JPS6116227A - Supercharger for engine - Google Patents

Supercharger for engine

Info

Publication number
JPS6116227A
JPS6116227A JP59137224A JP13722484A JPS6116227A JP S6116227 A JPS6116227 A JP S6116227A JP 59137224 A JP59137224 A JP 59137224A JP 13722484 A JP13722484 A JP 13722484A JP S6116227 A JPS6116227 A JP S6116227A
Authority
JP
Japan
Prior art keywords
engine
supercharger
radiator
compressed air
expansion valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59137224A
Other languages
Japanese (ja)
Inventor
Soichiro Miyazaki
宮崎 総一郎
Takeshi Saito
斎藤 孟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Radiator Co Ltd
Original Assignee
Toyo Radiator Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Radiator Co Ltd filed Critical Toyo Radiator Co Ltd
Priority to JP59137224A priority Critical patent/JPS6116227A/en
Publication of JPS6116227A publication Critical patent/JPS6116227A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

PURPOSE:To make combustion better as well as to improve a supercharging effect ever so high, by installing an expansion valve in position between a supercharger and an engine suction pipe together with a radiator, while cooling high temperature compressed air to be feed out of the supercharger sufficiently with the radiator and the expansion valve in combination. CONSTITUTION:Exhaust out of an engine 1 passes through an exhaust pipe 3 and rotates a supercharger 4 consisting of a turbine 5 and a compressor 6 at high speed. Accordingly, air out of a suction port 7 is compressed and, after being cooled in a radiator 9, fed to the engine 1, contributing to an output increase. Under this constitution aforesaid, an expansion valve 10 is installed in position between the radiator 9 and a suction pipe of the engine 1. And, after cooling the high temperature compressed air to be fed out of the supercharger 4 by means of heat exchanging with the radiator 9, this compressed air is further lowered down to the desired temperature upon adiabatic expansion by the expansion valve 10. With this constitution, the compressed air to be fed to the engine 1 is sufficiently cooled whereby an abnormal combustion of fuel inside a cylinder and an increase in heat load on every part of the engine 1 are prevented from occurring.

Description

【発明の詳細な説明】 〔産業」−二の利用分野〕 本発明は、従来の過給機よりも給気温度を下げることに
より、エンジン内の燃焼温度の過度の上昇を防止すると
ともに、過給効果を増大させた、小型軽量の空気過給装
置に関するものである。
[Detailed Description of the Invention] [Industry] - Second Field of Application] The present invention prevents an excessive rise in the combustion temperature in the engine by lowering the temperature of the charge air than a conventional supercharger, and also reduces the This invention relates to a small and lightweight air supercharging device that increases the feeding effect.

〔従来の技術〕[Conventional technology]

第3図は、従来の空気過給装置を備えるエンジンを略示
するもので、(51)はエンジン、(52)は、エンジ
ン(51)の吸気管、(53)は、同じく排気管、(5
4)は過給機、(55)は、エンジン(51)の排気に
より高速回転するタービン、(56)は、タービン(5
5)により駆動される圧縮機、(57)は、過給機(5
4)の吸気口、(58)は、同じく排気口、(59)は
、圧縮機(56)と吸気管(52)の間に設けた放熱器
で、上記排気管(53)と排気口(58)は、逃し弁(
60)を備えるバイパス管(61)により短絡されてい
る。
FIG. 3 schematically shows an engine equipped with a conventional air supercharging device, where (51) is the engine, (52) is the intake pipe of the engine (51), (53) is also the exhaust pipe, ( 5
4) is a supercharger, (55) is a turbine that rotates at high speed due to the exhaust gas of the engine (51), and (56) is a turbine (5).
The compressor (57) is driven by the supercharger (5).
4) is an intake port, (58) is an exhaust port, and (59) is a radiator provided between the compressor (56) and the intake pipe (52). 58) is the relief valve (
60) and a bypass pipe (61).

この装置は、エンジン(51)の排気により高速回転す
る過給機(54)をもって、多量の空気を圧縮して、放
熱器(59)で冷却した後、エンジン(51)に給気す
ることにより、エンジン(51)の出力の増大を図って
いる。
This device has a supercharger (54) that rotates at high speed due to the exhaust gas from the engine (51), compresses a large amount of air, cools it with a radiator (59), and then supplies the air to the engine (51). , aiming to increase the output of the engine (51).

〔本発明が解決しようとする問題点〕[Problems to be solved by the present invention]

しかし、上述の装置は、圧縮機(56)において断熱圧
縮されて高温となった空気が、エンジン(51)に供給
されるので、放熱器(59)が小型であると、過給機(
54)の回転が著しく高速になった時、圧縮空気が十分
に冷却されず、シリンダ内において燃料が異状燃焼する
ことがあり、また無過給エンジンに比し、給気が高温で
ある分だけ、シリンダ内のガスが高温となり、エンジン
(51)の各部材の熱負荷が大きくなる。
However, in the above-mentioned device, air that has been adiabatically compressed and becomes high temperature in the compressor (56) is supplied to the engine (51), so if the radiator (59) is small, the supercharger (
54) When the rotation speed becomes extremely high, the compressed air may not be sufficiently cooled and the fuel may burn abnormally in the cylinder, and compared to a non-supercharged engine, the intake air may be hotter. , the gas in the cylinder becomes high temperature, and the thermal load on each member of the engine (51) increases.

逃し弁(60)は、エンジン(51)が高速回転して、
排気圧が所定値以上に上昇すると、自動的に開いて、排
気をバイパス管(61)よりバイパスさせることにより
、過給機(54)の回転数を一定値以下に押さえ、圧縮
空気の過大な温度上昇を防止して、上述の問題の解決を
図っている。
The relief valve (60) operates when the engine (51) rotates at high speed.
When the exhaust pressure rises above a predetermined value, it automatically opens and bypasses the exhaust gas through the bypass pipe (61), thereby keeping the rotation speed of the supercharger (54) below a certain value and preventing excessive compressed air. The above-mentioned problem is solved by preventing temperature rise.

そのため、エンジン(51)の高速回転時における出力
の増大が制限されていた。
Therefore, the increase in output when the engine (51) rotates at high speed is limited.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、過給機において断熱圧縮して高温となった圧
縮空気を、放熱した後、絞り膨張させることにより、冷
却して、上述の諸問題を解決しようとするものである。
The present invention attempts to solve the above-mentioned problems by cooling compressed air that has been adiabatically compressed to a high temperature in a supercharger, and then radiates heat and then expands the compressed air.

〔作  用〕[For production]

本発明において使用される断熱膨張装置自体には、放熱
作用はなく、圧縮空気の絞り膨張による温度低下の分は
、過給機の回転を低速として、膨張弁前後の圧力差の分
だけ、過給機のブースト圧を低くしても得られるが、膨
張弁を設けたことにより、圧縮空気の膨張弁通過前の温
度、すなわち放熱器内の空気温度を、断熱膨張により低
下する温度だけ高くす′ることができ、大気との温度差
を大きくとれるので、放熱器における熱交換効率が増大
する。
The adiabatic expansion device itself used in the present invention has no heat dissipation effect, and the temperature drop due to the throttle expansion of the compressed air is compensated for by reducing the rotation speed of the supercharger by the pressure difference before and after the expansion valve. This can be achieved by lowering the boost pressure of the feeder, but by installing an expansion valve, the temperature of the compressed air before it passes through the expansion valve, that is, the air temperature inside the radiator, can be increased by the temperature that decreases due to adiabatic expansion. ', and the temperature difference with the atmosphere can be increased, increasing the heat exchange efficiency in the radiator.

従って、放熱器を小型としても、エンジンへ供給する圧
縮空気を、十分に冷却することができる。
Therefore, even if the radiator is small, compressed air supplied to the engine can be sufficiently cooled.

〔実施例〕〔Example〕

第1図は、本発明の空気過給装置を備えるエンジンを略
示するもので、(1)・(2)・(3)・(4)・(5
)・(6)・(7)・(8)・(9)は、それぞれ、上
記(5])・(52)・(53)・(54)・(55)
・(56)・(57)・(58)・(59)と同様のエ
ンジン・吸気管・排気管・過給機・タービン・圧縮機・
吸気口・排気口・放熱器である。
FIG. 1 schematically shows an engine equipped with an air supercharging device of the present invention, and shows (1), (2), (3), (4), (5
), (6), (7), (8), and (9) are the above (5]), (52), (53), (54), and (55), respectively.
・Engine, intake pipe, exhaust pipe, supercharger, turbine, compressor, similar to (56), (57), (58), (59)
They are an intake port, an exhaust port, and a radiator.

本発明の装置は、上記バイパス管(61)と逃し弁(6
0)を省略゛して、放熱器(9)と、エンジン(1)の
吸気管(2)の間に、膨張弁(10)を設け、過給機(
4)より送り出される高温の圧縮空気k、放熱器(9)
において、熱交換により冷却した後、さら”に膨張弁(
10)を通過させて、断熱膨張させることにより、所望
の温度まで、低下させるものである。
The device of the present invention includes the bypass pipe (61) and the relief valve (6
0) is omitted, an expansion valve (10) is provided between the radiator (9) and the intake pipe (2) of the engine (1), and the supercharger (
4) High temperature compressed air k sent out from the radiator (9)
After cooling by heat exchange, the expansion valve (
10) and is adiabatically expanded to lower the temperature to a desired temperature.

膨張弁(10)自体は公知であるが、参考までに、その
−例を、第2図に略示する。
Although the expansion valve (10) itself is well known, an example thereof is schematically shown in FIG. 2 for reference.

第2図において、(zO)は、前部たる流入側(20a
)と、後部たる流出側(20b)が、やや小径をなし、
かつ中央部が大径をなす断面円形の筒状の弁箱である。
In FIG. 2, (zO) is the front inflow side (20a
) and the rear outflow side (20b) has a slightly smaller diameter,
It is a cylindrical valve box with a circular cross section and a large diameter in the center.

弁箱(20)の中央部内側には、その流出側(20b)
の内面とほぼ等しい外径を有し、かつ前端が面板(21
)で閉塞された直円筒状の支筒(22)が、同軸的に一
体形成されている。
Inside the central part of the valve box (20) is an outflow side (20b).
has an outer diameter approximately equal to the inner surface of the face plate (21
) is coaxially formed integrally with a right cylindrical support tube (22).

支筒(22)の後端部の内面には、受圧板(23)が、
僅少の間隙をもって遊嵌されている。
A pressure receiving plate (23) is provided on the inner surface of the rear end of the support tube (22).
It is loosely fitted with a small gap.

弁箱(20)の流出側(20b)の内面には、支筒(2
2) 。
The inner surface of the outflow side (20b) of the valve box (20) has a support tube (2
2).

とほぼ等径をなす円筒状の絞り筒(24)が、僅少の間
隙をもって遊嵌されており、絞り筒(24)と前記受圧
板(23)とは、適数の連杆(25)をもって連結され
ている。
A cylindrical aperture tube (24) having approximately the same diameter is loosely fitted with a small gap, and the aperture tube (24) and the pressure receiving plate (23) are connected with an appropriate number of connecting rods (25). connected.

支筒(22)内の面板(21)と受圧板(23)との間
には。
Between the face plate (21) and the pressure receiving plate (23) inside the support tube (22).

圧縮コイルばね(26)が挿入されている。A compression coil spring (26) is inserted.

流入側(20a)より弁箱(20)内へ流入する気流の
速度が上昇するのに伴い、流出側(20b)の背圧が上
昇すると、受圧板(23)は、コイルばね(26)に抗
して前方へ押し動かされ、支筒(22)の後縁と絞り筒
(24)の前縁との距離を小さくすることにより、気流
を絞り膨張させる。
When the back pressure on the outflow side (20b) increases as the speed of the airflow flowing into the valve body (20) from the inflow side (20a) increases, the pressure receiving plate (23) is moved by the coil spring (26). The airflow is throttled and expanded by being pushed forward against the resistance and reducing the distance between the rear edge of the support tube (22) and the front edge of the throttle tube (24).

本発明の装置の各部における圧縮空気の圧力と温度の関
係の一例を示せば、30℃の大気を、過給機(4)をも
って圧縮すると、1.80℃に上昇し、放熱器(9)を
通過すると、2.8kg/am” 90℃となり、膨張
弁(10)を通過して断熱膨張すると、1.6kg/c
m2・36℃となる。
To give an example of the relationship between the pressure and temperature of compressed air in each part of the device of the present invention, when air at 30°C is compressed by the supercharger (4), the temperature rises to 1.80°C, and the temperature rises to 1.80°C. When it passes through the expansion valve (10), it becomes 2.8kg/am” at 90°C, and when it expands adiabatically after passing through the expansion valve (10), it reaches 1.6kg/cm.
m2・36℃.

なお、従来の装置において、30’Cの大気を、過給機
(54)をもって、1.6kg/cm2に圧縮して、放
熱器(9)と同様の放熱器(59)を通過させても、上
述した理由により、熱交換効率が低いので、温度は、3
6℃より著しく高くなる。
In addition, in the conventional device, even if the atmosphere at 30'C is compressed to 1.6 kg/cm2 by the supercharger (54) and passed through a radiator (59) similar to the radiator (9), , due to the reasons mentioned above, the heat exchange efficiency is low, so the temperature is 3.
Significantly higher than 6℃.

〔本発明の効果〕[Effects of the present invention]

本発明装置は、上述のように、エンジンへ供給する圧縮
空気を、十分に低温となしうるので、シリング内におい
て、燃料が異状燃焼することがなく、かつエンジンの各
部に過大の負荷をかけることもなく、しかも低温である
ため、従来の装置より、圧力の割に空気量が多く、従っ
て過給効果が太きい。
As mentioned above, the device of the present invention can keep the compressed air supplied to the engine at a sufficiently low temperature, so there is no abnormal combustion of fuel in the sill, and no excessive load is placed on each part of the engine. Moreover, since the temperature is low, the amount of air is larger compared to conventional equipment in relation to the pressure, and therefore the supercharging effect is greater.

また、膨張弁は、十分小型であるとともに、放熱器は、
圧縮空り、が高温の熱交換効率の良い点で使用しうるの
で、小型とすることができ、従って、装置全体を小型軽
量化することができる。
In addition, the expansion valve is sufficiently small, and the radiator is
Since compressed air can be used with good heat exchange efficiency at high temperatures, it can be made compact, and the entire device can therefore be made smaller and lighter.

さらに、逃し弁を省略するか、又は逃し弁の開弁時の設
定圧力を、著しく高めることができることができ、その
結果、過給機を、エンジンの高速回転時にも、有効に利
用して、熱効率を著しく向上することができる。
Furthermore, the relief valve can be omitted or the set pressure when the relief valve is opened can be significantly increased, and as a result, the supercharger can be used effectively even when the engine is running at high speed. Thermal efficiency can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明装置を備えるエンジンの略伝図、 第2図は、本発明の装置中における膨張弁の一例を略伝
する縦断面図、 第3図は、従来の空気過給装置を備えるエンジンの略伝
図である。    □ (1)エンジン    (2)吸気管 (3)排気管     (4)過給機 (5)タービン     (6)圧縮機(7)吸気口 
    (8)排気口 (9)放熱器     (10)膨張弁(20)弁箱 
     (20a)流入側(zob)流出側    
(21)面板(22)支筒      (23)受圧板
(24)絞り筒     (25)連杆(26)コイル
ばね   (51)エンジン(52)吸気管     
(53)排気管(54)過給機     (55)ター
ビン(56)圧縮機     (57)吸気口(58)
排気口     (59)放熱器(60)逃し弁   
  (61)バイパス管第1図 第2図
FIG. 1 is a schematic diagram of an engine equipped with the device of the present invention; FIG. 2 is a vertical sectional view schematically illustrating an example of an expansion valve in the device of the present invention; FIG. 3 is a schematic diagram of an engine equipped with a conventional air supercharging device It is a schematic biographical diagram of an engine. □ (1) Engine (2) Intake pipe (3) Exhaust pipe (4) Supercharger (5) Turbine (6) Compressor (7) Inlet
(8) Exhaust port (9) Heat sink (10) Expansion valve (20) Valve box
(20a) Inflow side (zob) Outflow side
(21) Face plate (22) Support tube (23) Pressure receiving plate (24) Throttle tube (25) Connecting rod (26) Coil spring (51) Engine (52) Intake pipe
(53) Exhaust pipe (54) Supercharger (55) Turbine (56) Compressor (57) Intake port (58)
Exhaust port (59) Heat sink (60) Relief valve
(61) Bypass pipe Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims]  エンジンの排気により駆動される過給機と、過給機に
より圧縮された高温の圧縮空気を冷却する放熱機と、冷
却された圧縮空気を絞り膨張させて温度を下げ、エンジ
ンに給気する膨張弁、とを備えてなるエンジンの空気過
給装置。
A supercharger driven by engine exhaust gas, a radiator that cools the high-temperature compressed air compressed by the supercharger, and an expansion that throttles and expands the cooled compressed air to lower its temperature and supply air to the engine. An air supercharging device for an engine, comprising a valve.
JP59137224A 1984-07-04 1984-07-04 Supercharger for engine Pending JPS6116227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59137224A JPS6116227A (en) 1984-07-04 1984-07-04 Supercharger for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59137224A JPS6116227A (en) 1984-07-04 1984-07-04 Supercharger for engine

Publications (1)

Publication Number Publication Date
JPS6116227A true JPS6116227A (en) 1986-01-24

Family

ID=15193678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59137224A Pending JPS6116227A (en) 1984-07-04 1984-07-04 Supercharger for engine

Country Status (1)

Country Link
JP (1) JPS6116227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479618A (en) * 2010-04-17 2011-10-19 Gm Global Tech Operations Inc Device and method for turbocharging an internal combustion engine
WO2014172749A2 (en) * 2013-04-26 2014-10-30 Theodore Valerio Heat sink and heat dissipation system for lighting module

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2479618A (en) * 2010-04-17 2011-10-19 Gm Global Tech Operations Inc Device and method for turbocharging an internal combustion engine
US20110252793A1 (en) * 2010-04-17 2011-10-20 GM Global Technology Operations LLC Device for turbocharging an internal combustion engine, vehicle, and method for turbocharging an internal combustion engine
WO2014172749A2 (en) * 2013-04-26 2014-10-30 Theodore Valerio Heat sink and heat dissipation system for lighting module
WO2014172749A3 (en) * 2013-04-26 2014-12-18 Theodore Valerio Heat sink and heat dissipation system for lighting module

Similar Documents

Publication Publication Date Title
US4010613A (en) Turbocharged engine after cooling system and method
US5152144A (en) Air to air heat exchanger internal bypass
US3355877A (en) Supercharged diesel engine power plants
US3232042A (en) Engine turbocharging systems
US7322192B2 (en) Exhaust gas recirculation system
GB1560769A (en) Low-compression piston internalcombustion engine with turbosupercharging and control of the intake air temperature
US20120192557A1 (en) Engine System
US20110271936A1 (en) Air intake powered engine backpressure reducing system
US6247460B1 (en) Vortex tube affixed to a turbocharger, supercharger or intake manifold of an engine
JPH01152019U (en)
JP2007077900A (en) Two-stage supercharging system
US20220235717A1 (en) Internal Combustion Engine with Cooling Assist System for Manifold Intake Temperature Reduction
JPS6116227A (en) Supercharger for engine
JPS61237998A (en) Radiator for supercharger incorporating supercharged air bypassing device
EP1048832A1 (en) "Supercharged internal-combustion engine"
US11486331B2 (en) Gas engine heat pump
JP2000008961A (en) Charge air cooler for ghp gas engine
CN112627967B (en) Intercooler and thermal management method
JPS6088821A (en) Suction air cooling device for supercharged engine
JPH0213131B2 (en)
JP2007077899A (en) Two-stage supercharging system
JPH02245415A (en) Air-cooled internal combustion engine
WO2021092819A1 (en) Air preparation system
JPS593144Y2 (en) Supercharged diesel engine intake air cooling system
CN216278132U (en) Inter-cooling system