JPS6116523A - Less damage ion beam etching process of silicon - Google Patents

Less damage ion beam etching process of silicon

Info

Publication number
JPS6116523A
JPS6116523A JP13761784A JP13761784A JPS6116523A JP S6116523 A JPS6116523 A JP S6116523A JP 13761784 A JP13761784 A JP 13761784A JP 13761784 A JP13761784 A JP 13761784A JP S6116523 A JPS6116523 A JP S6116523A
Authority
JP
Japan
Prior art keywords
etching
ion beam
chlorine
pressure
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13761784A
Other languages
Japanese (ja)
Inventor
Naomi Aoto
青砥 なほみ
Eiji Igawa
英治 井川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13761784A priority Critical patent/JPS6116523A/en
Publication of JPS6116523A publication Critical patent/JPS6116523A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/2633Bombardment with radiation with high-energy radiation for etching, e.g. sputteretching

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • ing And Chemical Polishing (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To etch Si rapidly providing the surface thereof with less damage by a method wherein a rapid etching process under high pressure chlorine content as well as a slow etching process under low pressure chlorine content are successively performed. CONSTITUTION:An Si within chlorine gas atmosphere under relatively high pressure e.g. chlorine content pressure of 9.2X10<-4>Torr is irradiated with Ar<+> ion beams from an ion source to be etched down to slightly less than specified depth. Later the Si is irradiated with Ar<+> ion beams under pressure of chlorine gas pressure e.g. less chlorine content pressure of 2.0X10<-5>Torr to be eached down to the specified depth. Through these procedures, Si may be rapidly etched providing the etched surface with less damage.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、電子デバイス製造プロセスに用いる、Siの
イオンビームエツチング方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for ion beam etching of Si, which is used in an electronic device manufacturing process.

(従来技術とその問題点) 従来のSiのイオンビームエツチング装置として。(Prior art and its problems) As a conventional Si ion beam etching device.

は、イオン源よシ真空中にイオンビームを引き出し、こ
れを真空中または活性ガス雰囲気中で一定時間Siに照
射することによってエツチングを行う装置が知られてい
る。(H,R,Kauf fmann、  ジャーナル
・オブ・バキユーム・サイエンス・テクノロジ(J*V
ac、Sci、Technol。16巻1979年17
9ページ))。このような装置においては、真空中にお
いてイオンビーAによるエツチングを行う場合にはエツ
チングレイトが遅く、まだ塩素などの活性ガス雰囲気中
でイオンビームによるエツチングを行う場合にはエツチ
ングレイトは増加するがイオン衝撃及び活性ガス分子吸
着の相乗効果によるダメージがsi表面上に形成される
という欠点があったO 従来のイオンビームエツチング方法によるエツチング時
間及びエツチング後の表面に誘起した08F(Oxci
dation Induced Stacking F
ault)の顕微鏡写真(約300倍)を、第4図(b
at (c)に示す。ここでは従来の方法’t2m類A
、  Bとして示している。
There is known an apparatus which performs etching by extracting an ion beam from an ion source into a vacuum and irradiating Si with the ion beam for a certain period of time in a vacuum or an active gas atmosphere. (H, R, Kauf fmann, Journal of Baquium Science and Technology (J*V
ac, Sci, Technol. Volume 16 1979 17
(page 9)). In such an apparatus, when etching is performed with ion beam A in a vacuum, the etching rate is slow, and when etching is performed with an ion beam in an active gas atmosphere such as chlorine, the etching rate increases, but ion bombardment increases. There was a drawback that damage was formed on the Si surface due to the synergistic effect of adsorption of active gas molecules.
dation Induced Stacking F
Fig. 4 (b) shows a micrograph (approximately 300x magnification) of
At (c). Here, the conventional method 't2m class A
, shown as B.

第4図(b)は、横軸にエツチング時間、縦軸に工ラテ
ンブレイトを取J)、A、B2つの条件による従来のイ
オンビームエツチング方法を示したものである。41は
、へ条件すなわち塩素雰囲気の存?    + 在しない真空中で電流密度4. OrnAIcmの、A
r  イオンビームによるSiのイオンビームエツチン
グを行い、1μmのエツチング深さを得た場合のエツチ
ングレイト及びエツチング時間を示したものである04
2は、B条件すなわち、塩素分圧9.2X10−’’r
orrの雰囲気中で電流密度4.0mA/−のAr  
イオンビームによる8iのイオンビームエツチングを行
い、1μmのエツチング深さを得た場合のエツチングレ
イト及びエツチング時間を示したものである。第4図(
c)は、第4図(a)の41.42に対応して、43は
へ条件のエツチング後の表面について、44はB条件の
エツチング後の表面についてそれぞれO8Fを誘起して
顕微鏡観察したものである0第4図(b)、(c)から
れかるように、高い塩素分圧9.2 X 1’ OTo
rrでエツチングしたB方法の場合、1μmをエツチン
グするための工、テング時間は1分56秒と短かいが、
O8Fは数多く観察されている。08Fが数多く観察さ
れるということは、エツチング後のSt衣表面多数のダ
メージが存在したということを意味するロム方法の場合
、08Fは比較的少なく、エツチング表面にダメージが
少なかったことがわかるが、エツチング時間は7分40
秒と長くなる〇 (発明の目的) 本発明は、このゞような従来の欠点を除去せしめて、S
iのイオンビームエツチングにおいて、エツチングレー
トが大きくしかも8i表面のダメージを小さくできるエ
ツチング方法を提供することを目的とする0 (発明の構成) 本発明では、比較的高い圧力の塩素ガス雰囲気中の8i
に対し、イオン源よ、CAr イオンビームを照射し、
所期のエツチング深さよシ4やや浅くエツチングする0
その後、塩素ガス圧力を下げてAr”イオンビームを照
射し、所期のエツチング深さまでエツチングする。この
方法によj)、stを高速工、テングするとともに、エ
ツチング後の8i表面を低ダメージ化することができる
O (構成の詳細な説明) 本発明は、上述の方法をとるととKよシ、従来技術の問
題点を解決した0 第2図は、本発明に用いたイオン源による8iのイオン
ビームエツチングにおける、エツチングレイトのAr”
電流密度依存性を、塩素分圧をパラメータとして示した
ものである0図において、21は塩素分圧0Torr、
22は0.2 X 10−’Torr、23は9.2 
X 10−’TorrにおけるエツチングレイトのAr
+電流密度依存性である。
FIG. 4(b) shows the conventional ion beam etching method under two conditions A and B, with the horizontal axis representing the etching time and the vertical axis representing the etching rate. 41 is the following condition, that is, the existence of a chlorine atmosphere? + current density in a vacuum without 4. OrnAIcm's A
04 shows the etching rate and etching time when an etching depth of 1 μm is obtained by performing ion beam etching of Si using an ion beam.
2 is B condition, that is, chlorine partial pressure 9.2X10-''r
Ar with a current density of 4.0 mA/- in an atmosphere of orr
This figure shows the etching rate and etching time when an etching depth of 1 μm was obtained by performing 8i ion beam etching using an ion beam. Figure 4 (
c) corresponds to 41.42 in FIG. 4(a), 43 is the surface after etching under condition B, and 44 is the surface after etching under condition B, which were observed with a microscope by inducing O8F. As can be seen from Figure 4(b) and (c), the high chlorine partial pressure is 9.2
In the case of method B etching with rr, the etching time to etch 1 μm is short at 1 minute 56 seconds.
Many O8Fs have been observed. Observation of a large number of 08F means that there was a lot of damage to the surface of the etched coating after etching.In the case of the ROM method, there were relatively few 08F, indicating that there was little damage to the etching surface. Etching time is 7 minutes 40 minutes
(Objective of the Invention) The present invention eliminates such conventional drawbacks and
An object of the present invention is to provide an etching method that can increase the etching rate and reduce damage to the 8i surface in ion beam etching of 8i.
On the other hand, the ion source irradiates CAr ion beam,
Intended etching depth: 4: Etch slightly shallower: 0
After that, the chlorine gas pressure is lowered and Ar'' ion beam is irradiated to etch to the desired etching depth. By this method, the 8i surface after etching is reduced in damage while high-speed machining and lengthening are performed on the st. (Detailed description of the configuration) The present invention solves the problems of the prior art compared to the method described above. In ion beam etching, the etching rate Ar”
In Figure 0, which shows the current density dependence using chlorine partial pressure as a parameter, 21 indicates chlorine partial pressure 0 Torr;
22 is 0.2 x 10-'Torr, 23 is 9.2
Etching rate Ar at X 10-'Torr
+ Current density dependence.

本発明では、まず、塩素分圧9.2 X 10””To
rr下においてAr+イオンビームの電流密度ヲ2.5
mA/a++2〜4.0 IrIA7−として8iのイ
オンビームエツチングを行う。第2図23に示されてい
るよう゛に、この条件では約3200 X/ min〜
約5300X/’m I nの高いエツチングレイトが
得られる。このエツチングレイトに従い、目的とするエ
ツチング深さよシも50X少ない深さまでイオンビーム
エツチングを続ける0この間、Siは高速でエツチング
されるが、 Si表面のイオン衝撃点には塩素分子が多
数吸着するため、イオン衝撃の物理的スパッタによるダ
メージは、塩素分子の化学的なエツチング効果によって
拡大する。このため、 Si表面には多数のダメージが
残される〇 続いて、先の塩素分圧の1/46である塩素分圧2−O
XIO″″5Torr下においてAr紮オンビームの電
流密度を2.5 mA/a*として35秒間のエツチン
グを行う0第2図の22に示されているように、この条
件下におけるエツチングレイトは約80X/minであ
るため、35秒間で約50Xの追加エツチングが成され
る0この低圧の塩素雰囲気中における追加エツチング中
に、先の高速エツチング中に形成された多数のダメージ
は、ダメージ層がエツチングされてほとんど消失する■
また、新しい8i工ツチング面にはダメージははとんど
生じない口これは次の2つの効果によるものである。第
1に、塩素分圧が高速エツチングの場合の1746と低
いため、塩素分子の吸着による表面汚染が少なく、これ
が引き壌こすダメージが形成され難い〇第2に、少量の
塩素分子が存在することによル、A:イオン衝撃の物理
的スパッタによるダメージの周辺がわずかにエツチング
され、物理的スパッタによるダメージが緩和される0こ
のため、よルダメージの少ないエツチング面が形成され
るoこのような2つの効果によりて、追加エツチング後
の8i工ツチング面はダメージの少ないものとなる。
In the present invention, first, the partial pressure of chlorine is 9.2
Under rr, the current density of Ar+ ion beam is 2.5
Perform 8i ion beam etching as mA/a++2 to 4.0 IrIA7-. As shown in Fig. 223, under this condition, approximately 3200 X/min ~
A high etching rate of approximately 5300X/'min is obtained. According to this etching rate, ion beam etching is continued until the target etching depth is 50X less than the desired etching depth. During this time, Si is etched at a high speed, but many chlorine molecules are adsorbed at the ion bombardment points on the Si surface. The physical sputtering damage caused by ion bombardment is magnified by the chemical etching effect of chlorine molecules. Therefore, many damages are left on the Si surface.Next, the chlorine partial pressure is 2-O, which is 1/46 of the previous chlorine partial pressure.
Etching is carried out for 35 seconds under XIO''5 Torr with the current density of the Ar ligation beam being 2.5 mA/a*. As shown at 22 in Figure 2, the etching rate under this condition is approximately 80X. /min, so an additional etching of about 50X is achieved in 35 seconds.During this additional etching in a low pressure chlorine atmosphere, a large number of damages formed during the previous high speed etching are removed by etching the damaged layer. almost disappears■
Moreover, damage hardly occurs to the new 8i cutting surface.This is due to the following two effects. Firstly, because the chlorine partial pressure is as low as 1746 in the case of high-speed etching, there is less surface contamination due to adsorption of chlorine molecules, which makes it difficult to form damage caused by soiling.Secondly, there is a small amount of chlorine molecules present. A: The area around the damage caused by physical sputtering due to ion bombardment is slightly etched, and the damage caused by physical sputtering is alleviated. Therefore, an etched surface with less damage is formed. Due to these two effects, the 8i etched surface after additional etching is less damaged.

以上に述べた高圧塩素分圧下の高速エツチングと低圧塩
素分圧加の追加低速エツチングを続けて行うことによシ
、高速のエツチングを行うと同時にダメージの少ないエ
ツチング表面を得ることが可能となる。
By successively performing the above-described high-speed etching under high-pressure chlorine partial pressure and additional low-speed etching under low-pressure chlorine partial pressure, it is possible to perform high-speed etching and at the same time obtain an etched surface with little damage.

(実施例) 以下本発明の実施例について図面を参照して詳細に説明
する0第3図に本発明の実施例を示す。・8iの試料3
1は、ガス導入管32から導入した塩素ガス33の雰囲
気中に置かれている0この試料31に対し、イオン源3
4から出たAr イオンビーム35含照射する。ガス導
入管32から導入する塩素ガス33の分圧は、レギュレ
ーター36の調節によル、jllの高速エツチングの際
は9.2×10”’ Torrに、第2の追加エツチン
グの際は2.OX 10”Torrに調整する。イオン
源34から出すムrイオ/ビーム35の電流密度は、第
4の高速エツチングの際は2.5〜4.0mA/cm2
に、第2の追加エツチングの際は2.5 mA/amに
調整する。
(Example) An example of the present invention will be described in detail below with reference to the drawings.An example of the present invention is shown in FIG.・8i sample 3
1 is placed in an atmosphere of chlorine gas 33 introduced from a gas introduction pipe 32.
It is irradiated with an Ar ion beam 35 emitted from 4. The partial pressure of the chlorine gas 33 introduced from the gas introduction pipe 32 is adjusted by the regulator 36, and is set to 9.2 x 10'' Torr during high-speed etching of Jll, and to 2.2 Torr during the second additional etching. Adjust to OX 10” Torr. The current density of the ion beam 35 emitted from the ion source 34 is 2.5 to 4.0 mA/cm2 during the fourth high-speed etching.
Then, during the second additional etching, the current was adjusted to 2.5 mA/am.

塩素分圧及びAr”イオンビーム電流密度は、所期のエ
ツチング深さの大小によシ、任意の適当な値を取るとと
ができるのは言うまでもない〇第1 図(a)t (b
)は、本発明のイオンビームエツチング方法によるエツ
チング時間及び工、テング後の表面の顕微鏡写真を示し
たものである。第1図(、)は、横軸にエツチング時間
、縦軸にエツチングレイトを取シ、本発明の異なる塩素
分圧による連続的なエツチングの条件を示している。1
1は、エツチング時間O秒〜1分50秒のエツチングは
塩素分圧9.2 X 10  Torr、 Ar+電流
密度4− OmA/0で行い、1分50秒〜3分のエツ
チングは塩素分圧2.0X10  Torr、Ar 電
流密度2.5mA/−で行ったもので、エツチング深さ
1μmを得ている〇第1図(b)は、この本発明による
イオンビームエツチング後の8i表面にO8Fを誘起さ
せこの面を光学顕微鏡観察した写真(約300倍)であ
る〇本発明のイオンビームエツチング方法によれば08
F誘起の積層欠陥は全く観察されず、従来方法を示した
第4図人よシもエツチングによるダメージが少なく、第
4図Bよシははるかに表面が低ダメージであることがわ
かる。第1図(a)に示された1μmをエツチングする
ためのエツチング時間は3分であシ、この時間を従来方
法で1μmエツチングした場合と比較すると、第4図B
の1分56秒よりu約1分長いが、第4図人の7分40
秒よりは大幅に短かい。以上のエツチング時間及び表面
のダメージという2つの観点から考えて、本発明では従
来方法と比較して、エツチング時間を短かくすると同時
にダメージの少ないエツチング表面を得ることができる
と言える口 本発明の実施例では、最初の高い塩素分圧を9.2X1
0  Torr、追加エツチングの際の低い塩素分圧管
2.OX 10−5Torrとして行ったが、所期のエ
ツチング深さが浅い場合には、高い塩素圧力をたとえば
5X10  Torr等に下げてエツチングレイトを抑
えてエツチングするか、あるいはAr+イオンビームの
電流密度の方を下げてエツチングしても、本発明の効果
は十分に発揮されることは言うまでもない。
It goes without saying that the chlorine partial pressure and the Ar'' ion beam current density can be set to any appropriate values depending on the desired etching depth.
) shows the etching time and etching by the ion beam etching method of the present invention, and a microscopic photograph of the surface after etching. FIG. 1 (,) shows the conditions of continuous etching at different partial pressures of chlorine according to the present invention, with the horizontal axis representing the etching time and the vertical axis representing the etching rate. 1
1, etching for 0 seconds to 1 minute 50 seconds was performed at a chlorine partial pressure of 9.2 x 10 Torr, Ar + current density 4-OmA/0, and etching for 1 minute 50 seconds to 3 minutes was performed at a chlorine partial pressure of 2 0x10 Torr, Ar current density of 2.5 mA/-, and an etching depth of 1 μm was obtained. Figure 1 (b) shows O8F induced on the 8i surface after ion beam etching according to the present invention. This is a photograph (approximately 300x magnification) of this surface observed with an optical microscope. According to the ion beam etching method of the present invention, 08
No F-induced stacking faults were observed, and it can be seen that the conventional method shown in Figure 4 shows less damage due to etching, and the surface in Figure 4B shows much less damage. The etching time for etching 1 μm shown in FIG. 1(a) is 3 minutes, and when compared with the case of etching 1 μm using the conventional method, the etching time shown in FIG.
It is about 1 minute longer than 1 minute 56 seconds in Figure 4, but it is 7 minutes 40 seconds for humans.
Much shorter than seconds. Considering the above two aspects of etching time and surface damage, it can be said that the present invention can shorten the etching time and at the same time obtain an etched surface with less damage compared to the conventional method. In the example, the initial high chlorine partial pressure is 9.2X1
0 Torr, low chlorine partial pressure tube during additional etching2. The etching was carried out at OX 10-5 Torr, but if the desired etching depth is shallow, the etching rate should be reduced by lowering the high chlorine pressure to, for example, 5 x 10 Torr, or the current density of the Ar + ion beam should be lowered. It goes without saying that the effects of the present invention can be fully exhibited even when etching is performed at a lower value.

(発明の効果) 以上詳細に述べた通シ、本発明によれば高いエツチング
レイト(短かいエツチング時間)でエツチングできしか
もエツチングによるダメージの少ない8i工ツチング表
面な得ることができる。
(Effects of the Invention) As described in detail above, according to the present invention, it is possible to obtain an 8i etched surface that can be etched at a high etching rate (short etching time) and has less damage due to etching.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(alは本発明の詳細な説明する図、第1図(b
)は本発明の方法でエツチングした後の表面の光学顕微
鏡写真 第2図は塩素分圧をパラメータとしイオンビーム電流密
度の変化によるエツチングレートの変化を示す図。 第3図は本発明に用いるエツチング装置の概念図O 第4図(a)は塩素のあるなしによるエツチングレート
の違いを示す図〇 第4図(b)j (c)は従来の方法でエツチングした
後の光学顕微鏡写真。 オ 1図 (0) エツチング時間 (min ) 八−電流密度 2.5mA/cm2 オ 1 図 (b) 72 図 Ar+イオンビーム電流密度(mA/crn2)21:
塩素分圧 なし 22 ’   //   2.OXIσ5Torr23
:   o   9.2xlσ’Torr73 図 31:試料 32  ガス導入管 33  塩素カス分子 34  イオン源 35 ’ A’、イオン 36   レギュレーター 第4図 (0) エツチング時間 (min) オ 4 図 (C) 44+8条件 手続補正書(方剤 昭和  年59“1A26日 事件の表示   昭和59年 特許 願第13761、
発明の名称   8iの低ダメージ・イオンビームエツ
チング方法3、補正をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 、代理人 (連絡先 日本電気株式会社特許部) 5、補正命令の日付  昭和59年10月30日(発送
日)6.補正の対象  明細書の図面の簡単な説明の欄
7、補正の内容 (1)明細書第1O頁鮮15行目に「表面の」とあるの
を「Si表面の結晶の構造を示す」と補正する。 (2)明細書第11頁第5行目に「の光学顕微鏡写真」
とあるのを「のSi表面の結晶の構造を示す光学顕微鏡
写真」と補正する。
Figure 1 (al is a detailed explanation of the present invention, Figure 1 (b)
) is an optical micrograph of the surface after etching by the method of the present invention. FIG. 2 is a diagram showing changes in etching rate due to changes in ion beam current density using chlorine partial pressure as a parameter. Figure 3 is a conceptual diagram of the etching apparatus used in the present invention. Figure 4 (a) is a diagram showing the difference in etching rate between the presence and absence of chlorine. Figure 4 (b) and (c) are the diagrams for etching using the conventional method. Optical micrograph after. E 1 Figure (0) Etching time (min) 8 - Current density 2.5 mA/cm2 O 1 Figure (b) 72 Figure Ar + ion beam current density (mA/crn2) 21:
Chlorine partial pressure None 22' // 2. OXIσ5Torr23
: o 9.2xlσ'Torr73 Figure 31: Sample 32 Gas introduction tube 33 Chlorine gas molecules 34 Ion source 35 'A', ion 36 Regulator Figure 4 (0) Etching time (min) O Figure 4 (C) 44+8 condition procedure Written amendment (Method 1984 1A26 day case 1988 patent application No. 13761,
Title of the Invention: 8i Low Damage Ion Beam Etching Method 3, Relationship with the Amendment Case Applicant: 5-33-1 Shiba, Minato-ku, Tokyo, Agent (Contact Information: NEC Corporation Patent Department) 5 , Date of amendment order: October 30, 1982 (shipment date) 6. Subject of amendment Column 7 of the brief explanation of the drawings in the specification, contents of the amendment (1) On page 1, page 1, line 15 of the specification, the phrase “on the surface” has been replaced with “indicates the crystal structure of the Si surface.” to correct. (2) “Optical micrograph of” on page 11, line 5 of the specification.
The text has been corrected to read, "An optical micrograph showing the crystal structure of the Si surface."

Claims (1)

【特許請求の範囲】[Claims] 高い塩素ガス圧力雰囲気中でイオンビームによりSiの
高速エッチングを行い、続いて低い塩素ガス圧力雰囲気
中でイオンビームによる低速エッチングを同Siに施す
ことを特徴とする、Siのイオンビームエッチング方法
An ion beam etching method for Si, comprising performing high-speed etching of Si with an ion beam in a high chlorine gas pressure atmosphere, and then performing low-speed etching of the Si with an ion beam in a low chlorine gas pressure atmosphere.
JP13761784A 1984-07-03 1984-07-03 Less damage ion beam etching process of silicon Pending JPS6116523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13761784A JPS6116523A (en) 1984-07-03 1984-07-03 Less damage ion beam etching process of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13761784A JPS6116523A (en) 1984-07-03 1984-07-03 Less damage ion beam etching process of silicon

Publications (1)

Publication Number Publication Date
JPS6116523A true JPS6116523A (en) 1986-01-24

Family

ID=15202861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13761784A Pending JPS6116523A (en) 1984-07-03 1984-07-03 Less damage ion beam etching process of silicon

Country Status (1)

Country Link
JP (1) JPS6116523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121512A (en) * 2005-10-26 2007-05-17 Enplas Corp Optical element and optical element molding die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007121512A (en) * 2005-10-26 2007-05-17 Enplas Corp Optical element and optical element molding die

Similar Documents

Publication Publication Date Title
Jones et al. A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructure
US8153015B2 (en) Ultra-passivation of chromium-containing alloy and methods of producing same
JP2010038921A (en) Method of machining work piece with focused ion beam
TW200823280A (en) Chromium-free etching solution for Si-substrates and SiGe-substrates, method for revealing defects using the etching solution and process for treating Si-substrates and SiGe-substrates using the etching solution
KR20040017315A (en) Method for enhancing surface condition of a semiconductor wafer
JP2009025133A (en) Sample preparing method and sample preparing apparatus
Stognij et al. Nanoscale ion beam polishing of optical materials
JPS6116523A (en) Less damage ion beam etching process of silicon
EP1305063B1 (en) Intravascular stent with expandable coating
Han et al. Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method
JPH04183846A (en) Stainless steel material for high purity gas and its production
JPS6065533A (en) Dry etching method
JPH03116727A (en) Manufacture of semiconductor device
Ghica et al. Annealing of hydrogen-induced defects in RF-plasma-treated Si wafers: ex situ and in situ transmission electron microscopy studies
JPH03106031A (en) Silicon wafer
CN100594587C (en) Dry etching method
JP2976558B2 (en) Cross-sectional microstructure observation method and observation apparatus
Sedgwick et al. Effects of trace surface oxidation in low temperature epitaxy grown from dichlorosilane
JPS643840B2 (en)
RU2098887C1 (en) Method for processing of silicon substrates
JPS60224239A (en) Defect detecting method of thin film
JPS58209809A (en) Method of forming transparent conductive film
EP0525455A2 (en) Extrinsic gettering for a semiconductor substrate
JP3285084B2 (en) Capacitance measurement method using scanning capacitance microscope
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure