたが、溶融対象の廃棄物は、これに限られるものでなく、他の雑産業廃棄物でも良く、それらの混合物でも良い。
【0040】
【発明の効果】
以上の説明から明らかなように、本発明の第1の解決手段の廃棄物溶融装置および廃棄物溶融方法にあっては、るつぼを取出可能に炉壁と接触させて熱を伝えるようにしたことにより、るつぼが厚くなくても破損防止および間接加熱が可能となり、その結果、るつぼが薄くても良い廃棄物溶融装置および廃棄物溶融方法を実現することができたという有利な効果が有る。
【0041】
また、本発明の第2の解決手段の廃棄物溶融装置および廃棄物溶融方法にあっては、るつぼが炉内で成型されるようにもしたことにより、るつぼが更に薄くても良い廃棄物溶融装置および廃棄物溶融方法を実現することができたという有利な効果を奏する。
【0042】
さらに、本発明の第3の解決手段の廃棄物溶融方法にあっては、るつぼが剥離し易いようにもしたことにより、るつぼが薄くても良く装置寿命も長い廃棄物溶融方法を実現することができたという有利な効果が有る。
【図面の簡単な説明】
【図1】本発明の第1実施例について、廃棄物溶融装置の要部の縦断面模式図である。
【図2】(a)〜(f)いずれも装置要部の模式図であり、廃棄物の溶融・固化の処理手順を示している。
【図3】本発明の第2実施例について、装置要部の模式図である。
【図4】(a)〜(d)いずれも装置要部の模式図であり、るつぼ製造手順を示している。
【図5】本発明の第3実施例について、装置要部の模式図である。
【図6】本発明の第4実施例について、(a)〜(c)いずれも装置要部の模式図であり、るつぼ製造手順を示している。
【符号の説明】
10 廃棄物溶融装置
11   密閉壁
12   投入室
13   溶融室
14   搬出室
20   炉壁部(固定部、加熱筒部、本体部、高周波誘導炉)
21     コイル(高周波印可コイル、加熱コイル)
22     アルミナフェルト(緩衝部材、熱滞留手段)
23     窒化珪素ブロック(SiN、高強度高融点部材)
24     カーボンサセプタ(黒鉛、導電性の第1高融点部材、内壁)
30   炉底部(可動部、るつぼ乗載台座部、高周波誘導炉)
31     シャフト(昇降軸)
32     テーブル(ベース)
33     アルミナ床
34     窒化珪素ブロック(SiN、高強度高融点部材)
35     カーボン床(ステージ、黒鉛、導電性高融点部材)
40   るつぼ(容器、坩堝)
41     るつぼ壁部(SiN、高強度の第2高融点部材、焼結体)
42     るつぼ底部(SiN、高強度の第2高融点部材)
50   放射性廃棄物(雑産業廃棄物、溶融固化対象の廃棄物)
51     溶融材料
52     溶融固化物
60   炉底部(可動部、中子支持部、高周波誘導炉)
61     中子(内型)
70   剥離材(BN、異種の第3高融点部材)
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus and a method for melting and solidifying radioactive waste and other waste to reduce and stabilize the volume, and more particularly to a technique capable of injecting waste into a crucible and performing induction heating. .
[0002]
[Prior art]
As a waste melting apparatus used to put waste into a crucible, melt it, and then solidify it together, there is known a waste melting apparatus in which a heating coil is incorporated in a vertical furnace wall that can be sealed (for example, Patent Reference 1). Further, there is also known a furnace equipped with a furnace bottom which can be moved up and down with a crucible placed thereon (for example, see Patent Document 3). In these, both the wall portion of the crucible and the furnace wall portion are formed of a cylindrical body having a constant diameter, the diameter of the furnace wall portion is slightly larger than the diameter of the crucible, and a gap is secured between both, so that the crucible is induction-heated. It has become.
[0003]
In addition, as a waste melting device that does not use such a crucible but can be taken out after solidification, a device equipped with a vertical furnace wall in which a heating coil is incorporated and a furnace bottom that can be moved up and down is known. (For example, see Patent Document 2). In this method, the inner wall of the furnace wall is formed in a tapered shape, and radioactive waste is directly injected into the inner wall, but the inner wall of the furnace wall is made of a conductive material that is not a high melting point member. Heat is removed by internal water cooling.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 8-248189 Front page etc. [Patent Document 2]
JP 2000-292594 A Front page etc. [Patent document 3]
JP, 2002-30354, A Front page etc.
[Problems to be solved by the invention]
In such a conventional waste melting apparatus, when a crucible is used, the indirect heating for induction heating of the crucible is possible, so that not only conductive waste but also insulating waste can be melted. While having the advantage of being wide, the crucible has a wall thickness of several tens of millimeters, which has a disadvantage in that the solidification adheres to the periphery of the waste when solidified, thereby reducing the volume reduction effect. Also, since the crucible is disposable, the cost is also high.
On the other hand, when the crucible is not used, there is no drawback caused by it, but only direct heating is possible, so that waste is limited to metals and the like.
[0006]
Therefore, assuming a method of solidifying the crucible together with the waste and disposing it so that it can be removed after solidification or solidification even if various wastes are mixed in the molten material, the wall thickness of the crucible is reduced. By making it thinner, it is expected that the volume reduction effect will be enhanced and the running cost will also be reduced.
However, simply reducing the wall thickness of the crucible is inconvenient because the strength of the crucible and the ability of indirect heating are reduced and become insufficient.
[0007]
Therefore, even if the disposable crucible is thinned, it is a technical problem to improve the structure of the crucible and the furnace wall so that the crucible is not undesirably deformed or cracked, and that the indirect heating can be sufficiently performed. It becomes.
The present invention has been made to solve such a problem, and an object of the present invention is to realize a waste melting apparatus and a waste melting method in which a crucible may be thin.
[0008]
[Means for Solving the Problems]
The configuration, operation and effect of the first to third solving means invented to solve such a problem will be described below.
[0009]
[First Solution]
According to a first aspect of the present invention, there is provided a waste melting apparatus including a vertical furnace wall in which a heating coil is incorporated and a vertically movable furnace bottom, as described in claim 1 at the time of filing. In the above, the inner wall of the furnace wall portion is made of a conductive first high melting point member, and the inner wall surface is formed in a tapered shape, and the furnace wall portion retains heat generated by the inner wall due to induction heating in the furnace. It is like that.
Further, the waste melting method of the first solving means is that, as described in claim 2 at the beginning of the application, the waste is put into a crucible, the waste is melted by induction heating, and then the waste is melted. In the waste melting method for solidifying together with the crucible, the means for performing induction heating uses the waste melting apparatus according to claim 1, and the crucible includes a second material different from the inner wall of the furnace wall portion. (2) A material having a high melting point and an outer wall surface adapted to the inner wall surface of the furnace wall portion, and when performing the induction heating, the outer wall surface of the crucible is brought into contact with the inner wall surface of the furnace wall portion. is there.
[0010]
In the waste melting apparatus and the waste melting method using the waste melting apparatus of the first solution, the inner wall of the furnace wall generates heat during induction heating, and the heat is removed outside the furnace by water cooling or the like. Stay in the furnace without being caught. In addition, since the crucible comes into contact with the furnace wall, the heat of the furnace wall is efficiently transmitted to the waste material, which is a molten material, by heat conduction or the like. Further, even when internal pressure is applied to the crucible at the time of charging or melting the waste, the crucible is supported by the furnace wall from the outside, so that there is no possibility of damage even if the crucible is thin. Rather, the thinner the crucible, the more efficiently indirect heating is performed. Direct heating is also possible.
[0011]
Furthermore, when the contact between the crucible and the furnace wall is fixed during solidification of the waste, if it becomes difficult to extract the material due to the difference in the coefficient of thermal expansion, etc. Gradually raises or lowers the furnace bottom in association with it. Since the contact surface between the crucible and the furnace wall is tapered, it is possible to easily and reliably maintain the contact state between the two in an appropriate state. After the waste is sufficiently solidified, there is no inconvenience even if the crucible is cracked or moved up and down quickly.
[0012]
As a result, even if the crucible is thin, there is no problem in terms of strength, and since not only direct heating but also indirect heating is sufficiently performed, it is possible to melt and solidify waste while disposing the crucible at low cost. Becomes possible.
Therefore, according to the present invention, it is possible to realize a waste melting apparatus and a waste melting method that can be used even when the crucible is thin.
[0013]
[Second Solution]
A waste melting apparatus according to a second aspect of the present invention is the waste melting apparatus according to the first aspect, wherein the waste melting apparatus is made of a high-melting point member and has an outer peripheral surface formed of the furnace wall. And an inner die formed in a tapered shape capable of facing the inner wall surface of the portion.
Further, according to a second aspect of the present invention, as described in claim 4 of the present application, the inner mold is inserted into the furnace wall using the waste melting apparatus of the second aspect. Then, a crucible material is charged into the opposed gap, and the material is sintered by induction heating, and then the inner die is withdrawn. Thereafter, the sintered body is used as a wall of the crucible as the first solution. Is implemented.
[0014]
In the waste melting apparatus and the waste melting method using the waste melting apparatus according to the second solution, the inner wall of the furnace wall when facing the inner mold is set to the outer mold, and the crucible is opposed to the inner mold. Formed in the gap.
As a result, the outer wall surface of the crucible completely conforms to the inner wall surface of the furnace wall, and the contact between the two is ensured. This is maintained even when the inner wall surface of the furnace wall is deformed with use. In addition, the crucible's safety and heat transfer capacity are improved and the crucible is maintained at a high level.
Therefore, according to the present invention, it is possible to realize a waste melting apparatus and a waste melting method in which the crucible may be thinner.
[0015]
[Third Solution]
A third aspect of the present invention is directed to a waste melting method according to the first and second aspects of the invention, wherein the crucible is placed outside the crucible during the heating. A film or a granular material made of a third high melting point member different from any of the inner wall of the furnace wall and the crucible is interposed at a contact portion between a wall surface and an inner wall surface of the furnace wall portion. is there.
[0016]
According to the waste melting method of the third solution, even when the crucible is fused to the furnace wall by induction heating, when the crucible is moved, the crucible and the furnace wall are located at an intervening point. It is easy to peel off. In addition, the contact between the crucible and the furnace wall is not direct but indirect, but the mechanical contact is maintained, so the safety and heat transfer capacity of the crucible are impaired. There is no.
Thereby, even if the crucible is brought into contact with the furnace wall at the time of melting, removal after solidification can be reliably performed, and wear of the furnace wall portion can be reduced.
Therefore, according to the present invention, it is possible to realize a waste melting apparatus and a waste melting method in which the crucible can be thin and the apparatus life is long.
[0017]
BEST MODE FOR CARRYING OUT THE INVENTION
Specific embodiments for carrying out the waste melting apparatus and the waste melting method of the present invention achieved by such a solution will be described with reference to the following first to fourth embodiments.
The first embodiment shown in FIGS. 1 and 2 embodies the first solution (the first claim 1 and 2), and the second embodiment shown in FIGS. The third embodiment of FIG. 5 and the fourth embodiment of FIG. 6 embody the above-described second solving means (initially, claims 3 and 4). This is an embodiment of claim 5).
In the drawings, for simplicity and the like, the housing panel, fasteners such as bolts, couplings such as hinges, transmission mechanisms such as gears, electric circuits, gas pipes, etc. are omitted from the drawings. The main parts necessary for the description are schematically shown.
[0018]
[First embodiment]
First Embodiment A first embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a schematic longitudinal sectional view of a main part of a waste melting apparatus.
[0019]
The waste melting apparatus 10 is useful for charging and melting the radioactive waste 50 into the crucible 40, and then solidifying the radioactive waste 50 together with the crucible 40. A part 20 and a furnace bottom 30 are provided. The sealing wall 11 is a durable fire-resistant structure, in which a charging chamber 12, a melting chamber 13 and an unloading chamber 14 are formed in order from top to bottom, so that nitrogen purging can be performed in a sealed manner. An input port communicating with the radioactive waste 50 is formed between the input chamber 12 and the melting chamber 13 so that the radioactive waste 50 can be input. In the melting chamber 13, a furnace wall portion 20 is installed vertically. A furnace bottom 30 is housed in the carrying-out chamber 14. A communication port is also formed between the melting chamber 13 and the unloading chamber 14, where the lower end side of the hollow / lumen of the furnace wall 20 is located, and the furnace bottom 30 rises and the furnace wall The bottom of the furnace is closed when it comes into contact with 20.
[0020]
The furnace wall 20 is a multilayer cylindrical body, and includes a coil 21, an alumina felt 22, a silicon nitride block 23, and a carbon susceptor 24 in order from the outer periphery to the inner periphery.
The coil 21 (heating coil) is formed by winding a wire made of an electric conductor suitable for flowing a high-frequency current for induction heating, and is supported by an iron core or the like (not shown).
The alumina felt 22 (heat stagnation means) is filled and mounted in the gap between the coil 21 and the silicon nitride block 23 to serve as a cushioning material. On the basis of its heat insulating property, the carbon susceptor 24 and the silicon nitride block 23 are heated by induction heating. Heat generated in the furnace is retained in the furnace.
[0021]
The silicon nitride block 23 reinforces and supports the carbon susceptor 24. Any material other than silicon nitride (SiN), such as SiC or BN, may be used as long as it has a high strength and a high melting point. But it's fine.
The carbon susceptor 24 (inner wall) is located on the innermost side, that is, on the hollow side of the furnace wall portion 20 and serves as an inner wall of the furnace wall portion 20. It is made of a conductive first high melting point member so as not to melt. A material other than graphite (C), such as a conductive ceramic, or a composite material thereof may be used as long as it has sufficient conductivity and heat resistance. The inner wall surface is formed in a tapered shape. For example, the height is 90 cm, the outer diameter is 75 cm, the inner diameter at the upper end is 65 cm, and the inner diameter at the lower end is 67 cm.
The furnace wall 20 is not water-cooled.
[0022]
The furnace bottom 30 includes a shaft 31 supported so as to be able to move up and down by a raising and lowering mechanism (not shown), a table 32 extending at an upper end thereof, and an alumina floor 33, a silicon nitride block 34, and a carbon floor 35 sequentially laminated thereon. I have it. The carbon floor 35 is made of the same member as the carbon susceptor 24, is formed corresponding to the lower end surface of the carbon susceptor 24, and closes the lower end surface of the carbon susceptor 24 when pressed against it.
[0023]
The crucible 40 is made of a second high melting point member different from the carbon susceptor 24 because the strength at high temperature is more important than the conductivity. Specifically, silicon nitride (SiN), which can withstand up to about 1600 ° C., is suitable. However, if it is a high-strength, high-melting-point member, other members such as SiC or BN may be used, or a composite material thereof may be used. . The entire shape of the crucible 40 is formed in a cylindrical body having an open top surface and a closed bottom surface, the height of the crucible 40 is slightly lower than the carbon susceptor 24, and the outer wall surface of the crucible 40 is based on the bottom. Therefore, it conforms to the inner wall surface of the carbon susceptor 24. That is, when the carbon susceptor 24 is in the above-described example, the crucible 40 has a height of 85 cm, an outer diameter of an upper end of 65.3 cm, and an outer diameter of a lower end of 67.3 cm. The thickness of the crucible 40 at both the wall portion and the bottom portion is smaller than several tens of mm of the conventional example, and is several mm. 2 mm is also possible.
[0024]
The usage mode and operation of the waste melting apparatus according to the first embodiment will be described with reference to the drawings. 2 (a) to 2 (f) are schematic diagrams of the main parts of the apparatus, and show the processing procedure of melting and solidification of waste in a time series. The illustration of the sealing wall 11, the melting chamber 13, and the like is omitted.
[0025]
Prior to charging, the furnace bottom 30 is lowered (see FIG. 2A), and the crucible 40 is placed thereon (see FIG. 2B). Then, the furnace bottom 30 is raised until it comes into contact with the lower end of the furnace wall 20 (see FIG. 2C). Thereby, the outer wall surface of the crucible 40 contacts the inner wall surface of the furnace wall portion 20 and is pressed from outside by the carbon susceptor 24, and the bottom portion is supported by the furnace bottom portion 30.
In this state, the molten material 51 composed of the radioactive waste 50 is charged into the crucible 40 from the upper charging chamber 12 (see FIG. 2D). At that time, even if the crucible 40 is thin, it is supported from the outside by the furnace wall portion 20 and the furnace bottom portion 30. Therefore, even if the molten material 51 is charged in the same manner as in the conventional case, there is no fear that the crucible 40 will be damaged.
[0026]
Then, if a high-frequency high current is applied to the coil 21 by performing a nitrogen purge or the like, if necessary, the metal portion of the molten material 51 generates heat and the carbon susceptor 24 generates heat by induction heating. The heat of the carbon susceptor 24 is conducted to the molten material 51 via the crucible 40. Since the crucible 40 is thin, heat conduction to the molten material 51 is efficiently performed, but the heat is not largely released to the coil 21 and the outside thereof because the silicon nitride block 23 and the heat-insulating alumina felt 22 block the heat. . Thus, the molten material 51 is quickly melted in the crucible 40 to become a molten solid 52 (see FIG. 2E).
[0027]
Thereafter, when the energization of the coil 21 is stopped, the molten solidified material 52 solidifies. At that time, the melted solidified material 52 is solidified together with the molten solidified material 52 fused to the inner wall of the crucible 40, but even if cracks or the like are generated in the crucible 40 due to a difference in thermal expansion coefficient or the like, the solidified solidified material 52 Since the crucible 40 is attached to the melted and solidified material 52, the crucible 40 does not scatter undesirably. Also, in a case where an undesired stress is generated between the furnace wall 20 and the furnace wall 20 due to a difference in thermal expansion coefficient, the furnace bottom 30 is slowly lowered at a speed corresponding to the stress and the cooling rate. And good. Since the inner wall surfaces of the crucible 40 and the furnace wall 20 are tapered, the gap in the horizontal direction can be adjusted by vertical movement, thereby avoiding breakage of the carbon susceptor 24 and the like.
[0028]
Then, if necessary, a nitrogen gas for cooling is also sprayed. When the molten solid 52 is sufficiently cooled, the furnace bottom 30 is lowered, and then the molten solid 52 with the crucible 40 is taken out (FIG. 2). (F)).
Thus, in the waste melting method using the waste melting apparatus 10 and the crucible 40, the radioactive waste 50 is efficiently melted and solidified, and the volume reduction is high even when the crucible 40 is disposable together with the radioactive waste 50. The effect is achieved. Further, even when the radioactive waste 50 does not contain or has a small amount of conductive material such as metal, the radioactive waste 50 can be reliably melted by indirect heating due to the heat generated by the carbon susceptor 24.
[0029]
[Second embodiment]
A specific configuration of a second embodiment of the waste melting apparatus according to the present invention will be described with reference to the drawings. FIG. 3 is a schematic diagram of a main part of the apparatus.
This waste melting apparatus differs from that of the first embodiment in that another furnace bottom 60 is provided in addition to the furnace bottom 30.
[0030]
The furnace bottom 60 is formed by mounting and fixing a core 61 (inner die) on the same base as the furnace bottom 30, and is replaced with the furnace bottom 30 as needed by an advance / retreat mechanism or a turntable (not shown). It has become. It is the same as the furnace bottom 30 that can be moved up and down below the furnace wall 20.
The core 61 is made of a material having a high melting point different from that of the crucible 40, such as graphite, and has an outer peripheral surface formed in a tapered shape capable of facing the inner wall surface of the furnace wall 20 with a slight gap left therebetween. Specifically, they face each other with a gap corresponding to the thickness of the crucible 40 left.
[0031]
The usage mode and operation of the waste melting apparatus according to the second embodiment will be described with reference to the drawings. FIGS. 4A to 4D are schematic views of main parts of the apparatus, and show a crucible manufacturing procedure.
[0032]
In this case, prior to the introduction of the radioactive waste 50, the crucible 40 is dynamically formed at the furnace wall 20 by the cooperation of the furnace bottoms 60 and 30.
More specifically, first, the furnace bottom 60 is raised, and the core 61 enters the hollow / lumen of the furnace wall 20 described above (see FIG. 4A).
Next, the crucible material is introduced into the opposing gap formed thereby. As a crucible material, a granular material of silicon nitride (SiN) is used, and when it is sintered by induction heating, for example, when it is baked at about 1800 ° C., a crucible wall portion 41 is completed (see FIG. 4B). ).
[0033]
Then, the furnace bottom 60 is lowered to move the core 61 out of the furnace wall 20, and instead, the furnace bottom 30 on which the crucible bottom 42 is mounted is directed toward the furnace wall 20 (FIG. 4 (c)). reference).
Finally, when the furnace bottom 30 is raised and the crucible bottom 42 is brought into contact with the lower end of the crucible wall 41, the crucible 40 is assembled (see FIG. 4D).
[0034]
In this way, a crucible whose outer wall surface is perfectly adapted to the inner wall surface of the furnace wall is completed. Thereafter, the procedure of the latter half of the first embodiment (see FIGS. 2C to 2F) is followed. Similarly, the radioactive waste 50 is melted, solidified together with the crucible 40, and taken out.
[0035]
[Third embodiment]
The difference between the waste melting apparatus of the first embodiment and the waste melting apparatus of the present invention whose main parts are schematically shown in FIG. 5 is that a release material 70 is thinly attached to the outer surface of the crucible 40. is there.
The release material 70 is made of a third high melting point member different from both the crucible 40 and the carbon susceptor 24. For example, when the crucible 40 is silicon nitride and the inner wall of the furnace wall 20 is graphite, the release material 70 is made of boron nitride. (BN) is preferred. The release material 70 is formed in a film-like body that can be easily attached, or is a thin granular material that can be applied.
[0036]
In this case, the separation material 70 is interposed at a contact portion between the outer wall surface of the crucible 40 and the inner wall surface of the furnace wall portion 20, and dielectric heating is performed in that state.
Then, when the radioactive waste 50 is extracted from the furnace wall 20 together with the crucible 40 at the time of solidification or removal after melting, the crucible 40 and the carbon susceptor 24 are easily and reliably separated at the release material 70.
In this way, even under the indirect heating method in which the crucible 40 and the furnace wall 20 are brought into contact with each other so as to be able to conduct heat, wear of the inner wall of the furnace wall 20 can be reduced, and the life of the furnace wall 20 can be extended.
[0037]
[Fourth embodiment]
The difference between the waste melting method of the present invention, which schematically shows the crucible manufacturing procedure shown in FIG. 6, and that of the second embodiment described above is that the core 61 enters the hollow / lumen of the furnace wall 20. Prior to this, a release material 70 is attached to the inner wall surface of the carbon susceptor 24 (see FIG. 6A).
[0038]
Otherwise, in the same manner as in the above-described second embodiment, the core 61 is made to enter the furnace wall portion 20 (see FIG. 6B), and then the crucible material is charged into the opposing gap, and the material is subjected to induction heating. To form a crucible wall 41 (see FIG. 6C).
Thus, even in the method of dynamically forming the crucible 40 in the furnace wall portion 20, the contact between the inner wall surface of the furnace wall portion 20 and the outer wall surface of the crucible 40 at the time of dielectric heating is made of a film made of the third high melting point member. A body or a granular material can be interposed.
[0039]
[Other]
In each of the above embodiments, the case where the radioactive waste 50 is melted and solidified is described. However, the waste to be melted is not limited to this, and other miscellaneous industrial waste may be used. But it's fine.
[0040]
【The invention's effect】
As is apparent from the above description, in the waste melting apparatus and the waste melting method according to the first solution of the present invention, the crucible is brought out of contact with the furnace wall to transfer heat. Accordingly, even if the crucible is not thick, it is possible to prevent breakage and indirect heating, and as a result, there is an advantageous effect that a waste melting apparatus and a waste melting method that can be used even when the crucible is thin can be realized.
[0041]
Further, in the waste melting apparatus and the waste melting method according to the second solution of the present invention, the crucible is molded in a furnace, so that the crucible may be thinner. There is an advantageous effect that the apparatus and the waste melting method can be realized.
[0042]
Further, in the waste melting method according to the third solution of the present invention, by making the crucible easy to peel off, it is possible to realize a waste melting method having a thin crucible and a long equipment life. This has the advantageous effect of having been completed.
[Brief description of the drawings]
FIG. 1 is a schematic longitudinal sectional view of a main part of a waste melting apparatus according to a first embodiment of the present invention.
FIGS. 2A to 2F are schematic diagrams of main parts of the apparatus, and show a processing procedure for melting and solidifying waste.
FIG. 3 is a schematic view of a main part of an apparatus according to a second embodiment of the present invention.
FIGS. 4A to 4D are schematic views of main parts of the apparatus, showing a crucible manufacturing procedure.
FIG. 5 is a schematic view of a main part of an apparatus according to a third embodiment of the present invention.
6 (a) to 6 (c) are schematic diagrams of main parts of the apparatus, showing a crucible manufacturing procedure, in a fourth embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Waste melting apparatus 11 Sealing wall 12 Charging chamber 13 Melting chamber 14 Unloading chamber 20 Furnace wall part (fixed part, heating cylinder part, main body part, high frequency induction furnace)
21 coils (high frequency application coil, heating coil)
22 Alumina felt (buffer, heat retention means)
23 Silicon nitride block (SiN, high-strength high-melting point member)
24 Carbon susceptor (graphite, conductive first high melting point member, inner wall)
30 Furnace bottom (movable part, crucible mounting base, high frequency induction furnace)
31 shaft (elevating shaft)
32 tables (base)
33 Alumina floor 34 Silicon nitride block (SiN, high strength and high melting point member)
35 carbon floor (stage, graphite, conductive high melting point material)
40 crucibles (containers, crucibles)
41 Crucible wall (SiN, high strength second high melting point member, sintered body)
42 Crucible bottom (SiN, high strength second high melting point member)
50 Radioactive waste (miscellaneous industrial waste, waste subject to melting and solidification)
51 molten material 52 molten solid 60 furnace bottom (movable part, core support, high frequency induction furnace)
61 core (inner type)
70 Release material (BN, 3rd kind of high melting point material of different kind)

Claims (5)

加熱コイルが組み込まれた縦型の炉壁部と、昇降可能な炉底部とを備えた廃棄物溶融装置において、前記炉壁部の内壁が導電性の高融点部材からなり、その内壁面がテーパ状に形成されており、前記炉壁部が誘導加熱による前記内壁の発熱を炉内に滞留させるものであることを特徴とする廃棄物溶融装置。In a waste melting apparatus having a vertical furnace wall with a built-in heating coil and a vertically movable furnace bottom, the inner wall of the furnace wall is made of a conductive high-melting member, and the inner wall is tapered. A waste melting apparatus characterized in that the furnace wall portion is configured to retain heat generated in the inner wall by induction heating in the furnace. 坩堝に廃棄物を投入して誘導加熱にて溶融させてから一緒に固化させる廃棄物溶融方法において、請求項1記載の廃棄物溶融装置を前記誘導加熱に用いるとともに、前記炉壁部の前記内壁とは別の高融点部材からなり外壁面が前記炉壁部の内壁面に適合するものを前記坩堝に用いて、加熱時に前記坩堝の外壁面を前記炉壁部の内壁面に接触させることを特徴とする廃棄物溶融方法。A waste melting method in which waste is put into a crucible, melted by induction heating, and then solidified together, wherein the waste melting apparatus according to claim 1 is used for the induction heating, and the inner wall of the furnace wall portion is used. Using a crucible having an outer wall surface made of another high melting point member and having an outer wall surface that matches the inner wall surface of the furnace wall portion, allowing the outer wall surface of the crucible to contact the inner wall surface of the furnace wall portion during heating. Characteristic waste melting method. 高融点部材からなり外周面が前記炉壁部の内壁面に対向可能なテーパ状に形成された内型を備えていることを特徴とする請求項1記載の廃棄物溶融装置。The waste melting apparatus according to claim 1, further comprising a tapered inner die made of a high melting point member and having an outer peripheral surface facing the inner wall surface of the furnace wall. 請求項3記載の廃棄物溶融装置を用い、前記内型を前記炉壁部に進入させてその対向間隙に坩堝材料を投入し、それを誘導加熱にて焼結させてから前記内型を退出させ、その後、その焼結体を前記坩堝の壁部として請求項2記載の廃棄物溶融方法を実行することを特徴とする廃棄物溶融方法。Using the waste melting apparatus according to claim 3, the inner mold is made to enter the furnace wall portion, a crucible material is charged into the opposing gap, and the crucible material is sintered by induction heating, and then the inner mold is withdrawn. 3. A method for melting waste as claimed in claim 2, wherein the method further comprises the step of using the sintered body as a wall of the crucible to perform the method of melting waste. 前記加熱時における前記坩堝の外壁面と前記炉壁部の内壁面との接触部位に、前記炉壁部の前記内壁とも前記坩堝とも異なる高融点部材からなる膜状体または粉粒体を介在させることを特徴とする請求項2又は請求項4に記載された廃棄物溶融方法。At the time of the heating, a film or a granular material made of a high melting point member different from the inner wall of the furnace wall and the crucible is interposed at a contact portion between the outer wall surface of the crucible and the inner wall surface of the furnace wall. The waste melting method according to claim 2 or 4, wherein:
JP2002217781A 2002-07-26 2002-07-26 Waste melting apparatus and waste melting method Pending JP2004060946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217781A JP2004060946A (en) 2002-07-26 2002-07-26 Waste melting apparatus and waste melting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217781A JP2004060946A (en) 2002-07-26 2002-07-26 Waste melting apparatus and waste melting method

Publications (1)

Publication Number Publication Date
JP2004060946A true JP2004060946A (en) 2004-02-26

Family

ID=31939147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217781A Pending JP2004060946A (en) 2002-07-26 2002-07-26 Waste melting apparatus and waste melting method

Country Status (1)

Country Link
JP (1) JP2004060946A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096098A (en) * 2006-09-11 2008-04-24 Best System Co Ltd Waste asbestos melting furnace
JP2012180971A (en) * 2011-03-01 2012-09-20 Kawasaki Heavy Ind Ltd Incinerated ash discharge device and method of high frequency induction type incineration furnace
KR101188328B1 (en) 2010-05-04 2012-10-09 주식회사 포스코 Apparatus for melting flux
CN103574619A (en) * 2012-07-27 2014-02-12 苏州工业园区杰士通真空技术有限公司 High-temperature combustion furnace
JP2016534311A (en) * 2013-08-08 2016-11-04 アレヴァ・エヌセーAreva Nc Method and apparatus for incineration, melting and vitrification of organic and metal waste
CN106402881A (en) * 2016-11-18 2017-02-15 湖南新喜环保能源科技有限公司 Transverse extrusion type continuous charging garbage gasification furnace
JP2019202923A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Single crystal growth apparatus
JP2021103039A (en) * 2019-12-25 2021-07-15 三菱重工業株式会社 Manufacturing device and method of metallic member, manufacturing system of metallic member, and shielding member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008096098A (en) * 2006-09-11 2008-04-24 Best System Co Ltd Waste asbestos melting furnace
KR101188328B1 (en) 2010-05-04 2012-10-09 주식회사 포스코 Apparatus for melting flux
JP2012180971A (en) * 2011-03-01 2012-09-20 Kawasaki Heavy Ind Ltd Incinerated ash discharge device and method of high frequency induction type incineration furnace
CN103574619A (en) * 2012-07-27 2014-02-12 苏州工业园区杰士通真空技术有限公司 High-temperature combustion furnace
JP2016534311A (en) * 2013-08-08 2016-11-04 アレヴァ・エヌセーAreva Nc Method and apparatus for incineration, melting and vitrification of organic and metal waste
CN106402881A (en) * 2016-11-18 2017-02-15 湖南新喜环保能源科技有限公司 Transverse extrusion type continuous charging garbage gasification furnace
CN106402881B (en) * 2016-11-18 2019-09-27 湖南新喜环保能源科技有限公司 Transverse shear stress formula continuous charging refuse gasification boiler
JP2019202923A (en) * 2018-05-25 2019-11-28 住友金属鉱山株式会社 Single crystal growth apparatus
JP2021103039A (en) * 2019-12-25 2021-07-15 三菱重工業株式会社 Manufacturing device and method of metallic member, manufacturing system of metallic member, and shielding member
JP7344788B2 (en) 2019-12-25 2023-09-14 三菱重工業株式会社 Metal member manufacturing device and method, metal member manufacturing system, shielding member

Similar Documents

Publication Publication Date Title
JP3049648B2 (en) Pressure molding method and pressure molding machine
US6393044B1 (en) High efficiency induction melting system
GB2040196A (en) Hot chamber diecasting
JP2004060946A (en) Waste melting apparatus and waste melting method
JP2008095196A (en) Electric sintering device
KR102123914B1 (en) Casting mold upper induction heating devices with pancake shape and large ingot fabricating method using the same
JP4350135B2 (en) Casting equipment
KR102326379B1 (en) Method and apparatus for mold heating
JP3987373B2 (en) Metal melting heating device
JP2906618B2 (en) Method and apparatus for continuous melting and casting of metal
JP6820185B2 (en) Dissolution supply device for metal materials and decompression casting device using it
US6250365B1 (en) Die casting process
TW201923110A (en) Method and device for moulding particularly of a metallic glass
JP2005059015A (en) Device for melting and casting metal
JPH0683888B2 (en) Pressure casting equipment
JPH11348041A (en) Synthetic resin molding die, and method for heating and cooling it
TWI529266B (en) Silicon electromagnetic casting device
JP2006281243A (en) High-pressure casting method for high-melting point metal, and die casting apparatus
JPH05104233A (en) Stoke for casting machine
JPH11104804A (en) Method for adjusting material
CN114450549B (en) Device for low-pressure casting of high-melting-point metals
CN115401186B (en) Copper-tungsten alloy and iron-based bonding device and bonding process
JP3987374B2 (en) Metal melting heating device
KR20080024017A (en) Manufacturing process of semi-solid slurry by in-ladle direct thermal control rheocasting
JP4268834B2 (en) Molten metal feeder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071023