JPS61168041A - Arithmetic logic circuit - Google Patents

Arithmetic logic circuit

Info

Publication number
JPS61168041A
JPS61168041A JP944085A JP944085A JPS61168041A JP S61168041 A JPS61168041 A JP S61168041A JP 944085 A JP944085 A JP 944085A JP 944085 A JP944085 A JP 944085A JP S61168041 A JPS61168041 A JP S61168041A
Authority
JP
Japan
Prior art keywords
point
potential
carry
whose
channel transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP944085A
Other languages
Japanese (ja)
Inventor
Takayoshi Nakamura
中村 孝好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP944085A priority Critical patent/JPS61168041A/en
Publication of JPS61168041A publication Critical patent/JPS61168041A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/38Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation
    • G06F7/48Methods or arrangements for performing computations using exclusively denominational number representation, e.g. using binary, ternary, decimal representation using non-contact-making devices, e.g. tube, solid state device; using unspecified devices
    • G06F7/50Adding; Subtracting
    • G06F7/501Half or full adders, i.e. basic adder cells for one denomination
    • G06F7/503Half or full adders, i.e. basic adder cells for one denomination using carry switching, i.e. the incoming carry being connected directly, or only via an inverter, to the carry output under control of a carry propagate signal
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2207/00Indexing scheme relating to methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F2207/38Indexing scheme relating to groups G06F7/38 - G06F7/575
    • G06F2207/3804Details
    • G06F2207/386Special constructional features
    • G06F2207/3872Precharge of output to prevent leakage

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Pure & Applied Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computing Systems (AREA)
  • Mathematical Optimization (AREA)
  • General Engineering & Computer Science (AREA)

Abstract

PURPOSE:To improve the speed of carry propagation from the lowest-order bit to the highest-order bit so as to improve the processing efficiency of the titled circuit, by newly providing a means for making discharge quicker at every bit on a carry propagating line. CONSTITUTION:During the period of a clock phi2, (n) channel type transistor (TR) 1a and 1b are turned on and points 1R and 1S are discharged and become low levels, and then, a point 1q is precharged to the electric potential which is one-step lower then the supply voltage. When carry is forwards from the previous step of the n-th step to inversion phi2 and inversion Cn-1=0, and then, the OR of the bits of the n-th step is '1' during the next calculating period, a transfer gate 1f is turned on and the carry from the previous step is propagat ed. If the potential at the point 1Q drops a little, the potential at a point 1V becomes one which is one-step lower then the potential at the point 1Q by means of a TR1m and, when the potential at the point 1V becomes lower than the input level of a TR1n, the TR1n and another TR1p are turned on. As a result, the potential at the point 1Q rapidly drops by means of positive feedback action.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は算術論理演算回路に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to an arithmetic logic circuit.

(従来の技術) 第2図は従来の算術論理演算回路の!ピット分(第nビ
ット目)の回路の一例である。第3図は、ff12図に
示す回路の真理値表である。第2図においてクロックφ
2の期間、Nチャンネル型トランジスター2a、2bは
ON(導通)し、点2R,。
(Prior art) Figure 2 shows a conventional arithmetic and logic circuit! This is an example of a circuit for pits (n-th bit). FIG. 3 is a truth table of the circuit shown in FIG. ff12. In Figure 2, the clock φ
During the period 2, the N-channel transistors 2a and 2b are turned on (conducting), and the point 2R.

2Sはディスチャージされ% 1L”レベル(低しベル
)になる。また点2QけPチャンネル型トラ/シスター
ZeがONし、点2Qはグリチャージサレ、”H”レベ
ル(高レベル)となる。続くクロックロ!(クロックφ
宜の逆相クロック)の期間に加算結果An ff) B
n 、及びそれによって生じる桁上げ八〇−Bnが入力
される。その結果、@3図に示す真理値表に従い、和S
n及び次段への晴上げCnが定まる。例えば第nビット
目の演算数An=1.Bn=0及び前段からのキャリー
Cn−1=0であるとすると An■Bn==1eO=1.AnsBn=1 @0==
0となりプ4Rは”H”レベル、点2SU”L”レベル
となる。(クロ、フグ2の期間、Nチャンネル型トラン
ジスターza、21)はOFF ) l、かして、Nチ
ャンネル型トランジスター2dはOFFとなる。また1
点2Tは点2Hのインバーター2cKよる反転出力によ
j7、”L”レベルとなり、さらにインバーター2jに
より反転されトランスファーゲー)2f、2KをONさ
せる。この結果8nにはCn−1と同一値が、またA点
はプリチャージされていた電荷は前段からのキャリー出
力Cn−5Hよって打ち消され@L”レベルとなる。
2S is discharged and becomes %1L" level (low level). Also, point 2Q P channel type tiger/sister Ze is turned ON, and point 2Q is discharged and becomes "H" level (high level). Continued Clockro! (Clockφ
The addition result An ff) B
n, and the resulting carry 80-Bn are entered. As a result, according to the truth table shown in Figure @3, the sum S
n and the rise Cn to the next stage are determined. For example, the n-th bit arithmetic number An=1. If Bn=0 and the carry from the previous stage Cn-1=0, An■Bn==1eO=1. AnsBn=1 @0==
0, P4R becomes "H" level, and point 2SU becomes "L" level. (During the period of black and pufferfish 2, the N-channel transistor za, 21) is OFF) l, Therefore, the N-channel transistor 2d is OFF. Also 1
The point 2T becomes the "L" level j7 due to the inverted output from the inverter 2cK at the point 2H, and is further inverted by the inverter 2j, turning on the transfer gates 2f and 2K. As a result, 8n has the same value as Cn-1, and the precharged charge at point A is canceled by the carry output Cn-5H from the previous stage and becomes @L'' level.

即ちSn =Cn −s 、  Cn =Cn−tとな
る0これは第3図の真理値表の3Cの場合に相当する。
That is, Sn = Cn -s, Cn = Cn - t. This corresponds to case 3C in the truth table of FIG.

なお、An=1 @Bn=0.Cn−1=1の時ももに
@H”レベルとなる。
Note that An=1 @Bn=0. When Cn-1=1, the thigh becomes @H'' level.

また第3図の3bの場合、すなわちAn=0゜Bn=1
の時も8n=Cn  t 、Cn=Cn−tとなる。
In addition, in the case of 3b in Fig. 3, that is, An=0°Bn=1
Also when , 8n=Cnt and Cn=Cn-t.

第3図の3aの場合、すなわちAn = Bn = O
の時は、クロック〆鵞の期間で、加算結果An■Bn 
=Cなので点2Tは@H#レベルとなりトランスファー
ゲート2f、2KがOFF、)ランスファーグー)2i
がONとなり、桁上げA111Bn=0なのでNチャン
ネル型トランジスタ2dはOFFとなる。従って桁上げ
Cnは@H”レベル、和8nはキャリーCn  tのイ
ンバータ2g、2h、21を経由した信号、つまりキャ
リーCn−1の逆相となる。第3図の3dの場合、すな
わち八〇=Bn=1の時は、5n=Cn  t、Cn=
0となる。
In the case of 3a in Fig. 3, that is, An = Bn = O
When , the addition result An■Bn is in the clock closing period.
=C, so point 2T becomes @H# level, transfer gates 2f and 2K are OFF, ) Lance Fargo) 2i
is turned on, and the carry A111Bn=0, so the N-channel transistor 2d is turned off. Therefore, the carry Cn is @H'' level, and the sum 8n is a signal passed through the inverters 2g, 2h, and 21 of the carry Cnt, that is, the opposite phase of the carry Cn-1.In the case of 3d in FIG. When =Bn=1, 5n=Cnt, Cn=
It becomes 0.

(発明が解決しようとする問題点) 上述した従来の算術論理演算回路では、ビット数が多く
なると第3図の3b、3cの場合に最下位のビットから
最上位のビットへのキャリーの伝播が、次段の肩、iQ
に相当する部分の電荷を次々にディスチャージすること
によって伝わりてい〈為に長い時間を必要とした。即ち
−2の期間として長時間を要し、クロック周波数を上げ
て高速動作することができないという欠点があった。
(Problem to be Solved by the Invention) In the conventional arithmetic and logic operation circuit described above, when the number of bits increases, carry propagation from the least significant bit to the most significant bit occurs in cases 3b and 3c in FIG. , next shoulder, iQ
It was transmitted by successively discharging the charges corresponding to , which required a long time. That is, it takes a long time as a period of -2, and there is a drawback that high-speed operation cannot be achieved by increasing the clock frequency.

本発明の目的は、ビ7ット数が増加しても、最下位から
最上位へのキャリーの伝播を速くすることができる算術
論理演算回路を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide an arithmetic and logic operation circuit that can speed up carry propagation from the lowest to the highest even if the number of bits increases.

(問題点を解決するための手段) 本発明は、演算クロックの逆相時にキャリー伝播ライン
がグリチャージされる算術論理演算回路において、6帝
の演算による桁上げ信号がゲートにソースが地気に接続
された第1のNチャンネル型トランジスターと、ドレイ
ンが電源にゲートが演算クロックベ接続されたM2のP
チャンネル型トランジスターと、ソースが第1のNチャ
ンネル型トランジスターのドレインにドレインが第20
Pfヤンネル型トランジスターのソースにゲートが電源
に接続された第3のNチャンネル型トランジスターと、
ソースが地気罠ドレインがキャリー伝播ラインに接続さ
れた第4のNチャンネル型トランジスターと、ドレイン
が電源にゲートが演算クロックの逆相に接続された第5
のPチャンネル型トランジスターと、ソースが第4のN
チャンネル型トランジスターのゲートにゲートが第2の
Pチャンネル型トランジスターのソースにドレインが第
5のPチャンネル型トランジスターのソースに接続され
た第6のPチャンネル型トランジスターと、ドレインが
第6のトランジスタのソースにゲートが演算クロックの
逆相にソースが地気に接続された第7のNチャンネル型
トランジスタとを含んで構成される。
(Means for Solving the Problems) The present invention provides an arithmetic logic operation circuit in which a carry propagation line is recharged when an operation clock has an opposite phase, in which a carry signal from six operations is sent to the gate and the source is connected to the ground. The connected first N-channel transistor and the M2 P transistor whose drain is connected to the power supply and whose gate is connected to the operation clock
a channel type transistor, and the source is the drain of the first N-channel transistor, and the drain is the drain of the twentieth
a third N-channel transistor whose gate is connected to a power supply to the source of the Pf Jannel transistor;
A fourth N-channel transistor whose source is connected to the carry propagation line, and a fifth transistor whose drain is connected to the power supply and whose gate is connected to the opposite phase of the calculation clock.
a P-channel transistor whose source is a fourth N
a sixth P-channel transistor whose gate is connected to the source of the second P-channel transistor and whose drain is connected to the source of the fifth P-channel transistor, and whose drain is connected to the source of the sixth transistor; and a seventh N-channel transistor whose gate is in the opposite phase of the calculation clock and whose source is connected to ground.

(実施例) 次に本発明の実施例を図面を参照して説明する。(Example) Next, embodiments of the present invention will be described with reference to the drawings.

第1図には本発明の一実施例の回路図で、クロックφ!
の期間Nチャンネル型トランジスターla、lbはON
(、、点IR及び点Isはディスチャージされ (t 
UJnレベルになるoしかして、Nチャンネル型トラン
ジスター1dけOF F L、P−yヤンネル型トラン
ジスター1eはONL、Nチャンネル型トランジスター
1mはゲートが電源に吊られている為に、点〕σは電源
電位から1段落ちの電位にグリチャージされる0なおN
チャンネル型トランジスターIWけON、Nチャンネル
型トランジスタIPはOFFしている。次の演算期間へ
に第n段目の前段からのキャリーがあり、即ちCn−z
=0で、かつ第n段目のビットの論理和か1.即ちAn
(9Bn= 1 、 An @ Bn =Q (第3図
における3b、3cの場合)の時、トランスファーゲー
ト1fはONし、前段からのキャリーCn−5が伝播さ
れる。
FIG. 1 is a circuit diagram of an embodiment of the present invention, in which the clock φ!
N-channel transistors la and lb are ON during the period
(,, point IR and point Is are discharged (t
It becomes UJn level. Therefore, the N-channel transistor 1d is OF F L, P-y Jannel type transistor 1e is ONL, and the gate of N-channel transistor 1m is suspended from the power supply, so the point] σ is the power supply. 0N, which is charged to a potential one step lower than the potential.
Channel type transistor IW is ON, and N channel type transistor IP is OFF. There is a carry from the previous stage of the n-th stage to the next calculation period, that is, Cn-z
= 0 and the logical sum of the nth stage bits or 1. That is, An
When (9Bn=1, An@Bn=Q (cases 3b and 3c in FIG. 3), the transfer gate 1f is turned on and the carry Cn-5 from the previous stage is propagated.

点lQ−はφ:の期間“H”レベルにグリチャージされ
ている為、前段のキャリーが次段へ伝わる為には点IG
Lが早急に″L”レベルにならなければならない。本発
明においては点10の電位が少しでも下がれば、点1v
の電位はNチャンネルトランジスター1mによって9点
lαの電位の一段落ちの電位となる。(lxの期間はP
チャンネル型トランジスター1eは0FF)そこで1点
IVの電位がPチャンネル型トランジスター10の入力
レベルより小さくなれば、このトランジスターBoNL
1.+25. pv期間Pチャンネル型トランジスター
10はONしているから点1(JtJ:″H”レベルと
なり、Nチャンネル型トランジスターIPはONする。
Since point lQ- is charged to the "H" level during the period of φ:, in order for the previous stage's carry to be transmitted to the next stage, point IG
L must reach the "L" level as soon as possible. In the present invention, if the potential at point 10 drops even a little, then point 1v
The potential at 9 points lα becomes one stage lower than the potential at 9 points lα by the N-channel transistor 1m. (The period of lx is P
(The channel type transistor 1e is 0FF) Therefore, if the potential of one point IV becomes smaller than the input level of the P channel type transistor 10, this transistor BoNL
1. +25. Since the P-channel transistor 10 is ON during the pv period, the point 1 (JtJ: "H" level) is reached, and the N-channel transistor IP is ON.

このために点10の電位は急激に下がる。その電位の変
化が前述の動作を繰り返し、さらに点1αの電位を下げ
ようとする。即ち点IQの電位は 1 m−+ l n−+l p のトランジスターの動作により正帰還を起こし、点1α
の電位は“L”レベルへと急速に変化する〇(発明の効
果) 以上説明したように本発明は、キャリー伝播ラインに各
ビット毎にディスチャージを速める回路を追加すること
により、最下位ビットから最上位ビットへのキャリーの
伝播を速めることができる効果がある。
Therefore, the potential at point 10 drops rapidly. The change in potential repeats the above-described operation and attempts to further lower the potential at point 1α. That is, the potential at point IQ causes positive feedback due to the operation of the transistor 1 m-+l n-+l p, and the potential at point 1α
〇(Effects of the Invention) As explained above, the present invention adds a circuit to the carry propagation line to speed up the discharge for each bit. This has the effect of speeding up the propagation of carry to the most significant bit.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す回路図、第2図は従来
の算術論理演算回路を示す回路図、第3図は第2図に示
す算術演算回路の真理直衣である。 1 a、ib、ld、1m、1 pe 2a、2b。 2d・・・・・・Nチャンネル型トランジスター、1e
。 In、to、2e・・・・・・Pチャンネル型トランジ
スター、lc、1g、1h*  Ij、II、2c。 2g、2h、2j、21・・・・・・インバーター、i
f。 lk、li、2f、2に、2i・・・・・・トランスフ
ァーゲート。 An@in        14pt・15n半 IT
EJ
FIG. 1 is a circuit diagram showing an embodiment of the present invention, FIG. 2 is a circuit diagram showing a conventional arithmetic logic circuit, and FIG. 3 is a schematic diagram of the arithmetic logic circuit shown in FIG. 1 a, ib, ld, 1 m, 1 pe 2a, 2b. 2d...N-channel transistor, 1e
. In, to, 2e...P-channel transistor, lc, 1g, 1h* Ij, II, 2c. 2g, 2h, 2j, 21... Inverter, i
f. lk, li, 2f, 2, 2i...transfer gate. An@in 14pt/15n and a half IT
E.J.

Claims (1)

【特許請求の範囲】[Claims] 演算クロックの逆相時にキャリー伝播ラインがプリチャ
ージされる算術論理演算回路において、各桁の演算によ
る桁上げ信号がゲートにソースが地気に接続された第1
のNチャンネル型トランジスターと、ドレインが電源に
ゲートが演算クロックに接続された第2のPチャンネル
型トランジスターと、ソースが第1のNチャンネル型ト
ランジスターのドレインにドレインが第2のPチャンネ
ル型トランジスターのソースにゲートが電源に接続され
た第3のNチャンネル型トランジスターと、ソースが地
気にドレインがキャリー伝播ラインに接続された第4の
Nチャンネル型トランジスターと、ドレインが電源にゲ
ートが演算クロックの逆相に接続された第5のPチャン
ネル型トランジスターと、ソースが第4のNチャンネル
型トランジスターのゲートにゲートが第2のPチャンネ
ル型トランジスターのソースにドレインが第5のPチャ
ンネル型トランジスターのソースに接続された第6のP
チャンネル型トランジスターと、ドレインが第6のトラ
ンジスターのソースにゲートが演算クロックの逆相にソ
ースが地気に接続された第7のNチャンネル型トランジ
スタとを含むことを特徴とする算術論理演算回路。
In an arithmetic logic operation circuit in which the carry propagation line is precharged when the operation clock is in reverse phase, the carry signal from the operation of each digit is connected to the first circuit whose gate is connected to the ground and whose source is connected to ground.
a second P-channel transistor whose drain is connected to a power supply and whose gate is connected to an arithmetic clock; and whose source is the drain of the first N-channel transistor and whose drain is connected to the second P-channel transistor. A third N-channel transistor whose source and gate are connected to the power supply, a fourth N-channel transistor whose source is connected to ground and whose drain is connected to the carry propagation line, and whose drain is connected to the power supply and whose gate is connected to the calculation clock. a fifth P-channel transistor connected in opposite phase; the source is the gate of the fourth N-channel transistor; the gate is the source of the second P-channel transistor; and the drain is the source of the fifth P-channel transistor 6th P connected to
An arithmetic and logic operation circuit comprising: a channel type transistor; and a seventh N-channel type transistor whose drain is connected to the source of a sixth transistor, whose gate is connected to the opposite phase of an operation clock, and whose source is connected to ground.
JP944085A 1985-01-22 1985-01-22 Arithmetic logic circuit Pending JPS61168041A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP944085A JPS61168041A (en) 1985-01-22 1985-01-22 Arithmetic logic circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP944085A JPS61168041A (en) 1985-01-22 1985-01-22 Arithmetic logic circuit

Publications (1)

Publication Number Publication Date
JPS61168041A true JPS61168041A (en) 1986-07-29

Family

ID=11720363

Family Applications (1)

Application Number Title Priority Date Filing Date
JP944085A Pending JPS61168041A (en) 1985-01-22 1985-01-22 Arithmetic logic circuit

Country Status (1)

Country Link
JP (1) JPS61168041A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111325A (en) * 1985-07-12 1987-05-22 Mitsubishi Electric Corp Manchester type carry transmitting circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111325A (en) * 1985-07-12 1987-05-22 Mitsubishi Electric Corp Manchester type carry transmitting circuit
JPH0457020B2 (en) * 1985-07-12 1992-09-10 Mitsubishi Electric Corp

Similar Documents

Publication Publication Date Title
US6307425B1 (en) Clocking scheme and charge transfer switch for increasing the efficiency of a charge pump or other circuit
US3524077A (en) Translating information with multi-phase clock signals
US6590425B2 (en) Semiconductor integrated circuit apparatus
JP3400124B2 (en) Pass transistor type selector circuit and logic circuit
Sobelman et al. Low-power multiplier design using delayed evaluation
JPH01174011A (en) Integrated circuit
US3999081A (en) Clock-controlled gate circuit
US6242951B1 (en) Adiabatic charging logic circuit
US4472645A (en) Clock circuit for generating non-overlapping pulses
JP2000235479A (en) Method and device for executing sum and comparison arithmetic operation
JP3756285B2 (en) CMOS logic circuit and driving method thereof
JPS61168041A (en) Arithmetic logic circuit
US4044270A (en) Dynamic logic gate
JPH07336206A (en) Logic circuit
JPH07105714B2 (en) Logic signal multiplication circuit
EP0090421A2 (en) Logic circuit
CN107404316B (en) Signal multiplexing device
US20020167335A1 (en) Low power dynamic logic circuit
EP0233734B1 (en) Clock signal generating circuit
US6617882B2 (en) Clocked half-rail differential logic
US6717438B2 (en) Clocked half-rail differential logic with single-rail logic
JPS5997222A (en) Clock pulse generating circuit
Willingham et al. Asynchronous, quasi-adiabatic (Asynchrobatic) logic for low-power very wide data width applications
US6828826B1 (en) Method for clock control of half-rail differential logic
US4745306A (en) Half adder having a pair of precharged stages