JPS62118511A - Manufacture of solid electrolytic capacitor - Google Patents

Manufacture of solid electrolytic capacitor

Info

Publication number
JPS62118511A
JPS62118511A JP25780985A JP25780985A JPS62118511A JP S62118511 A JPS62118511 A JP S62118511A JP 25780985 A JP25780985 A JP 25780985A JP 25780985 A JP25780985 A JP 25780985A JP S62118511 A JPS62118511 A JP S62118511A
Authority
JP
Japan
Prior art keywords
solid
solid electrolytic
electrolytic capacitor
polymer compound
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25780985A
Other languages
Japanese (ja)
Other versions
JPH0650710B2 (en
Inventor
正雄 小林
友澤 秀喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP25780985A priority Critical patent/JPH0650710B2/en
Publication of JPS62118511A publication Critical patent/JPS62118511A/en
Publication of JPH0650710B2 publication Critical patent/JPH0650710B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、電導性高分子化合物を固体導電体として用い
た、性能の良好な固体電解コンデンサの製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for manufacturing a solid electrolytic capacitor with good performance using a conductive polymer compound as a solid conductor.

[従来の技術] 従来の固体電解コンデンサ、例えばアルミニウム電解コ
ンデンサは、エツチング処理した比表面積の大きい多孔
質アルミニウム箔の上に誘電体である酸化アルミニウム
層を設け、陰極箔との間の電解紙に液状の電解液を含浸
さμだ構造からなっているが、電解液が液状であるため
に液漏れ等の問題を引ぎ起こし好ましいものではなく、
従って、この電導層を固体1j電休で代替する試みがな
されている。それらの固体電解コンデンサは、陽極酸化
被膜を有するアルミニウム、タンタルなと被膜形成金属
に固体導電体を付着した構造を有したものであり、この
種の固体コンデンサの固体導電体には主に硝酸マンガン
の熱分解により形成される二酸化マンガンが用いられて
いる。しかし、この固体電解コンデンサは、熱分解の際
に要する高熱と発生するNOxガスの酸化作用などによ
って、誘電体であるアルミニウム、タンタルなどの金属
の 酸化被膜を損傷があり、そのため耐電圧は低下し、漏れ
電流が大きくなり、誘電特性を劣化させるなど極めて大
ぎな欠点がある。
[Prior Art] Conventional solid electrolytic capacitors, such as aluminum electrolytic capacitors, are made by providing an aluminum oxide layer as a dielectric on an etched porous aluminum foil with a large specific surface area, and using electrolytic paper between the cathode foil and the etched porous aluminum foil. It has a structure impregnated with a liquid electrolyte, but since the electrolyte is liquid, it causes problems such as leakage, which is not desirable.
Therefore, attempts have been made to replace this conductive layer with a solid layer. These solid electrolytic capacitors have a structure in which a solid conductor is attached to a film-forming metal such as aluminum or tantalum with an anodized film, and the solid conductor of this type of solid capacitor is mainly made of manganese nitrate. Manganese dioxide, which is formed by the thermal decomposition of However, in solid electrolytic capacitors, the high heat required during thermal decomposition and the oxidizing effect of the NOx gas generated damage the oxide film of the metal such as aluminum or tantalum, which is the dielectric material, and as a result, the withstand voltage decreases. However, there are extremely serious drawbacks such as increased leakage current and deterioration of dielectric properties.

これらの欠点を補うため、高熱を付加せずに固体>#雷
体層を形成りるブノ法どして、高電導f1の有機半導体
祠料を固体導電体どりる方法が試みられている。その例
どしては、特開昭52−792Fi5号公報に記載され
るにうに7.7,8.8−デトラシアノキノジメタン(
T CN Q ) !fi塩を含む電>Q t’1有機
化合物を固体導°市体の主成分と1−る固体電解1ンデ
ンリ−が知られている。しかしながら、こ1固体電解]
ンデンイノ(ま、l” CN Q♀j)塩が陽極酸化被
膜どの付着性に劣り、電導度ム10−3〜10’S /
cmど不−1分であるため、]ンアンリ−の容吊伯は小
さく、誘電損失も人さく、また熱的経時的イ【安定性も
劣り信頼性が低い。また、T CN Q #ft塩はコ
ス1〜が高いため、固体電f/l]ンデン1j全体の製
)告]ス1へが高くつくという問題があった。
In order to compensate for these drawbacks, attempts have been made to convert an organic semiconductor abrasive material with high conductivity f1 into a solid conductor, such as the Buno method, which forms a solid># lightning body layer without applying high heat. For example, 7,7,8,8-detracyanoquinodimethane (
TCNQ)! A solid electrolyte in which an organic compound containing a fi salt is used as a main component of a solid conductive body is known. However, this solid electrolyte]
CN Q♀j salt has poor adhesion to the anodic oxide film and has a conductivity of 10-3 to 10'S/
Since it is less than 1 minute per centimeter, the dielectric loss is small, the dielectric loss is small, and the thermal stability over time is poor and reliability is low. Further, since the TCNQ#ft salt has a high cost 1~, there is a problem in that the production of the entire solid-state electrode 1j is expensive.

近汗、電導度が高く、誘電体被膜との伺r、竹が、l 
<、また安価な電導性高分子化合物を固体導電体に用い
た固体電解]ンデンリを111!供4る試みがなされて
いる3、この試みにおいては、誘電体どし・て用いる多
孔質金属酸化物の被膜上に電導性高分子化合物をイ」若
さける際に、多孔質金属酸化物の細孔内に雷轡1jI+
、′II分子化合物をIうみに導入して人定化させるこ
とが、[i5ら重要な課題とイ1っている。
Bamboo has a high conductivity, has a dielectric coating, and has a high conductivity.
<Also, solid electrolysis using an inexpensive conductive polymer compound as a solid conductor] 111! Attempts have been made to reduce the thickness of the porous metal oxide when depositing a conductive polymer compound on the porous metal oxide film used as a dielectric. Thunderbolt 1jI+ in the pore
Introducing ``II molecular compounds into I waters and making them habituated to humans is considered an important issue by [i5 and others].

一般に、電導t’l高分子化合物は不溶、不融であり賦
形111、加]−f1が菖しく劣っている。このため殆
どの電導性高分子化合物【ま、溶融成形や、キー・スi
イング法にJ、る成形<−1どができないため、固体導
電体どしてのづ−ぐれたfl能を右し4Tがら、多孔質
金属酸化物の細孔内に導入・Jることができず、従って
固体電解]ンデンリには用いることのできない場合が多
か−)Iこ、1 [発明が解決しJ、うど刀る問題+、’、i 1本発明
の目的は、J= 1ili シ/こも1米1に術の問題
点を解決し、多孔質v、712体の細孔内に固(A l
j雷体としての性能のりぐれCいる1−1f 轡(’I
高分子化合物を容易に導入することができ、さらに誘電
体被膜との?j看f1が良りfτ゛、しかも製)告lス
I・が低い電聯P1情 高分子化合物を固イホ導71i1水とりる固体電解−J
ンデンリの製造1ノ>人を1;♂供りること(ごある。
In general, conductive t'l polymer compounds are insoluble and infusible, and their excipients 111, +-f1 are poor in color. For this reason, most conductive polymer compounds [well, melt molding, key switch]
Since it is not possible to form a solid conductor with <-1, etc., the solid conductor cannot be introduced into the pores of a porous metal oxide while maintaining 4T. Therefore, it cannot be used for solid electrolysis in many cases. We solved the problems of the technique in one go, and added solids (Al) into the pores of the porous body.
1-1f 轡('I
Can a polymer compound be easily introduced, and can it also be used with a dielectric coating? A solid electrolyte that uses a solid electrolyte that uses a polymer compound that has a good f1 and a high fτ゛, and has a low susceptibility I.
The production of Ndenri 1 > the offering of 1;♂ (there is).

。 [問題点を解決りるI、二めの丁「91本発明に従えば
、電+r>−++高分子化合物を固体府電体どづる固体
電解コンラ゛ンサを製造するにあたり、該電導性高分子
化合物を部分的に金属の露出した多孔質誘雷体の金属面
を起点どして電解手合を実施りることにより、多孔質誘
電体層表面に析出・成長さVた後、陽極酸化ににっで露
出金属表面上に誘電体層を形成させることを特徴とりる
固体電解コンデンリ−の製造方法が提供される。
. [Solving the Problems I, Second Section 91 According to the present invention, in manufacturing a solid electrolytic converter in which an electric +r>-++ polymer compound is made into a solid electrolyte, the conductive high By carrying out an electrolysis procedure starting from the metal surface of the porous dielectric material where the metal is partially exposed, the molecular compound is precipitated and grown on the surface of the porous dielectric layer, and then anodized. A method of manufacturing a solid electrolytic condenser is provided, which comprises forming a dielectric layer on an exposed metal surface using Ni.

本発明方法において、部分的に金属の露出した多孔質誘
電体の金属面を起点として電解手合により多孔質誘電体
層表面に析出・成長させる固体導電体どして用いられる
IWf性高分子化合物どは、π電子JL役系を有する高
分子化合物のことであり、電気伝導度が1O−3S/c
m以上の値を右するものが望ましい。このようti電電
導嵩高分子化合物代表例としては、ポリアセブレン、ポ
リパラフJ−ニレン、ポリピロール、ボデオフエン、ポ
リシアノアレヂレン、ポリイソデアナフテン、ポリアセ
ブレン、ポリアニリン、ポリフタロシアニン及びこれら
のポリマーを構成する七ツマ−の誘電体の重合体等をあ
げることができる。これらのzlJ性高−4= 分子化合物のう15、好J、しい電導性高分子化合物ど
しては、ボリブA)[ン、ポリ(1,3−イソヂアブフ
デン)、ポリピ[1−ルをあげることができ、さらに好
ましくはポリブオフェンをあげることができる。
In the method of the present invention, an IWf polymer compound used as a solid conductor is deposited and grown on the surface of a porous dielectric layer by electrolysis starting from the metal surface of a porous dielectric layer where metal is partially exposed. is a polymer compound having a π-electron JL system, and has an electrical conductivity of 1O-3S/c
It is desirable to have a value of m or more. Typical examples of such Ti electrically conductive bulk polymer compounds include polyacerene, polyparaph-J-nylene, polypyrrole, bodeofene, polycyanoaledylene, polyisodeanaphthene, polyacerene, polyaniline, polyphthalocyanine, and the seven polymers constituting these polymers. Examples include dielectric polymers and the like. Among these molecular compounds with high J properties, examples of conductive polymer compounds with high J properties include bolib A) More preferably, polybuophene can be mentioned.

上記の電導性高分子化合物の中には、申付の状態で1O
−3S/cm以十の電気伝導度を右づるものもあれば、
電気供り+(1あるいは電子吸引性のドーパン]へをド
ープすることにJ:っC1O−3S / cm以」−の
電気伝導度を有りる1)のもあり、いずれb固体導電体
どして用いることができる1゜ 後者の場合、ドーピングGJ、化学的ドーピング、電気
化学的ドーピングのいづ゛れの方法を採用してもよい。
Some of the above conductive polymer compounds contain 1O
Some have an electrical conductivity of -3S/cm or more,
When doping an electrically conductive material (1 or an electron-withdrawing dopane), there is also a material that has an electrical conductivity of 1) or an electron-attracting dopane, which has an electrical conductivity of 1) or more than 1), and eventually becomes a solid conductor. In the latter case, any of doping methods such as GJ doping, chemical doping, and electrochemical doping may be employed.

化学的にドーピングするドーパン1〜どしては、従来か
ら知られている種々の電子受容性化合物及び電子供!j
性化合物、例えば、([)沃素、臭素及び沃化臭素の如
きハ1−Iゲン、(■[)五弗化砒素、五弗化アンチt
ン、四弗化珪素、五塩化燐、五弗化燐、jn化アルミニ
ウム、臭化アルミニウム及び弗化アルミニウムの如き金
属八ロゲン化物、(III)硫酸、硝酸、フルオロ硫酸
、トリフルオロメタン1iliQ及びクロロ硫酸の如き
プロトン酸、(IV)三酸化硫黄、二酸化窒素、ジフル
オロスルホニルパー第4−シトの如ぎ酸化剤、(V)A
g(j104、(■)テトラシアノエヂレン、テトラシ
アノキノジメタン、フロラニール、2.3−ジクロル−
5,6−ジシアツバラベンゾキノン、2,3−ジブロム
−5,6−ジシアツバラベンゾキノン、(■)Li、N
a、にの如きアルカリ金属等を用いることができる。一
方、電気化学的(Jドーピングするドーパントとしては
、(I)PFo、5bFii、ASFi、SbCβ1の
如きVa族の元素のハロゲン化物アニオン、11Fiの
如きl[a族の元素のハロゲン化物アニオン、I−(I
:i >、3r −、Cjl−の如きハロゲンアニオン
、C90イの如き過塩素酸アニオン等の陰イオン・ドー
パント及び(TI)Li+。
Dopanes 1 to 1 to be chemically doped include various conventionally known electron-accepting compounds and electrons! j
compounds such as ([) iodine, bromine and bromine iodide, (■ [) arsenic pentafluoride, anti-t
metal octarides such as silicon tetrafluoride, phosphorus pentachloride, phosphorus pentafluoride, aluminum chloride, aluminum bromide and aluminum fluoride, (III) sulfuric acid, nitric acid, fluorosulfuric acid, trifluoromethane 1iliQ and chlorosulfuric acid. (IV) oxidizing agents such as sulfur trioxide, nitrogen dioxide, difluorosulfonyl per 4-cyto, (V) A
g (j104, (■) Tetracyanoedylene, Tetracyanoquinodimethane, Floranil, 2,3-dichloro-
5,6-disiacbenzoquinone, 2,3-dibromo-5,6-disiacbenzoquinone, (■) Li, N
Alkali metals such as a, ni, etc. can be used. On the other hand, dopants for electrochemical (J-doping) include (I) halide anions of Va group elements such as PFo, 5bFii, ASFi, and SbCβ1, halide anions of l[a group elements such as 11Fi, I- (I
:i>, anion dopants such as halogen anions such as 3r-, Cjl-, perchlorate anions such as C90i, and (TI)Li+.

Na  、K”、Rh”、Cs4の如きアルカリ金属イ
オン、一般式R4,M” Hxまたは83M1+ (式
中、RはC1からC1oのアルギル基、フェニル、ハ[
1)■ニル、アルキルフェニル等のアリール基、MC1
,N、l)、As 、MlはO又はS、xは0又は1を
表刃。)で示されるjトラアルキルアンモニウムイAン
、テ1〜ラアルキルボスホニウムイオン、デトラアルー
1ルアルソニウムイオン、トリアルニ1ルア1 :I−
ソニウム、トリフ1ルキルスルホニウムイA゛ン客の陽
イオン・ドーパン1〜等をあげることができるが、必ず
しもこれらに限定されるものではない。
Alkali metal ions such as Na, K", Rh", Cs4, general formula R4, M"Hx or 83M1+ (wherein R is a C1 to C1o argyl group, phenyl, ha[
1) ■ Aryl group such as nyl, alkylphenyl, MC1
, N, l), As, Ml is O or S, x is 0 or 1. ) represented by jtraalkylammonium ion A, te1-laalkylbosphonium ion, detraalyl arsonium ion, trialni1lua1 :I-
Examples include, but are not necessarily limited to, cations such as sonium, trifluorkylsulfonium ions, and dopant ions.

本発明において使用する多孔質誘電体の種類には特に限
定はないが、例えばアルミニウム、タンタル、ニオブ等
の金属の酸化物を好適に使用することができる。多孔質
誘電体に金属面を部分的に露出させる方法には特に限定
はなく、例えば多孔質誘電体を切断するときに生じる金
属面を使用するとか、−面に斑点状に金属面を露出させ
て使用することができる。
The type of porous dielectric used in the present invention is not particularly limited, but oxides of metals such as aluminum, tantalum, and niobium can be suitably used. There are no particular limitations on the method of partially exposing the metal surface on the porous dielectric, for example, using the metal surface generated when cutting the porous dielectric, or exposing the metal surface in spots on the - side. can be used.

多孔質誘電体の金属露出部分の表面積は、電導−Ω  
  − =  7 − 性高分子化合物を与える重合用七ツマ−の種類によって
異なるので一概には決められないが、一般には多孔質誘
電体全表面積に対して、0.001〜10%、好ましく
は0.01〜5%の範囲内が好ましい。
The surface area of the exposed metal part of the porous dielectric is the conductivity - Ω
- = 7 - Although it cannot be determined unconditionally as it varies depending on the type of polymerization polymer that provides the polymeric compound, it is generally 0.001 to 10%, preferably 0. It is preferably within the range of .01 to 5%.

本発明にお(プる電解重合法とは、例えば前記電導、性
高分子化合物を与える重合用七ツマ−を含む電解液を電
解して、七ツマ−の酸化重合を行なう方法のことであり
、各種重合用七ツマ−に対し公知の適切な重合条件を選
ぶことによって行なうことができる。これまでに知られ
ている電解重合法では、陽極どして、例えば金、白金な
ど電気化学的に安定な材質が使用されているが、本発明
においては、前述のように部分的に金属の露出した多孔
質誘電体が使用される。この金属面を起点として重合反
応は速やかに進行し、電導性高分子化合物が誘電体表面
を覆うように成長していく。
The electrolytic polymerization method used in the present invention refers to a method in which, for example, an electrolytic solution containing a seven-termer for polymerization that provides the electrically conductive polymer compound is electrolyzed to carry out oxidative polymerization of the seven-termer. This can be carried out by selecting appropriate known polymerization conditions for various types of polymers.In the electrolytic polymerization methods known so far, electrochemical polymers such as gold or platinum are used as an anode. Stable materials are used, but in the present invention, as mentioned above, a porous dielectric material with partially exposed metal is used.The polymerization reaction proceeds rapidly starting from this metal surface, and it becomes conductive. The polymer compound grows to cover the surface of the dielectric material.

電解重合の重合温度には特に限定はないが、一般には一
60℃から80℃、好ましくは一20℃から30℃の間
の湿度で実施する。
The polymerization temperature for electrolytic polymerization is not particularly limited, but it is generally carried out at a humidity of -60°C to 80°C, preferably -20°C to 30°C.

重合時間は、電導性高分子化合物の析出・成長稈痩を観
察判11’i’Tlることににり退官選定されるが、一
般には数分〜数時間押爪である。
The polymerization time is determined by observing the precipitation and growth of the conductive polymer compound, but is generally in the range of several minutes to several hours.

重合圧ツノには特に限定はないが、一般には重合開始前
に減圧操作により、多孔質誘電体層細孔内を電解液で満
たした接、常圧に戻し重合操作を実施する。
There is no particular limitation on the polymerization pressure, but generally, before the start of polymerization, the pressure is reduced to return the pores of the porous dielectric layer to normal pressure, which is filled with an electrolytic solution, and then the polymerization operation is carried out.

重合後、部分的に金属が露出している多孔質誘電体の金
属表面を修復覆るだめの陽極酸化(後化成)としては、
非水系、水系、或いは固相系などにより行なわれるが、
111高分子化合物の種類により、適当な系を選択1J
ることができる。
After polymerization, anodic oxidation (post-chemical formation) is used to repair and cover the metal surface of a porous dielectric where metal is partially exposed.
It is carried out using non-aqueous systems, aqueous systems, solid phase systems, etc.
111 Select an appropriate system depending on the type of polymer compound 1J
can be done.

[発明の効果1 本発明の方法ににって製造される固体電解コンデンサは
、従来の無機酸化物半導体や右機半導体を用いた固体電
解コンデンサに比較して、容量、誘電損失、経時安定性
においで著しくづ′ぐれた性能を有している。
[Effect of the invention 1] The solid electrolytic capacitor manufactured by the method of the present invention has improved capacitance, dielectric loss, and stability over time compared to solid electrolytic capacitors using conventional inorganic oxide semiconductors or solid-state semiconductors. It has extremely poor odor performance.

また、本発明の方法によっU−製んされる固体電解コン
デンサは、従来公知の固体frsM 11ンデンザに比
較して、以下のようン【利貞を右している。
Furthermore, the solid electrolytic capacitor produced by the method of the present invention has the following advantages compared to the conventionally known solid FRSM 11 capacitor.

■ 高温に加熱することなく、多孔質誘電体層、トに電
導性高分子化合物を形成できるので、陽極の酸化被膜の
損傷がない。そのため、定格電圧を従来の数倍に上げる
ことができ、同容量、同定格電圧のコンデンサを得るの
に、従来のちのに比較して形状を小型化できる。
■ Since a conductive polymer compound can be formed on the porous dielectric layer without heating to high temperatures, there is no damage to the oxide film on the anode. Therefore, the rated voltage can be increased several times compared to the conventional capacitor, and the shape can be made smaller compared to the conventional capacitor, even though the capacitor has the same capacity and the same rated voltage.

■ 電導性高分子化合物と誘電体被膜どの付着性が良好
であるため、漏れ電流が小さい。
■ Leakage current is small because the conductive polymer compound and dielectric coating have good adhesion.

■ 高耐圧のコンデンサを作製することができる。■ Capacitors with high withstand voltage can be manufactured.

■ 電導性高分子化合物の電導麿が10’S/cm以上
で十分に高いため、グラファイト等の導電層を設ける必
要がなく、そのための1[稈が簡略化することができる
(2) Since the conductivity of the conductive polymer compound is sufficiently high at 10'S/cm or more, there is no need to provide a conductive layer such as graphite, and the culm for this purpose can be simplified.

■ 周波数特性が良い。■Good frequency characteristics.

■ 製造コストが低い。■ Low manufacturing cost.

[実施例コ 以下、実施例及び比較例をあげて本発明を更に詳細に説
明する。
[Example] The present invention will be explained in more detail by referring to Examples and Comparative Examples.

なお、各個の固体電解コンデンサの特性値は表に示した
Note that the characteristic values of each solid electrolytic capacitor are shown in the table.

実施例 1 厚さ100μmのアルミニウム箔(純度99.99%)
を陽極とし、直流及び交流の交n使用により、箔の表面
を電気化学的にエツチングして平均細孔径2μmで、比
表面積が127rL2/gの多孔質アルミニウム箔どし
た。次いで、このエツチング処理したアルミニウム的を
硼酸アルミニウムの液中に浸漬し、液中で電気化学的に
アルミニウム的の」二に誘電体の薄層を形成した。
Example 1 Aluminum foil with a thickness of 100 μm (purity 99.99%)
was used as an anode, and the surface of the foil was electrochemically etched by alternating direct current and alternating current to obtain a porous aluminum foil with an average pore diameter of 2 μm and a specific surface area of 127 rL2/g. The etched aluminum substrate was then immersed in an aluminum borate solution, and a thin dielectric layer was electrochemically formed in the solution on top of the aluminum substrate.

このようにしで作製した)′ルミニウム箭の外周部分を
裁断ηることににす、部分的にアルミニウム金属表面を
露出さけた。アルミニウム金属の露出部分は、多孔質誘
電体の全表面積の0.1%であった。これを陽極どして
使用し、白金板を陰極として使用し、0.1moJl 
/、Qチオフェンと0.05mofl’/J  I−i
[3F+とを含むベンゾニトリル溶液にアルゴンガス雰
囲気中、常温、常圧′C:4〜5v、2 m A / 
cm 2の電流を2時間流し、チオフェンを電気化学的
に重合して前記陽極板上にボリチオフエンフィルムを析
出させた。このポリチオフェンフィルムの電導度は20
8/cmであった。次にこのポリチオフェンフィルムで
覆われたアルミニウム箔を陽極とし、白金板を陰極とし
て、ホウ酸アンモニウムのエヂレングリコール溶液中で
後化成を9V、10分間実施した。この後化成物を陽極
とし、陰極にアルミニウム箔を用いてゴムで封止して固
体電解コンデンサを作製した。
It was decided to cut the outer circumferential part of the aluminum tube () produced in this way, so as to partially expose the aluminum metal surface. The exposed portion of aluminum metal was 0.1% of the total surface area of the porous dielectric. This was used as an anode, and the platinum plate was used as a cathode.
/, Qthiophene and 0.05 mofl'/J I-i
[A benzonitrile solution containing 3F+ in an argon gas atmosphere at room temperature and normal pressure 'C: 4 to 5 V, 2 m A /
A current of cm 2 was applied for 2 hours to electrochemically polymerize thiophene to deposit a polythiophene film on the anode plate. The conductivity of this polythiophene film is 20
It was 8/cm. Next, using the aluminum foil covered with this polythiophene film as an anode and the platinum plate as a cathode, post-chemical conversion was performed in an ethylene glycol solution of ammonium borate at 9 V for 10 minutes. Thereafter, the chemical compound was used as an anode, aluminum foil was used as a cathode, and the capacitor was sealed with rubber to produce a solid electrolytic capacitor.

実施例 2 実施例1と同じ陽極を用い、炭素板を陰極として使用し
て、0.1mo、O/ρの1.3=イソチアナフテンと
0.05 ma1/1のテトラフェニルフォスフAニウ
ムクロライドとを含むアセトニトリル溶液にアルゴンガ
ス雰囲気中、常温、常圧で2〜3V11mA/cm2の
電流を2時間流し、イソチアナフテンを電気化学的に重
合して、陽極板−トにポリイソチアナフテンフィルムを
析出させた。このポリ(1,3−イソチアナフテン)フ
ィルムの電導度は10S/cmであった。実施例1と同
様に後化成した後、陰極にアルミニウム箔を用いてゴム
で封止して固体電解コンデンサを作製した。
Example 2 Using the same anode as in Example 1 and a carbon plate as a cathode, 0.1 mo, O/ρ of 1.3=isothianaphthene and 0.05 ma1/1 of tetraphenylphosphium A were prepared. A current of 2 to 3 V and 11 mA/cm2 is applied to an acetonitrile solution containing chloride in an argon gas atmosphere at room temperature and pressure for 2 hours to electrochemically polymerize isothianaphthene and form polyisothianaphthene on the anode plate. A film was deposited. The electrical conductivity of this poly(1,3-isothianaphthene) film was 10 S/cm. After post-forming in the same manner as in Example 1, aluminum foil was used as the cathode and sealed with rubber to produce a solid electrolytic capacitor.

実施例 3 実施例1ど同じ陽極を用い、白金板を陰極として使用し
て、0.1mofJ/、11のピ[1−ルど0,05m
oj/41のp−トルエンスルホン酸のトリーn−ブチ
ルアンモニウム塩とを含むアセトニトリル溶液にアルゴ
ンガス雰囲気中、常温、常圧で3〜4V11′rrLA
/cm2の電流を2時間流し、ビロールを電気化学的に
重合して陽極板−りにポリピロールフィルムを析出させ
た。このポリピロールフィルムの電導度は50S/αで
あった。実施例1と同様に後化成した後、陰極にアルミ
ニウム箔を用い、ゴム封止して固体電解コンデンサを作
製した。
Example 3 Using the same anode as in Example 1 and using a platinum plate as a cathode, 0.1mofJ/, 11 pillars [1-pole 0.05m]
oj/41 p-toluenesulfonic acid tri-n-butylammonium salt in an acetonitrile solution containing 3 to 4 V11'rrLA at room temperature and pressure in an argon gas atmosphere.
A current of /cm2 was passed for 2 hours to electrochemically polymerize pyrrole and deposit a polypyrrole film on the anode plate. The electrical conductivity of this polypyrrole film was 50S/α. After post-forming in the same manner as in Example 1, aluminum foil was used as the cathode and sealed with rubber to produce a solid electrolytic capacitor.

比較例 実施例1と同じ誘電体層を右するアルミニウム箔を使用
し、従来の二酸化マンガンを固体導電体とし、陰極をア
ルミニウム箔どした固体電解コンデンサを作製した。
Comparative Example A solid electrolytic capacitor was manufactured using the same aluminum foil as in Example 1 for the dielectric layer, using conventional manganese dioxide as the solid conductor, and having the cathode made of aluminum foil.

Claims (1)

【特許請求の範囲】[Claims]  電導性高分子化合物を固体導電体とする固体電解コン
デンサを製造するにあたり、該電導性高分子化合物を部
分的に金属の露出した多孔質誘電体の金属面を起点とし
て電解重合を実施することにより、多孔質誘電体層表面
に析出・成長させた後、陽極酸化によつて露出金属表面
上に誘電体層を形成させることを特徴とする固体電解コ
ンデンサの製造方法。
In manufacturing a solid electrolytic capacitor using a conductive polymer compound as a solid conductor, electrolytic polymerization of the conductive polymer compound is carried out starting from the metal surface of a porous dielectric material with partially exposed metal. A method for producing a solid electrolytic capacitor, which comprises depositing and growing a porous dielectric layer on the surface thereof, and then forming a dielectric layer on the exposed metal surface by anodic oxidation.
JP25780985A 1985-11-19 1985-11-19 Method for manufacturing solid electrolytic capacitor Expired - Lifetime JPH0650710B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25780985A JPH0650710B2 (en) 1985-11-19 1985-11-19 Method for manufacturing solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25780985A JPH0650710B2 (en) 1985-11-19 1985-11-19 Method for manufacturing solid electrolytic capacitor

Publications (2)

Publication Number Publication Date
JPS62118511A true JPS62118511A (en) 1987-05-29
JPH0650710B2 JPH0650710B2 (en) 1994-06-29

Family

ID=17311415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25780985A Expired - Lifetime JPH0650710B2 (en) 1985-11-19 1985-11-19 Method for manufacturing solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH0650710B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173313A (en) * 1987-01-13 1988-07-16 日本カーリット株式会社 Solid electrolytic capacitor
US6344966B1 (en) 1998-09-08 2002-02-05 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6351370B1 (en) 1998-03-19 2002-02-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6421227B2 (en) 1999-12-10 2002-07-16 Showa Denko K.K. Solid electrolytic multilayer capacitor
US6430032B2 (en) 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
US6466421B1 (en) 1998-05-21 2002-10-15 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6517892B1 (en) 1999-05-24 2003-02-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6660188B1 (en) 1999-04-13 2003-12-09 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
US6663796B1 (en) 1998-12-25 2003-12-16 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
US6783703B2 (en) 1999-05-24 2004-08-31 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63173313A (en) * 1987-01-13 1988-07-16 日本カーリット株式会社 Solid electrolytic capacitor
JPH0474853B2 (en) * 1987-01-13 1992-11-27
US6351370B1 (en) 1998-03-19 2002-02-26 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US7175781B2 (en) 1998-03-19 2007-02-13 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6807049B2 (en) 1998-03-19 2004-10-19 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6790384B2 (en) 1998-03-19 2004-09-14 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6466421B1 (en) 1998-05-21 2002-10-15 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6344966B1 (en) 1998-09-08 2002-02-05 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6663796B1 (en) 1998-12-25 2003-12-16 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
US6660188B1 (en) 1999-04-13 2003-12-09 Showa Denko K.K. Electrical conducting polymer, solid electrolytic capacitor and manufacturing method thereof
US6783703B2 (en) 1999-05-24 2004-08-31 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
US6696138B2 (en) 1999-05-24 2004-02-24 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6517892B1 (en) 1999-05-24 2003-02-11 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US7060205B2 (en) 1999-05-24 2006-06-13 Showa Denko Kabushiki Kaisha Solid electrolytic capacitor and method for producing the same
US7087292B2 (en) 1999-05-24 2006-08-08 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same
US6706078B2 (en) 1999-12-10 2004-03-16 Showa Denko Kabushiki Kaisha Solid electrolytic multilayer capacitor
US6421227B2 (en) 1999-12-10 2002-07-16 Showa Denko K.K. Solid electrolytic multilayer capacitor
US6430032B2 (en) 2000-07-06 2002-08-06 Showa Denko K. K. Solid electrolytic capacitor and method for producing the same
US6867088B2 (en) 2000-07-06 2005-03-15 Showa Denko K.K. Solid electrolytic capacitor and method for producing the same

Also Published As

Publication number Publication date
JPH0650710B2 (en) 1994-06-29

Similar Documents

Publication Publication Date Title
EP0274755B1 (en) Solid electrolytic capacitor
JPS6037114A (en) Solid electrolytic condenser
JPS62118511A (en) Manufacture of solid electrolytic capacitor
JP2011228636A (en) Solid-state capacitor and manufacturing method of the same
JPS62165313A (en) Manufacture of solid electrolyte capacitor
JPH0682592B2 (en) Method for manufacturing solid electrolytic capacitor
JPS62118509A (en) Solid electrolytic capacitor
JPH0552656B2 (en)
JP3242464B2 (en) Method for manufacturing solid electrolytic capacitor
JPH04111407A (en) Manufacture of solid electrolytic capacitor
JP2612007B2 (en) Method for manufacturing solid electrolytic capacitor
JP2810100B2 (en) Method for manufacturing solid electrolytic capacitor
JP2632944B2 (en) Solid electrolytic capacitors
JPS6017909A (en) Solid electrolytic condenser
JPS62118510A (en) Manufacture of solid electrolytic capacitor
JPH0650708B2 (en) Method for manufacturing solid electrolytic capacitor
JPS6122614A (en) Solid electrolytic condenser
JPH02137309A (en) Manufacture of solid electrolytic capacitor
JPH0552658B2 (en)
JP2621089B2 (en) Solid electrolytic capacitors
JPH053129B2 (en)
JPH033310A (en) Manufacture of solid electrolytic capacitor
JPH02251126A (en) Manufacture of solid electrolytic capacitor
JPH04369818A (en) Manufacture of solid electrolytic capacitor
JPH01268111A (en) Solid electrolytic capacitor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term