JPS61164288A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS61164288A
JPS61164288A JP543985A JP543985A JPS61164288A JP S61164288 A JPS61164288 A JP S61164288A JP 543985 A JP543985 A JP 543985A JP 543985 A JP543985 A JP 543985A JP S61164288 A JPS61164288 A JP S61164288A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
semiconductor
gaas
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP543985A
Other languages
Japanese (ja)
Inventor
Hiroshi Iwata
岩田 普
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP543985A priority Critical patent/JPS61164288A/en
Publication of JPS61164288A publication Critical patent/JPS61164288A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a strong output signal in a semiconductor laser by a method wherein the reflective surfaces are formed without using cleavage, the laser is constituted into a structure, which is suitable to an integration by taking out the emitted light in the direction vertical tot he substrate, and moreover, the laser is provided with a window region. CONSTITUTION:This semiconductor laser has a first GaAs semiconductor layer 11 of the thickness of 5mum, a second Al0.4Ga0.6As semiconductor layer 12 of the thickness of 5mum, a third GaAs semiconductor layer 13 of the thickness of 5mum, a fourth Al0.4Ga0.6As semiconductor layer 14 of the thickness of 5mum and a fifth GaAs semiconductor layer 15 of the thickness of 5mum, which are made to grow by crystallization on a GaAs substrate 10, and an N-type GaAs buffer layer 21, an N-type Al0.4Ga0.6As clad layer 22, a GaAs active layer 23, a P-type Al0.4Ga0.6As clad layer 24 and a P-type GaAs cap layer 25, which are made to grow by crystallization on a section 20 vertical to the crystal growth surface of the third semiconductor layer 13, and is constituted of reflec tive surfaces 26, SiO2 layers 27, a P-type electrode 28 and an N-type electrode 16, which are made on the abovementioned crystal growth layers.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は半導体レーザに関する。[Detailed description of the invention] (Industrial application field) The present invention relates to semiconductor lasers.

(従来技術とその問題点) 従来開発された半導体レーザとして、第3図に示すよう
なウィンドウ構造半導体レーザがある〔ジャパニーズ 
ジャーナル オプ アプライドフィジックス(Jap、
J、Appl−Phys、) 22巻1983年329
〜332ページ〕。このウィンドウ構造の半導体レーザ
は、反射面の劣化が起こpに<<、出力が非常に大きい
という優れた特性を有している。しかし、埋込み成長を
行なった後にへき開によシ反射面31を形成するため、
ウィンドウ領域32の厚さを制御することがむずかしく
、特性のばらつきが大きいという欠点を有していた。
(Prior art and its problems) As a conventionally developed semiconductor laser, there is a window structure semiconductor laser as shown in Fig. 3 [Japanese
Journal Op Applied Physics (Jap,
J, Appl-Phys, ) Volume 22, 1983, 329
~332 pages]. This semiconductor laser having a window structure has an excellent characteristic that the output is extremely large even when the reflection surface is degraded. However, since the reflective surface 31 is formed by cleavage after buried growth,
It has the disadvantage that it is difficult to control the thickness of the window region 32 and the characteristics vary widely.

(発明の目的) 本発明の目的は、このような欠点を除去し、ウィンドウ
領域の厚さを精度よく制御して高出力が得られるように
した半導体レーザを提供することにある。
(Objective of the Invention) An object of the present invention is to provide a semiconductor laser which eliminates such drawbacks and can obtain high output by precisely controlling the thickness of the window region.

(発明の構成) 本発明の半導体レーザの構成は、半導体基板上の板面と
平行に各層間がへテロ接合面となるように第1半導体層
、第2半導体層、第3半導体層。
(Structure of the Invention) The structure of the semiconductor laser of the present invention includes a first semiconductor layer, a second semiconductor layer, and a third semiconductor layer so that each layer forms a heterojunction plane parallel to a plate surface on a semiconductor substrate.

第4半導体層および第5半導体層を形成した第1の積層
部と;前記第3半導体層の層面と垂直な断面上にこの断
面と平行にクラッド層に挾まれた活性層を形成した第2
積層部とを備え:=r記活性層端面に隣接する前記第1
および第5半導体層が除去され、かつ前記第2および第
4半導体層がこれらの禁11i1J帯幅を前記活性層の
禁制帯幅よりも広くしてレーザ発振光に対して透明なウ
ィンドウ層としたことを特徴とする。
a first laminated portion in which a fourth semiconductor layer and a fifth semiconductor layer are formed; a second laminated portion in which an active layer sandwiched between cladding layers is formed on a cross section perpendicular to the layer plane of the third semiconductor layer and parallel to this cross section;
a laminated portion; the first layer adjacent to the end surface of the active layer;
and a fifth semiconductor layer is removed, and the second and fourth semiconductor layers have a forbidden band width wider than a forbidden band width of the active layer to form a window layer transparent to laser oscillation light. It is characterized by

(発明の原理) 本発明においては、反射面として第1半導体層と第2半
導体層とによって作られるヘテロ接合面及び第4半導体
層とi5半導体j−とにJ:って作られるヘテロ接合面
を用いているため、第2半導体層及び第4半導体層によ
って作られるウィンドウ領域の厚さが非常に精度よく制
御することができ、また第2半導体層及び第4半導体層
が活性層よりもその余制帯幅が大きいため、発振光に対
して透明であシ、光出力による端面破壊が抑制されるた
め高出力な半導体レーザを得ることができる。
(Principle of the Invention) In the present invention, a heterojunction surface formed by the first semiconductor layer and the second semiconductor layer and a heterojunction surface formed by the fourth semiconductor layer and the i5 semiconductor j- are used as reflective surfaces. Since the thickness of the window region formed by the second semiconductor layer and the fourth semiconductor layer can be controlled with high precision, the thickness of the window region formed by the second semiconductor layer and the fourth semiconductor layer can be controlled with high precision. Since the restraint band width is large, it is transparent to the oscillated light, and destruction of the end face due to the optical output is suppressed, making it possible to obtain a high-output semiconductor laser.

(実施例) 次に図面を参照して本発明の詳細な説明する。(Example) Next, the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the present invention.

本実施例は、GaASからなる基板10上に結晶成長し
たGaAsから々る厚さ5μmの第1半導体層11と、
AA!。、4G a (、,6&sからなる厚さ5μm
の第2半導体層12と、n型G a A sからなる厚
さ5μmの第3半導体層13と、AloAGaoI3A
Sからなる厚さ5μmの第4半導体層14と、 GaA
sからなる厚さ5μmの第5半導体層15と、第3半導
体層13の結晶成長面に垂直な断面20上に結晶成長し
たn型G a A sからなるバッファ一層21と、n
型A7(34GaO,6Asからなるn型クラッド層2
2と、G a A、sからなる活性層23と、p型A〕
◎、4Ga6.6Asからなるp型クラッド層24と、
p型G a A sからなるキャップ層25と、これら
結晶成長層上に作製された反射面26,5i02膜27
 、 p%i極28.n電極16とから構成されている
In this embodiment, a first semiconductor layer 11 with a thickness of 5 μm made of GaAs crystal-grown on a substrate 10 made of GaAS,
AA! . , 4G a (, , 5 μm thick consisting of , 6&s
a second semiconductor layer 12 made of n-type GaAs, a third semiconductor layer 13 with a thickness of 5 μm, and AloAGaoI3A.
A fourth semiconductor layer 14 with a thickness of 5 μm made of S, and GaA
a fifth semiconductor layer 15 with a thickness of 5 μm made of s, a buffer layer 21 made of n-type Ga As crystal grown on a cross section 20 perpendicular to the crystal growth plane of the third semiconductor layer 13;
Type A7 (n-type cladding layer 2 made of 34GaO, 6As)
2, an active layer 23 consisting of G a A, s, and a p-type A]
◎, a p-type cladding layer 24 made of 4Ga6.6As,
A cap layer 25 made of p-type GaAs, and a reflective surface 26 and a 5i02 film 27 formed on these crystal growth layers.
, p%i pole28. It is composed of an n-electrode 16.

第2図(A)−CD)は本実施例の製造方法を工程順に
示した斜視図である。まず、半導体基板10上に第1半
導体層11.第2半導体層12.第3半導体層13.第
4半導体層14.第5半導体層15を結晶成長した後、
アンモニア系のエツチング液を用い第3半導体層13の
みをエツチングし断面20を形成した(第2図(A))
。次に、この断面20上にバッファ一層21.n型クラ
ッド層22.活性層23.p型クラッド層24.キャッ
プ層25を結晶成長した(第2図(131)。
FIGS. 2(A)-CD) are perspective views showing the manufacturing method of this embodiment in the order of steps. First, a first semiconductor layer 11. Second semiconductor layer 12. Third semiconductor layer 13. Fourth semiconductor layer 14. After crystal-growing the fifth semiconductor layer 15,
Only the third semiconductor layer 13 was etched using an ammonia-based etching solution to form a cross section 20 (FIG. 2(A)).
. Next, a buffer layer 21 is placed on this cross section 20. n-type cladding layer 22. Active layer 23. p-type cladding layer 24. The cap layer 25 was crystal grown (FIG. 2 (131)).

次に、キャップ層25上に断面20と並行なストライプ
領域を残してS i02膜27を形成し、これら8 i
0z膜27とキャップ層25上に電極金属からなるn電
極28を形成し、−1,た第4半導体層14及び第5半
導体層15の1部をリン酸系のエツチング液によりエツ
チングし、第4半導体層14上にn電極16を形成した
(第2図(C))。次に、アンモニア系のエツチング液
によ、?第1半導体層11、及び第5半導体層15を選
択的にエツチングし、反射面26を形成した(第2図C
D) )。
Next, an Si02 film 27 is formed on the cap layer 25 leaving striped regions parallel to the cross section 20, and these 8 i
An n-electrode 28 made of an electrode metal is formed on the 0z film 27 and the cap layer 25, and a part of the fourth semiconductor layer 14 and the fifth semiconductor layer 15, which are -1, are etched using a phosphoric acid-based etching solution. 4. An n-electrode 16 was formed on the semiconductor layer 14 (FIG. 2(C)). Next, use an ammonia-based etching solution. The first semiconductor layer 11 and the fifth semiconductor layer 15 were selectively etched to form a reflective surface 26 (FIG. 2C).
D) ).

5一 本実施例では、第2牛導体層12及び第4半導体層14
がウィンドウ領域となるため、再現性良く高出力な半導
体レーザが得られ、また反射面26をへき開を用いずに
形成し、出力光を基板に垂直な方向から取シ出すだめ、
電子デバイスなどとの集積化に適した構造となっている
。また、この共振器の長さを制御することも容易であシ
、共振器長60μmという非常に小形の半導体レーザを
容易に得ることができた。
51 In this embodiment, the second conductor layer 12 and the fourth semiconductor layer 14
Since this becomes a window region, a high-output semiconductor laser with good reproducibility can be obtained, and the reflective surface 26 is formed without using cleavage, so that the output light can be extracted from the direction perpendicular to the substrate.
The structure is suitable for integration with electronic devices. Furthermore, it was easy to control the length of this resonator, and a very small semiconductor laser with a resonator length of 60 μm could be easily obtained.

本実施例では、ストライプ電極形の構造としたが、これ
に限らず、埋め込み形など他の電流狭窄構造や横モード
制御構造を用いてもよい。また、この実施例では活性層
を二重へテロ接合構造としたがこれに限らず量子井戸構
造でも良い。
In this embodiment, a stripe electrode type structure is used, but the present invention is not limited to this, and other current confinement structures such as a buried type or a transverse mode control structure may be used. Further, in this embodiment, the active layer has a double heterojunction structure, but is not limited to this, and may have a quantum well structure.

(発明の効果) 本発明によれば、へき開を用いずに反射面を形成し、出
力光を基板に垂直な方向に取シ出すという集積化に適し
た構造であり、さらにウィンドウ領域を設けることによ
り強い出力信号を得られるという優れた半導体レーザを
得ることができる。
(Effects of the Invention) According to the present invention, the structure is suitable for integration in that a reflective surface is formed without using cleavage and output light is extracted in a direction perpendicular to the substrate, and a window area is further provided. It is possible to obtain an excellent semiconductor laser that can obtain a stronger output signal.

6一61

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す斜視図、第2図(A)
〜p)は本実施例の製造方法を工程順に示す斜視図、第
3図は従来のウィンドウ構造半導体レーザの斜視図であ
る。図において 10・・・・・・基板、11・・・・・・第1半導体層
、12・・・・・・第2半導体層、13・・・・・・第
3半導体層、14・・・・・・第4半導体層、15・・
・・・・第5半導体層、16・・・・・・n電極、20
・・・・・・断面、21・・・・・・バッファ一層、2
2・・・・・・n型クラッド層、23・・・・・・活性
層、24・・・・・・p型クラッド層、25・・・・・
・キャップ層、26・・・・・・反射面、27・・・・
・・8i02膜、28・・・・・・n電極、31・・・
・・・反射面、32・・・・・・ウィンドウ領域7一 (Aン                  (I3)
h4 (C)(7)) 茅 3  閏
Figure 1 is a perspective view showing an embodiment of the present invention, Figure 2 (A)
-p) are perspective views showing the manufacturing method of this embodiment in the order of steps, and FIG. 3 is a perspective view of a conventional window structure semiconductor laser. In the figure, 10... substrate, 11... first semiconductor layer, 12... second semiconductor layer, 13... third semiconductor layer, 14... ...Fourth semiconductor layer, 15...
...Fifth semiconductor layer, 16...N electrode, 20
......Cross section, 21...Buffer single layer, 2
2... N-type cladding layer, 23... Active layer, 24... P-type cladding layer, 25...
・Cap layer, 26... Reflective surface, 27...
...8i02 film, 28...n electrode, 31...
... Reflective surface, 32 ... Window area 71 (A (I3)
h4 (C) (7)) Thatch 3 Leap

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上の板面と平行に各層間がヘテロ接合面とな
るように第1半導体層、第2半導体層、第3半導体層、
第4半導体層および第5半導体層を形成した第1の積層
部と;前記第3半導体層の層面と垂直な断面上にこの断
面と平行にクラッド層に挾まれた活性層を形成した第2
積層部とを備え;前記活性層端面に隣接する前記第1お
よび第5半導体層が除去されかつ前記第2および第4半
導体層がこれらの禁制帯幅を前記活性層の禁制帯幅より
も広くしてレーザ発振光に対して透明なウィンドウ層と
したことを特徴とする半導体レーザ。
A first semiconductor layer, a second semiconductor layer, a third semiconductor layer, parallel to the plate surface on the semiconductor substrate so that each layer forms a heterojunction surface,
a first laminated portion in which a fourth semiconductor layer and a fifth semiconductor layer are formed; a second laminated portion in which an active layer sandwiched between cladding layers is formed on a cross section perpendicular to the layer plane of the third semiconductor layer and parallel to this cross section;
the first and fifth semiconductor layers adjacent to the active layer end face are removed, and the second and fourth semiconductor layers have a forbidden band width wider than a forbidden band width of the active layer; A semiconductor laser characterized in that the window layer is transparent to laser oscillation light.
JP543985A 1985-01-16 1985-01-16 Semiconductor laser Pending JPS61164288A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP543985A JPS61164288A (en) 1985-01-16 1985-01-16 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP543985A JPS61164288A (en) 1985-01-16 1985-01-16 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS61164288A true JPS61164288A (en) 1986-07-24

Family

ID=11611226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP543985A Pending JPS61164288A (en) 1985-01-16 1985-01-16 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS61164288A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911208A (en) * 1987-10-30 1990-03-27 Tsudakoma Corp. Weft yarn measuring method for a picking device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4911208A (en) * 1987-10-30 1990-03-27 Tsudakoma Corp. Weft yarn measuring method for a picking device

Similar Documents

Publication Publication Date Title
JPS60789A (en) Semiconductor laser device
JPH05327112A (en) Manufacture of semiconductor laser
JPS61190994A (en) Semiconductor laser element
JPS61164288A (en) Semiconductor laser
JP2687495B2 (en) Manufacturing method of semiconductor laser
JPH07221387A (en) Waveguide type optical element
JP2822195B2 (en) Semiconductor laser manufacturing method
JP2822470B2 (en) Semiconductor laser
JPH0710015B2 (en) Semiconductor laser device and method of manufacturing the same
JP4024319B2 (en) Semiconductor light emitting device
JPS6254987A (en) Semiconductor laser
JPS6350877B2 (en)
JP2780307B2 (en) Semiconductor laser
JPS609187A (en) Semiconductor light-emitting device
JPH067640B2 (en) Method for manufacturing semiconductor laser device
JPH01293686A (en) Manufacture of semiconductor laser element
JPH09246665A (en) Semiconductor laser and manufacture thereof
JPS6129183A (en) Semiconductor laser
JPH01155675A (en) Semiconductor laser device
JPS61184891A (en) Semiconductor laser
JPH04105381A (en) Semiconductor laser
JPS61272988A (en) Semiconductor laser device
JPH02122585A (en) Manufacture of semiconductor laser
JPH04326786A (en) Manufacture of semiconductor laser device
JPS5927589A (en) Bistable semiconductor laser diode