JPS61163622A - Solid electrolytic capacitor - Google Patents

Solid electrolytic capacitor

Info

Publication number
JPS61163622A
JPS61163622A JP316185A JP316185A JPS61163622A JP S61163622 A JPS61163622 A JP S61163622A JP 316185 A JP316185 A JP 316185A JP 316185 A JP316185 A JP 316185A JP S61163622 A JPS61163622 A JP S61163622A
Authority
JP
Japan
Prior art keywords
solid electrolytic
electrolytic capacitor
electrolyte
group
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP316185A
Other languages
Japanese (ja)
Inventor
小林 征男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP316185A priority Critical patent/JPS61163622A/en
Publication of JPS61163622A publication Critical patent/JPS61163622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Glass Compositions (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電気伝導度が高く、誘電体皮膜との付着性の
良好な電導性重合体を電解質に用いた固体電解コンデン
サに関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a solid electrolytic capacitor using a conductive polymer having high electrical conductivity and good adhesion to a dielectric film as an electrolyte. .

〔従来の技術〕[Conventional technology]

従来の固体電解コンデンサ、例えばアルミ電解コンデン
サは、エツチング処理した比表面積の大きい多孔質アル
ミ箔の上に誘電体である酸化アルミニウム層を設け、陰
極箔との間の電解紙に液状の電解液を含浸させた構造か
らなっているが、この電解液が液状であることは液漏れ
等の部属を惹起して好ましいものではなく、この電導層
を固体電解質で代替する試みがなされている。それらの
固体電解コンデンサは、陽極酸化皮膜を有するアルミニ
ウム、タンタルなどの皮膜形成金属に固体電解質を付着
した構造を有したものであり、固体電解質には主に硝酸
マンガンの熱分解により形成される二酸化マンfノが用
いられている。しかし、この熱分解の際に要する高熱と
発生するNOxブスの酸化作用などによって、誘電体で
あるアルミニウム、タンタルなどの金属酸化皮膜の損傷
があり、そのため耐電圧は低下し、漏れ電流が大きくな
り、誘電特性を劣化させるなど極めて大きな欠点がある
。また、再化成という工程も必要である。
Conventional solid electrolytic capacitors, such as aluminum electrolytic capacitors, have an aluminum oxide dielectric layer placed on etched porous aluminum foil with a large specific surface area, and a liquid electrolyte is applied to the electrolytic paper between the cathode foil and the etched porous aluminum foil. However, it is not preferable that the electrolyte is in a liquid state because it may cause problems such as leakage, and attempts have been made to replace the conductive layer with a solid electrolyte. These solid electrolytic capacitors have a structure in which a solid electrolyte is attached to a film-forming metal such as aluminum or tantalum that has an anodized film, and the solid electrolyte mainly contains carbon dioxide formed by thermal decomposition of manganese nitrate. Manfno is used. However, due to the high heat required during this thermal decomposition and the oxidizing effect of the NOx bus generated, the dielectric metal oxide film such as aluminum or tantalum is damaged, resulting in a decrease in withstand voltage and an increase in leakage current. , which has extremely large drawbacks such as deterioration of dielectric properties. In addition, a process called reconstitution is also necessary.

これらの欠点を補うため、高熱を付加せずに固体電解質
層を形成する方法、つまり高電導性の有機半導体材料を
固体電解質とする方法が試みられている。その例として
は、特開昭52−79255号公報に記載されている7
、7,8.8−テトラシアノキノジメタン(TCNQ 
)錯塩を含む電導性高重合体組成物を固体電解質として
含む固体電解コンデンサ、特開昭58−17609号公
報に記載されているN−n−グロビルイノキノリンと7
,7,8,8−テトラシアノツメタンからなる錯塩を含
む電導性高重合体組成物を固体電解質として含む固体電
解コンデンサが知られている。これらTCNQCN化合
物は、陽極酸化皮膜との付着性に劣り、電導塵も1O−
5〜10−2S 7cm−1と不十分であるため、コン
デンサの容量値は小さく、誘電損失も大きい。また熱的
経時的な安定性も劣り信頼性が低い。
In order to compensate for these drawbacks, attempts have been made to form a solid electrolyte layer without applying high heat, that is, to use a highly conductive organic semiconductor material as the solid electrolyte. As an example, 7
, 7,8.8-tetracyanoquinodimethane (TCNQ
) A solid electrolytic capacitor containing a conductive polymer composition containing a complex salt as a solid electrolyte, Nn-globilinoquinoline and 7 described in JP-A-58-17609.
, 7,8,8-tetracyanotumethane is known as a solid electrolytic capacitor that includes, as a solid electrolyte, a conductive polymer composition containing a complex salt consisting of , 7,8,8-tetracyanotumethane. These TCNQCN compounds have poor adhesion to the anodic oxide film and conductive dust as well.
5 to 10<-2>S 7 cm<-1>, which is insufficient, the capacitance value of the capacitor is small and the dielectric loss is large. Furthermore, thermal stability over time is poor and reliability is low.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記した如く、従来公知の固体電解コンデンサは、固体
電解質と陽極酸化皮膜との付着性が充分でないため、長
期間の作動および高温下での作動は著しく困難であり、
かつ電導塵も高々10  S/crnと比較的低く、コ
ンデンサ容量が小さく、誘電損失も大きいという欠点を
有していた。
As mentioned above, conventionally known solid electrolytic capacitors have insufficient adhesion between the solid electrolyte and the anodic oxide film, so it is extremely difficult to operate them for long periods of time or at high temperatures.
In addition, the conductive dust content was relatively low, at most 10 S/crn, and the capacitor capacity was small and the dielectric loss was large.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、従来の固体電解コンデンサが有する欠点を改
良すべく種々検討した結果、固体電解質として特定の電
導性重合体が有効であることを見出し本発明に到達した
In the present invention, as a result of various studies aimed at improving the drawbacks of conventional solid electrolytic capacitors, the present invention was achieved by discovering that a specific conductive polymer is effective as a solid electrolyte.

即ち、本発明は、下記の一般式で表わされるシアノ基含
有アセチレン系化合物を熱重合して得られる電気伝導度
か10 3/crn以上の電導性重合体を電解質として
用いたことを特徴とする固体電解コンデンサに関するも
のである。
That is, the present invention is characterized in that an electrically conductive polymer having an electrical conductivity of 10 3 /crn or more obtained by thermally polymerizing a cyano group-containing acetylene compound represented by the following general formula is used as an electrolyte. This relates to solid electrolytic capacitors.

X−C≡C−CN 〔但し、式中Xは水素原子、ハロケ゛ン原子、シアン基
、炭素数が1〜5のアルキル基または炭素数が6〜9の
アリール(aryl )基である。〕本発明により得ら
れる固体電解コンデンサは、従来の無機酸化物半導体や
有機半導体を用いた固体電解コンデンサに比して容量値
が大きく、誘電損失が小さく、かつ熱的および経時的安
定性において著しく優れた性能を有している。
X-C≡C-CN [However, in the formula, X is a hydrogen atom, a haloke atom, a cyan group, an alkyl group having 1 to 5 carbon atoms, or an aryl group having 6 to 9 carbon atoms. ] The solid electrolytic capacitor obtained by the present invention has a larger capacitance value, smaller dielectric loss, and significantly higher thermal and temporal stability than conventional solid electrolytic capacitors using inorganic oxide semiconductors or organic semiconductors. It has excellent performance.

本発明において用いられる誘電体は特に限定されず、例
えば公知のアルミニウム、メンタル、ニオブなどの多孔
質金属酸化物を使用することができる。これらの誘電体
のうちでも、アルミニウムの酸化物が好ましい。
The dielectric used in the present invention is not particularly limited, and for example, known porous metal oxides such as aluminum, mental, and niobium can be used. Among these dielectrics, aluminum oxide is preferred.

本発明で用いられるシアン基含有アセチレン系化合物の
代表例としては、シアンアセチレン、ノシアノアセチレ
ン、シアノメチルアセチレン、シアノフェニルアセチレ
ン等があげられるが、好ましくはシアノアセチレン、ノ
シアノアセチレンをあげることができる。
Typical examples of the cyan group-containing acetylene compound used in the present invention include cyanacetylene, nocyanoacetylene, cyanomethylacetylene, and cyanophenylacetylene, and preferred examples include cyanoacetylene and nocyanoacetylene. .

これらのシアン基含有アセチレン系化合物は単独で用い
てもよく、または2種以上混合して用いてもよい。また
7アノ基含有アセチレン系化合物は、窒素、ヘリウム、
アルゴン、水素等の不活性ガス、ならびに脂肪族炭化水
素、脂環族炭化水素、芳香族炭化水素、不飽和炭化水素
、およびその他の炭化水素と混合希釈して用いてもよい
。シアン基含有アセチレン系化合物を不活性ガスで希釈
して用いる場合は、77ノ基含有アセチレン系化合物の
濃度は、通常1〜50容積係、好ましくは2〜40容積
係である。
These cyan group-containing acetylene compounds may be used alone or in combination of two or more. In addition, acetylene compounds containing a 7-ano group include nitrogen, helium,
It may be mixed and diluted with an inert gas such as argon or hydrogen, and aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, unsaturated hydrocarbons, and other hydrocarbons. When the cyan group-containing acetylenic compound is diluted with an inert gas and used, the concentration of the 77-group-containing acetylenic compound is usually 1 to 50% by volume, preferably 2 to 40% by volume.

シアノ基含有アセチレン系化合物の重合は、一般にはシ
アン基含有アセチレン系化合物を加熱した誘電体皮膜と
接触させることによって行なわれる。
Polymerization of the cyano group-containing acetylene compound is generally carried out by bringing the cyan group-containing acetylene compound into contact with a heated dielectric film.

本発明の固体電解コンデンサは、例えばシアノ基含有ア
セチレン系化合物を加熱した誘電体皮膜と接触させて熱
重合させ、誘電体皮膜の上に電導性重合体を生成せしめ
、次いで、当該業者に公知の方法で適当な電極を付ける
ことによって作成することができる。
The solid electrolytic capacitor of the present invention can be produced by, for example, bringing a cyano group-containing acetylene compound into contact with a heated dielectric film to thermally polymerize it to form a conductive polymer on the dielectric film, and then using a method known to those skilled in the art. method by attaching suitable electrodes.

熱重合温度(加熱温度)は、一般には150〜i oo
o℃であるが、アルミ電解コンデンサの場合には、アル
ミニウムの融点が約660℃であるため、熱重合温度は
150〜650℃の範囲内であることが好ましい。熱重
合温度が150℃未満では、充分な電気伝導度を有する
重合体を得ることは困難であり、また、電導性重合体の
電気伝導度が10  S/cm未満では、本発明の効果
が得られ難い。
Thermal polymerization temperature (heating temperature) is generally 150 to ioo
In the case of aluminum electrolytic capacitors, the melting point of aluminum is approximately 660°C, so the thermal polymerization temperature is preferably within the range of 150 to 650°C. If the thermal polymerization temperature is less than 150°C, it is difficult to obtain a polymer with sufficient electrical conductivity, and if the electrical conductivity of the conductive polymer is less than 10 S/cm, the effects of the present invention may not be obtained. It's hard to get caught.

〔発明の効果〕〔Effect of the invention〕

本発明の固体電解コンデンサは、従来公知の固体電解コ
ンデンサに比較して下記の利点を有している。゛ ■ 高温加熱することなしに電解質層な形成できるので
陽極の酸化被膜の損傷がなく、補修のための陽極酸化(
再化成)を行なう必要がない。そのため、定格電圧を従
来の数倍にでき、同容量、同定格電圧のコンデンサを得
るのに、形状を小型化できる。
The solid electrolytic capacitor of the present invention has the following advantages compared to conventionally known solid electrolytic capacitors.゛■ Since the electrolyte layer can be formed without high-temperature heating, there is no damage to the oxide film on the anode, and anodic oxidation (
There is no need to perform reconstitution. Therefore, the rated voltage can be increased several times compared to conventional capacitors, and the shape can be made smaller to obtain a capacitor with the same capacity and rated voltage.

■ 漏れ電流が小さい。■Low leakage current.

■ 高耐圧のコンデンサを作製できる。■ Capacitors with high withstand voltage can be manufactured.

■ 電解質の伝導度が10−2〜10 S /cm−’
と十分に高いため、グラファイトなどの導電層を設ける
必要がない。そのため工程が簡略化され、コスト的にも
有利となる。
■ Conductivity of electrolyte is 10-2 to 10 S/cm-'
is sufficiently high, so there is no need to provide a conductive layer such as graphite. This simplifies the process and is advantageous in terms of cost.

〔実施例〕〔Example〕

以下、実施例をあげて本発明をさらに詳細に説明する。 Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例1 厚さ100μmのアルミニウム箔(純度99.99チ)
を陽極とし、直流、交流を交互使用してアルミニウム箔
の表面を電気化学的にエツチングして平均細孔径2μm
、比表面積を12m2/jiとした。
Example 1 Aluminum foil with a thickness of 100 μm (purity 99.99 cm)
was used as an anode, and the surface of the aluminum foil was electrochemically etched using alternating direct current and alternating current to form an average pore diameter of 2 μm.
, the specific surface area was 12 m2/ji.

次いで、この工、チング処理したアルミニウム箔をホウ
酸アンモニウムの液中に浸漬し、液中で電気化学的にア
ルミニウム箔の上に誘電体の薄層を形成した。
Next, the aluminum foil treated with this process was immersed in a solution of ammonium borate, and a thin layer of dielectric material was formed on the aluminum foil electrochemically in the solution.

この誘電体層を持ったアルミニウム箔を石英製の反応管
に入れ、電気炉を用いて500℃に加熱し、窒素ガスを
キャリヤーとしてシアンアセチレンを15容量係を含む
原料ガスを100 ml/minの速度で3時間供給し
、アルミニウム酸化皮膜上にシアンアセチレンの重合体
を生成せしめた。7アノアセチレンの重合体の電気伝導
度は15S/crnであった。陰極にアルミニウム箔を
用いてコ゛ムで封止して物性を測定した。その結果を表
に示した。
The aluminum foil with the dielectric layer was placed in a quartz reaction tube, heated to 500°C using an electric furnace, and fed with a raw material gas containing 15 volumes of cyanacetylene using nitrogen gas as a carrier at 100 ml/min. The mixture was fed at a high speed for 3 hours to form a cyanacetylene polymer on the aluminum oxide film. The electrical conductivity of the 7-anoacetylene polymer was 15 S/crn. Physical properties were measured using aluminum foil as the cathode and sealing it with a comb. The results are shown in the table.

比較例として従来の二酸化マンガンを固体電解質とした
固体電解コンデンサの特性を測定した。
As a comparative example, the characteristics of a conventional solid electrolytic capacitor using manganese dioxide as a solid electrolyte were measured.

その結果を表に示した。The results are shown in the table.

実施例2〜4 実施例1で用いたシアノアセチレ/の代りに表に示した
シアノ基含有アセチレン系化合物を用いた以外は、実施
例1と同様にして醸化皮膜上に重合体を析出させて固体
電解質とし、実施例1と全く同様の方法でコンデンサ特
性を試験し1表に示す結果を得た。
Examples 2 to 4 A polymer was deposited on the fermented film in the same manner as in Example 1, except that the cyano group-containing acetylene compound shown in the table was used instead of the cyanoacetylene used in Example 1. Using a solid electrolyte, capacitor characteristics were tested in exactly the same manner as in Example 1, and the results shown in Table 1 were obtained.

Claims (1)

【特許請求の範囲】 下記の一般式で表わされるシアノ基含有アセチレン系化
合物を熱重合して得られる電気伝導度が10^−^2S
/cm以上の電導性重合体を電解質として用いたことを
特徴とする固体電解コンデンサ。 X−C≡C−CN 〔但し、式中Xは水素原子、ハロゲン原子、シアノ基、
炭素数が1〜5のアルキル基または炭素数が6〜9のア
リール(aryl)基である。〕
[Claims] Electrical conductivity obtained by thermally polymerizing a cyano group-containing acetylene compound represented by the following general formula is 10^-^2S
1. A solid electrolytic capacitor characterized in that a conductive polymer having a conductivity of /cm or more is used as an electrolyte. X-C≡C-CN [However, in the formula, X is a hydrogen atom, a halogen atom, a cyano group,
It is an alkyl group having 1 to 5 carbon atoms or an aryl group having 6 to 9 carbon atoms. ]
JP316185A 1985-01-14 1985-01-14 Solid electrolytic capacitor Pending JPS61163622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP316185A JPS61163622A (en) 1985-01-14 1985-01-14 Solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP316185A JPS61163622A (en) 1985-01-14 1985-01-14 Solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPS61163622A true JPS61163622A (en) 1986-07-24

Family

ID=11549629

Family Applications (1)

Application Number Title Priority Date Filing Date
JP316185A Pending JPS61163622A (en) 1985-01-14 1985-01-14 Solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPS61163622A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169914A (en) * 1986-10-23 1989-07-05 Basf Ag Solid capacitor with conductive polymer as solid electrolyte component
US5447532A (en) * 1993-09-10 1995-09-05 Furuya; Mitsuko Highly absorptive expanding therapeutic water pillow
JP2006000632A (en) * 2004-06-18 2006-01-05 Patrick Caceres Compress with cooling effect in sterile pack

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01169914A (en) * 1986-10-23 1989-07-05 Basf Ag Solid capacitor with conductive polymer as solid electrolyte component
US5447532A (en) * 1993-09-10 1995-09-05 Furuya; Mitsuko Highly absorptive expanding therapeutic water pillow
JP2006000632A (en) * 2004-06-18 2006-01-05 Patrick Caceres Compress with cooling effect in sterile pack

Similar Documents

Publication Publication Date Title
JPS6247109A (en) Manufacture of solid electrolytic capacitor
JPS61239617A (en) Solid electrolytic capacitor
US10087541B2 (en) Method of forming a dielectric through electrodeposition on an electrode for a capacitor
JPS61163622A (en) Solid electrolytic capacitor
JPS62118509A (en) Solid electrolytic capacitor
JPS62118511A (en) Manufacture of solid electrolytic capacitor
JPS6017909A (en) Solid electrolytic condenser
JPH01225110A (en) Solid electrolytic capacitor
JPH0722073B2 (en) Solid electrolytic capacitor
JPS63126212A (en) Solid electrolytic capacitor
JPH0582726B2 (en)
JPS624312A (en) Manufacture of solid electrolytic capacitor
JPS6229123A (en) Solid state electrolytic capacitor
JPH0473606B2 (en)
JPS63173316A (en) New solid electrolytic capacitor
JPS63173314A (en) Solid electrolytic capacitor
JPH0665207B2 (en) Solid electrolytic capacitor
JPS6298716A (en) Manufacture of solid electrolytic capacitor
JPS6122614A (en) Solid electrolytic condenser
JPH058565B2 (en)
JPH0719726B2 (en) Manufacturing method of solid electrolytic capacitor
JPS6281707A (en) Solid electrolytic condenser
JPS6185813A (en) Solid electrolytic capacitor
JPS6247105A (en) Solid electrolytic capacitor
JPS62109310A (en) Solid electrolytic capacitor