JPS61157612A - Controlling method of solidification segregation of steel - Google Patents

Controlling method of solidification segregation of steel

Info

Publication number
JPS61157612A
JPS61157612A JP27435184A JP27435184A JPS61157612A JP S61157612 A JPS61157612 A JP S61157612A JP 27435184 A JP27435184 A JP 27435184A JP 27435184 A JP27435184 A JP 27435184A JP S61157612 A JPS61157612 A JP S61157612A
Authority
JP
Japan
Prior art keywords
phase
segregation
steel
alpha
solidification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27435184A
Other languages
Japanese (ja)
Other versions
JPH0360572B2 (en
Inventor
Yoshiyuki Uejima
良之 上島
Nobuyuki Komatsu
伸行 小松
Shozo Mizoguchi
溝口 庄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP27435184A priority Critical patent/JPS61157612A/en
Priority to EP85309473A priority patent/EP0186512B1/en
Priority to DE8585309473T priority patent/DE3579138D1/en
Publication of JPS61157612A publication Critical patent/JPS61157612A/en
Priority to US07/201,370 priority patent/US4809765A/en
Publication of JPH0360572B2 publication Critical patent/JPH0360572B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Steel In Its Molten State (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To control effectively the dendritic segregation and the adding one and more kinds of Be, Cr, Nb, Sn, Ti and V in the specified quantity into a molten steel in the casting of middle or low carbon steel. CONSTITUTION:In the casting of carbon steel contg. <=0.53wt% C, one and more kinds of Be, Cr, Nb, Sn, Ti and V are added respectively by <=2% and if necessary, <=2% Mo is added. The delta phase (=alpha phase) region is extended by the addition of alpha stabilizing element. As the result wherein the delta phase region in the dendritic crystalline part is increased, the region that the delta phase and the alpha phase coexist is extended and the reaction rate of peritectic or the Ar4 transformation degree is increased. Therefore the separation of alpha stabilizing element (e.g. P) and gamma stabilizing element (e.g. Mn) which is caused by the difference of the solubility into the delta phase and the gamma phase is accelerated and the double segregation in the dendrite 21 is decreased.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、鋼の凝固偏析制御法に係り、更に詳しくは連
続鋳造等によって得られる成品鋼材の材質欠陥の原因と
なる凝固偏析を軽減する方法に関し、特に鋼の凝固時の
欄間の重複偏析を効果的に制御する方法に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a method for controlling solidification segregation of steel, and more specifically to a method for reducing solidification segregation, which causes material defects in finished steel products obtained by continuous casting, etc. In particular, the present invention relates to a method for effectively controlling transom overlap segregation during solidification of steel.

従来の技術 従来より連続鋳造や造塊においては、凝固時溶質の偏析
によって、鋳片の表面疵や割れが生ずるなど成品の品質
が悪化するため、その改善が望まれていた。
BACKGROUND OF THE INVENTION Conventionally, in continuous casting and ingot making, segregation of solutes during solidification deteriorates the quality of finished products, such as surface flaws and cracks in slabs, and improvements have been desired.

これらの改善方法としては、溶鋼へGaを添加する方法
、精錬によって、有害な偏析の原因となる溶質を予め低
減させておく方法、連続鋳造機のロール間隔を短くしバ
ルジングを抑え、又は電磁攪拌に・よって中心偏析を軽
減する方法などが行われている。
These improvement methods include adding Ga to molten steel, reducing solutes that cause harmful segregation in advance through refining, shortening the roll interval of a continuous casting machine to suppress bulging, or electromagnetic stirring. Methods are being used to reduce center segregation.

又、省エネルギー、省力化の点から、連鋳片を室温まで
冷やすことなく、熱間圧延する直接圧延ないしは加熱炉
に装入した後圧延するホー/ )チャージ圧延において
、圧延時の鋳片の表面割れを防止するため、溶融凝固に
引き統〈冷却過程中、熱間圧延開始までの間を超緩冷却
を施す鋳片の表面割れ抑制法も提案されている(特開昭
55−84203)。
In addition, from the point of view of energy saving and labor saving, in direct rolling, in which the continuous slab is hot rolled without cooling it to room temperature, or in charge rolling, in which the slab is rolled after being charged into a heating furnace, the surface of the slab during rolling is In order to prevent cracks, a method for suppressing surface cracks in slabs has also been proposed in which ultra-slow cooling is performed during the cooling process until the start of hot rolling (Japanese Patent Laid-Open No. 55-84203).

上記方法は、熱間加工性に有害なP、 S、0、N等の
元素の偏析により、非金属介在物として析出を生じる特
定の温度域でシミュレーション実験を行1い、1300
−900℃温度域で断面収縮率の最小値が60%未満に
なると表面割れが多発することに着目し、これらの元素
の析出形態を制御することにより鋳片の熱間割れ抑制を
行うものである。
In the above method, simulation experiments were conducted in a specific temperature range in which non-metallic inclusions occur due to the segregation of elements such as P, S, O, and N that are harmful to hot workability.
Focusing on the fact that surface cracks occur frequently when the minimum cross-sectional shrinkage rate is less than 60% in the -900℃ temperature range, we suppress hot cracking in slabs by controlling the precipitation form of these elements. be.

又、特開昭55−109503 、同55−11072
4号公報においても、同様に連鋳片を熱間圧延前に徐冷
部し、直接圧延する方法が開示されている。
Also, JP-A No. 55-109503, No. 55-11072
Publication No. 4 also discloses a method in which a continuously cast piece is subjected to an annealing section before hot rolling and then directly rolled.

又、特公昭49−[74号公報においては連続鋳造スト
ランドの処理において、表面と中心液体との温度差が大
きくなりすぎないよう、冷却、加熱を行い割れの防止を
行う方法が開示されている。
Additionally, Japanese Patent Publication No. 49-74 discloses a method of preventing cracks by cooling and heating the continuous casting strand in order to prevent the temperature difference between the surface and the center liquid from becoming too large. .

又、MO添加による大型鋼塊の逆V偏析抑制方法も開示
されている(日本製鋼所球根、40 (198G)p、
1 ) 、この方法は固液共存層においては、密度の低
い溶質が液相に富化しているため、バルクの液相に比べ
てこの部分の液相の密度が低下し、そのため上昇方向の
対流が生じ、この上昇線が凝固後もストリークとして残
り、逆V偏析となっているため、Noを添加して上記液
相の密度を増加させ。
Additionally, a method for suppressing inverted V segregation in large steel ingots by adding MO is also disclosed (Japan Steel Works Bulb, 40 (198G) p.
1) In this method, in the solid-liquid coexistence layer, low-density solutes are enriched in the liquid phase, so the density of the liquid phase in this part is lower than that of the bulk liquid phase, and as a result, convection in the upward direction occurred, and this rising line remained as a streak even after solidification, resulting in inverted V segregation, so No was added to increase the density of the liquid phase.

上昇方向の対流を阻止することによって逆V偏析を抑制
しようとする方法である。
This method attempts to suppress inverted V segregation by blocking convection in the upward direction.

発明が解決しようとする問題点 本発明者は、鋳片品質悪化が単なる凝固偏析の量のみに
よるものではなく、α安定化元素(P、Si、 S、 
Cr、 Nb、 V、Mo等)とγ安定化元素(C1M
n、 Ni等)とが同一部分に濃化されることによって
偏析の重複による相乗的悪影響が一層著しくなることに
着目し、又、これらα安定化元素とγ安定化元素とがδ
相とγ相において溶解度に差異のあることに着目し、こ
れらの溶質分離に有効な方法を提供しようとするもので
ある。
Problems to be Solved by the Invention The present inventor has discovered that the deterioration in slab quality is not simply due to the amount of solidification segregation, but is due to α stabilizing elements (P, Si, S,
Cr, Nb, V, Mo, etc.) and γ stabilizing elements (C1M
We focused on the fact that the synergistic negative effects due to overlapping segregation become even more significant when the elements (N, Ni, etc.) are concentrated in the same area, and that these α-stabilizing elements and γ-stabilizing elements
Focusing on the difference in solubility between the γ phase and the γ phase, we aim to provide an effective method for separating these solutes.

特に連鋳材においては、 ■ 鋳片寸法が小さく凝固時間が短かいこと。Especially for continuous casting materials, ■ Small slab size and short solidification time.

■ 冷却速度が大きいため、凝固時間が短かいこと。■ Due to the high cooling rate, the solidification time is short.

■ 浸漬ノズルから吐出した溶鋼流により、凝固中の溶
鋼の攪拌が促進され、fAlilした液相は均一化しや
すいこと、 から逆■偏析は殆んど発生せず、むしろ樹間偏析とその
集積によって生じる中心偏析が主たる問題点となってい
るため1本発明は、鋼の凝固偏析における樹間偏析およ
び中心偏析について特に有効な抑制法を提供しようとす
るものである。
■ The flow of molten steel discharged from the immersion nozzle promotes stirring of the molten steel during solidification, and the fAlil liquid phase is easily homogenized. Therefore, reverse ■ segregation hardly occurs, but rather due to interdendritic segregation and its accumulation. Since the center segregation that occurs is a major problem, the present invention aims to provide a particularly effective method for suppressing interdendritic segregation and center segregation in solidification segregation of steel.

問題点を解決するための手段 本発明は、 (1)C3I度0.53重量%以下を含む炭素鋼の鋳造
において、溶鋼中に、Be、 Cr、 Nb、 Sn、
 Ti、又はVを少なくとも1種または2種以上、それ
ぞれ2重量%以下添加することを特徴とする鋼の凝固偏
析制御法、及び (2) c濃度0.53重量%以下を含む炭素鋼の鋳造
において、溶鋼中に、Be、 Cr、 Nb、 Sn、
 Ti、又はVを少なくとも1種または2種以上、それ
ぞれ2重量%以下添加し、′さらにMo 2重量%以下
を添加することを特徴とする鋼の凝固偏析制御法、であ
る。
Means for Solving the Problems The present invention provides: (1) In the casting of carbon steel containing 0.53% by weight or less of C3I degree, Be, Cr, Nb, Sn,
A method for controlling solidification and segregation of steel, characterized by adding at least one or more Ti or V, each of 2% by weight or less, and (2) Casting of carbon steel containing a c concentration of 0.53% by weight or less In molten steel, Be, Cr, Nb, Sn,
This is a method for controlling solidification segregation of steel, characterized in that at least one or more of Ti or V is added in an amount of 2% by weight or less, and 2% by weight or less of Mo is further added.

作用 溶融状態にある鋼は冷却されて温度が低下するに従って
固相が晶出するが、その状態変化と炭素濃度との関係を
第1図に示した。炭素濃度が0.17〜0.53%(重
量%、以下同じ、)の間にある鋼は冷却により液相(直
線lより上の域)から(液相+δ相)を経て1485°
C(図の直線3)以下で(液相+γ相)に変化し、さら
に冷却が進んで直線6以下の温度で全てγ相になる。変
態温度1485℃を境にして液相とδ相の界面において
(液相+δ相)→(γ相)に変化する反応、いわゆる包
晶反応を利用して、α安定化元素であるP、 Si、 
 S、Cr等、特に問題となるPとSとを溶解度の高い
δ相中に取りこみ、γ安定化元素であるC、Mn、旧、
特にMnを溶解度の高いγ相中に取りこむ、さらに冷却
が進んで全量がγ相に達したときに、最も遅れてγ相に
変態した部分に、上記のα安定化元素が偏在する。その
結果例えばPの濃度のピークの存在する部分は、 Mn
の濃度のピークの存在する部分と分離され、PとMnの
重複偏析が避けられる。
Steel in a molten state is cooled and as the temperature decreases, a solid phase crystallizes out, and the relationship between the change in state and the carbon concentration is shown in Figure 1. Steel with a carbon concentration between 0.17 and 0.53% (wt%, same hereinafter) changes from the liquid phase (area above the straight line l) to the (liquid phase + δ phase) by cooling to 1485°.
It changes to (liquid phase + γ phase) below C (straight line 3 in the figure), and as cooling progresses further, all becomes γ phase at a temperature below straight line 6. Using the so-called peritectic reaction, which is a reaction that changes from (liquid phase + δ phase) to (γ phase) at the interface between the liquid phase and the δ phase at the transformation temperature of 1485°C, the α-stabilizing elements P and Si are ,
S, Cr, etc., especially P and S, which are problematic, are incorporated into the δ phase with high solubility, and γ stabilizing elements such as C, Mn, old,
In particular, when Mn is incorporated into the γ phase, which has a high solubility, and further cooling progresses until the total amount reaches the γ phase, the above α stabilizing elements are unevenly distributed in the portion that is transformed into the γ phase the latest. As a result, for example, the area where the concentration peak of P exists is Mn
is separated from the part where the concentration peak of P and Mn exists, and overlapping segregation of P and Mn is avoided.

炭素含量がO〜0.08%の鋼においては、冷却により
液相→(液相+δ相)→δ相→γ相になる。
In steel with a carbon content of 0 to 0.08%, cooling changes the phase from liquid phase to (liquid phase + δ phase) to δ phase to γ phase.

この場合δ相からγ相への変態はAra変態と呼ばれ、
第1図の直線4の温度ではじまり、直線5の温度まで続
く。この間Ar4変態域において、δ相とγ相が共存す
ることを利用して前記α安定化元素とγ安定化元素を、
溶解度の差を利用して分離させる。例えばδ相にPを、
γ相にMnを移行させる。さらに冷却が進んで全量がγ
相に変化したときにも最も遅れてγ相に変態した部分に
前記のα安定化元素が偏在する。その結果、例えばP濃
度のピークの存在する部分は、Mnの濃度のピークの存
在する部分と分離され、PとMnの重複偏析が避けられ
る。
In this case, the transformation from δ phase to γ phase is called Ara transformation,
It starts at the temperature of line 4 in FIG. 1 and continues up to the temperature of line 5. During this time, in the Ar4 transformation region, the α-stabilizing element and the γ-stabilizing element are
Separation takes advantage of the difference in solubility. For example, if P is added to the δ phase,
Mn is transferred to the γ phase. As cooling progresses further, the total amount becomes γ
Even when the phase changes, the above-mentioned α stabilizing elements are unevenly distributed in the portion that transforms to the γ phase most delayed. As a result, for example, a portion where a P concentration peak exists is separated from a portion where a Mn concentration peak exists, and overlapping segregation of P and Mn is avoided.

炭素濃度が0.08%〜0.17%の鋼については、前
述の包晶反応とAr4変態における分離を共に利用する
ことができる。
For steels with a carbon concentration of 0.08% to 0.17%, both the above-mentioned peritectic reaction and separation in Ar4 transformation can be utilized.

ここで、本発明者はα安定化元素であるBe、Cr、 
Mo、 Nb、 Sn、 Ti又はVの1種又は2種以
上を溶鋼中に添加すると、第1図の状態図におけるδ相
(=α相)領域が拡大することを見出した。
Here, the present inventors believe that the α-stabilizing elements Be, Cr,
It has been found that when one or more of Mo, Nb, Sn, Ti, or V is added to molten steel, the δ phase (=α phase) region in the phase diagram shown in FIG. 1 expands.

一般に、固体鉄中の不純物あるいは添加元素の拡散速度
は、δ相内においては、γ相内におけるよりも10〜1
00倍も大である(及用 洪;鉄と鋼Vo Q、、 f
18(1982)、p、1489) 、そのため、鋼の
凝固過程においてδ相の量と存在時間が増すと、それだ
け高濃度の偏析部から周辺の低濃度部への拡散速度が増
し偏析を軽減できる。
In general, the diffusion rate of impurities or additive elements in solid iron is 10 to 1 times faster in the δ phase than in the γ phase.
00 times bigger (Reference: Hong; Tetsu to Hagane Vo Q,, f
18 (1982), p. 1489), therefore, as the amount and presence time of the δ phase increases during the solidification process of steel, the rate of diffusion from the high concentration segregated area to the surrounding low concentration area increases accordingly, making it possible to reduce segregation. .

さらに、第2図に示すごとくα安定化元素を添加すると
、無添加の場合に比し、樹枝状晶部分におけるδ相領域
が増加する結果、δ相とγ相とが共存する領域が拡がり
、包晶反応率あるいはAr4変態率(あわせてδ→γ変
態率と呼ぶ)が増大しδ相とγ相への溶解度の差によっ
て生じるα安定化元素(例、P)とγ安定化元素(例、
Mn)の分離が促進されるため、樹間2・1における重
複偏析を軽減することができる。
Furthermore, as shown in Figure 2, when an α-stabilizing element is added, the δ-phase region in the dendrite portion increases compared to the case without addition, and as a result, the region where the δ-phase and γ-phase coexist expands. The peritectic reaction rate or Ar4 transformation rate (together referred to as δ→γ transformation rate) increases, and α-stabilizing elements (e.g., P) and γ-stabilizing elements (e.g., ,
Since the separation of Mn) is promoted, it is possible to reduce the double segregation in the tree 2.1.

すなわち第2図(1) 、 (2)は溶鋼の凝固中の樹
枝状晶内のδ相とγ相の存在領iを示す模式図で、(1
)はα安定化元素無添加の場合、(2)はα安定化元素
を添加した場合である0図においてで表わされ、α安定
化元素添加においてδ→γ変態率が増大することが明ら
かである。
That is, Fig. 2 (1) and (2) are schematic diagrams showing the existence region i of the δ phase and γ phase in the dendrites during solidification of molten steel, and (1)
) is when no α-stabilizing element is added, and (2) is when an α-stabilizing element is added. It is.

本発明において、Be、 Cr、 Nb、 Sn、 T
i、■、又はMoの1種又は2種以上を溶鋼中に2重量
%以下添加する。2重量%を超えた場合でも偏析軽減に
は有効であるが、コスト高になる。又、下限は特に限定
するものではないが、 0.005%ですでに有効なこ
とを本発明者は確認している。
In the present invention, Be, Cr, Nb, Sn, T
One or more of i, ■, or Mo is added to the molten steel in an amount of 2% by weight or less. Even if it exceeds 2% by weight, it is effective in reducing segregation, but it increases the cost. Further, although the lower limit is not particularly limited, the inventor has confirmed that 0.005% is already effective.

又、本発明はC濃度がOl又は限りなくOに近い場合、
たとえば0.001%程度においても有効である。
In addition, the present invention is applicable to cases where the C concentration is Ol or extremely close to O,
For example, it is effective even at about 0.001%.

添加方法は特に限定するものではなく、従来の合金元素
添加の方法、たとえば合金鉄投下法、インジェクション
法1弾発射法、ワイヤー添加法などが使用可能である。
The addition method is not particularly limited, and conventional methods for adding alloy elements, such as the ferroalloy dropping method, the injection method, the single shot method, and the wire addition method, can be used.

本発明方法は融点直下(δ相初晶発生時)からAra変
態あるいは包晶反応の終了温度まで(γ相になるまで)
の温度範囲での冷却速度を40℃/分以下とすると、偏
析軽減および分離効果がさらに向上する。γ相になれば
直ちに30℃/分以上で約1000℃まで冷却すると、
δ→γ変態時に生じた偏析ピークの分離状態を常温まで
保持できる(特願昭59−21940号)。
The method of the present invention ranges from just below the melting point (when δ-phase primary crystals occur) to the end temperature of Ara transformation or peritectic reaction (until γ-phase is reached).
When the cooling rate in the temperature range is 40° C./min or less, segregation reduction and separation effects are further improved. As soon as it becomes the γ phase, it is cooled to about 1000°C at a rate of 30°C/min or more.
The separation state of the segregation peak generated during the δ→γ transformation can be maintained up to room temperature (Japanese Patent Application No. 59-21940).

実施例 次に、本発明の実施例を第3〜4図により説明する。第
3図は合金元素濃度(重量%)と1300℃まで冷却し
たときの樹間のMn偏析度のグラフであり、第4図は合
金元素添加(重量%)と1300°Cまで冷却したとき
の樹間のP偏析度のグラフである。
EXAMPLE Next, an example of the present invention will be explained with reference to FIGS. 3 and 4. Figure 3 is a graph of alloying element concentration (wt%) and degree of Mn segregation between trees when cooled to 1300°C, and Figure 4 is a graph of alloying element concentration (wt%) and Mn segregation degree when cooled to 1300°C. It is a graph of P segregation degree between trees.

鋼の成分はG O,15%、Si 0.2%、Mn 1
.0%、P 0.012%であり、凝固偏析をシミュレ
ートするため、27℃/分の冷却速度で一方向凝固実験
を行い、EPMAで二次元(面)分析を行った結果を示
したものである。
The composition of the steel is GO, 15%, Si 0.2%, Mn 1
.. 0%, P 0.012%, and in order to simulate solidification segregation, a unidirectional solidification experiment was performed at a cooling rate of 27°C/min, and two-dimensional (area) analysis was performed using EPMA. It is.

Mno及びPoは夫々MnとPの平均濃度を示し、樹間
偏析度は樹間におけるMnとPの濃度をMn(、及びP
oで割った値である。
Mno and Po indicate the average concentrations of Mn and P, respectively, and the degree of interdendrogenic segregation refers to the concentrations of Mn and P between trees.
It is the value divided by o.

発明の効果 実施例から、Be、 Cr、Nb、 Sn、 Ti、 
V、Ma(7)各元素を約2重量%以下添加することに
より、有害元素であるPの偏析度は大巾に低下すること
が明らかである。一方、Mnは偏析度の低下はPに比べ
て少ないが、その有効性は明らかである。また、樹間の
P偏析度が1以下で欄間のMn偏析度が1以上である場
合は、Pとにnの偏析ピークが完全に分離していること
を表わしている。このように、α安定化元素を添加する
ことによってPとMnの拡散と分離を促進し1重複偏析
を軽減すると共に偏析ピーク値を減少させることができ
る。
From the effect examples of the invention, Be, Cr, Nb, Sn, Ti,
It is clear that by adding about 2% by weight or less of each element of V and Ma (7), the degree of segregation of P, which is a harmful element, is significantly reduced. On the other hand, although the degree of segregation of Mn decreases less than that of P, its effectiveness is clear. Further, when the P segregation degree between trees is 1 or less and the Mn segregation degree between transoms is 1 or more, it means that the segregation peaks of P and n are completely separated. In this way, by adding the α stabilizing element, it is possible to promote the diffusion and separation of P and Mn, reduce single-fold segregation, and reduce the segregation peak value.

以上、合金添加による樹間偏析の低下について述べたが
、合金添加によって同時に中心偏析も軽減する。
Above, we have described the reduction in interdensity segregation due to the addition of alloys, but the addition of alloys also reduces center segregation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は炭素鋼の状態図、@2図(1)及び第2図(2
)はα安定化元素添加による樹枝状晶内δ相安定化の原
理図、第3〜4図は合金元素添加による偏析度変化のグ
ラフである。 20・・拳樹芯、21・・・樹間。
Figure 1 is a phase diagram of carbon steel, @Figure 2 (1) and Figure 2 (2
) is a diagram of the principle of stabilization of the δ phase in dendrites by addition of an α stabilizing element, and Figures 3 and 4 are graphs of changes in degree of segregation due to the addition of alloying elements. 20...Kenjushin, 21...Kima.

Claims (2)

【特許請求の範囲】[Claims] (1)C濃度0.53重量%以下を含む炭素鋼の鋳造に
おいて、溶鋼中に、Be、Cr、Nb、Sn、Ti、又
はVを少なくとも1種または2種以上、それぞれ2重量
%以下添加することを特徴とする鋼の凝固偏析制御法。
(1) When casting carbon steel containing a C concentration of 0.53% by weight or less, at least one or more of Be, Cr, Nb, Sn, Ti, or V, each of 2% by weight or less, is added to the molten steel. A method for controlling solidification segregation of steel.
(2)C濃度0.53重量%以下を含む炭素鋼の鋳造に
おいて、溶鋼中に、Be、Cr、Nb、Sn、Ti、又
はVを少なくとも1種または2種以上、それぞれ2重量
%以下添加し、さらにMo2重量%以下を添加すること
を特徴とする鋼の凝固偏析制御法。
(2) When casting carbon steel containing a C concentration of 0.53% by weight or less, at least one or more of Be, Cr, Nb, Sn, Ti, or V, each of 2% by weight or less, is added to the molten steel. A method for controlling solidification and segregation of steel, which further comprises adding 2% by weight or less of Mo.
JP27435184A 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel Granted JPS61157612A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27435184A JPS61157612A (en) 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel
EP85309473A EP0186512B1 (en) 1984-12-28 1985-12-24 Method for controlling solidification segregation of steel
DE8585309473T DE3579138D1 (en) 1984-12-28 1985-12-24 METHOD FOR REGULATING STEEL SETTING AGAINST STEEL.
US07/201,370 US4809765A (en) 1984-12-28 1988-05-27 Method for controlling solidification segregation of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27435184A JPS61157612A (en) 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel

Publications (2)

Publication Number Publication Date
JPS61157612A true JPS61157612A (en) 1986-07-17
JPH0360572B2 JPH0360572B2 (en) 1991-09-17

Family

ID=17540443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27435184A Granted JPS61157612A (en) 1984-12-28 1984-12-28 Controlling method of solidification segregation of steel

Country Status (1)

Country Link
JP (1) JPS61157612A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149066A (en) * 1986-12-15 1988-06-21 Tadayoshi Takahashi Refining method for metal solidified structure
JP2011011249A (en) * 2009-07-03 2011-01-20 Osaka Univ Method for refining crystal grain of steel product

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859018A (en) * 1971-11-29 1973-08-18
JPS53100121A (en) * 1977-02-14 1978-09-01 Kawasaki Steel Co Low alloy steel providing electric resistance welding part with good groove corrosion resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4859018A (en) * 1971-11-29 1973-08-18
JPS53100121A (en) * 1977-02-14 1978-09-01 Kawasaki Steel Co Low alloy steel providing electric resistance welding part with good groove corrosion resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149066A (en) * 1986-12-15 1988-06-21 Tadayoshi Takahashi Refining method for metal solidified structure
JP2011011249A (en) * 2009-07-03 2011-01-20 Osaka Univ Method for refining crystal grain of steel product

Also Published As

Publication number Publication date
JPH0360572B2 (en) 1991-09-17

Similar Documents

Publication Publication Date Title
JPS61103654A (en) Method of controlling condition of continuous casting
EP0027510B1 (en) Bismuth containing steel
US3928028A (en) Grain refinement of copper alloys by phosphide inoculation
US4738301A (en) Method for mitigating solidification segregation of steel
JPS61157612A (en) Controlling method of solidification segregation of steel
JPS61154748A (en) Method for controlling solidification segregation of continuous casting steel ingot
EP0186512B1 (en) Method for controlling solidification segregation of steel
WO1986004275A1 (en) Continuous casting method and ingot produced thereby
JPH0550201A (en) Light rolling reduction method in continuous casting
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
JPH04313454A (en) Continuous casting method
JP2019030892A (en) Continuous casting method for steel
JPS60166150A (en) Continuous casting method of steel
JPS60166151A (en) Continuous casting machine for steel
JPH10211546A (en) Hot-top casting method
JPH04313453A (en) Continuous casting method
JP3030596B2 (en) Continuous casting method
JPS61157613A (en) Be clad wire
RU2077969C1 (en) Silicon ingot manufacture method
KR20010073236A (en) Method for continuously casting duplex stainless steel
KR100397298B1 (en) Method for cooling a continuously cast non-magnetic austenite stainiless steel slab
JPH05212517A (en) Method for executing light rolling reduction in continuous casting
JP2867299B2 (en) Continuous casting method
JPH04309446A (en) Continuous casting method
JPH02155548A (en) Method for continuously casting free cutting steel

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees