JPS60166150A - Continuous casting method of steel - Google Patents

Continuous casting method of steel

Info

Publication number
JPS60166150A
JPS60166150A JP2194084A JP2194084A JPS60166150A JP S60166150 A JPS60166150 A JP S60166150A JP 2194084 A JP2194084 A JP 2194084A JP 2194084 A JP2194084 A JP 2194084A JP S60166150 A JPS60166150 A JP S60166150A
Authority
JP
Japan
Prior art keywords
phase
steel
cooling
phase change
continuous casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2194084A
Other languages
Japanese (ja)
Other versions
JPH0245536B2 (en
Inventor
Yoshiyuki Uejima
良之 上島
Toru Matsumiya
徹 松宮
Shozo Mizoguchi
溝口 庄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2194084A priority Critical patent/JPS60166150A/en
Priority to EP85300700A priority patent/EP0153062B1/en
Priority to DE8585300700T priority patent/DE3580767D1/en
Publication of JPS60166150A publication Critical patent/JPS60166150A/en
Priority to US06/892,475 priority patent/US4738301A/en
Publication of JPH0245536B2 publication Critical patent/JPH0245536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/124Accessories for subsequent treating or working cast stock in situ for cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent surface flawing, cracking, etc. of a steel having a specific carbon concn. in continuous casting of said steel by specifying the cooling rate in the stage of the peritectic reaction, Ar4 transformation or phase change of both during cooling at a specific value or below and avoiding the overlap segregation of harmful elements by a difference in taking-in of elements. CONSTITUTION:A molten steel L changes to a gamma phase from an L+delta phase via a delta phase, an Ar4 phase or L+gamma phase in continuous casting and cooling of a steel having 0.005-0.53wt% carbon concn. The cooling rate of the phase change region centering at 1,495 deg.C (line 3) of the phase change is specified at <=40 deg.C/min so that the alpha stabilizing elements easily meltable in the delta phase (P, Si, S, Cr, Nb, V, Mo, etc.) and the gamma stabilizing elements easily meltable in the gamma phase (C, Mn, Ni, etc.) are thoroughly absorbed dividedly to the delta phas and the gamma phase. The overlap segregation of, for example, P and Mn is thereby averted. The generation of surface flawing and cracking of the steel owing to O and Mn is thus prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は連続鋳造によって得られる鋳片の表面疵や割れ
および成品鋼材の材質欠陥の原因となる凝固偏析を軽減
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for reducing solidification segregation that causes surface flaws and cracks in slabs obtained by continuous casting and material defects in finished steel products.

従来技術 従来より連続鋳造においては、凝固時溶質の偏析によっ
て、鋳片の表面疵や割れが生じたり成品の品質が悪化す
るため、その改善が望まれていた。
Prior Art Conventionally, in continuous casting, segregation of solutes during solidification causes surface flaws and cracks in slabs and deteriorates the quality of finished products, so improvements have been desired.

これらの改善方法としては、溶鋼へCaを添加したり、
精錬によって、有害な偏析の原因となる溶質を予め低減
させておく方法、連続鋳造機のロール間隔を短くしバル
ジングを抑え、又は電磁攪拌によって中心偏析を軽減す
る方法などが行われている。
These improvement methods include adding Ca to molten steel,
Methods include reducing solutes that cause harmful segregation in advance through refining, reducing bulging by shortening the roll interval of a continuous casting machine, and reducing center segregation by electromagnetic stirring.

又、省エネルギー、省力化の点から、鋳片を室温まで冷
やすことなく、熱間圧延ないしは加熱炉に装入した後圧
延する直接圧延又はホットチャージ圧延において、圧延
時の鋳片の表面割れを防止するため、溶融凝固に引き続
く冷却過程中、熱間圧延開始までの間を超軽冷却、を施
す鋳片の表面割れ抑制法も提案されている(#開閉55
−84203)。
In addition, from the point of view of energy saving and labor saving, surface cracking of the slab during rolling can be prevented during hot rolling or direct rolling or hot charge rolling in which the slab is rolled after being charged into a heating furnace without being cooled to room temperature. Therefore, a method for suppressing surface cracks in slabs has been proposed in which ultra-light cooling is performed during the cooling process following melt solidification and before the start of hot rolling (#Opening/Closing 55).
-84203).

上記方法は、熱間加工性に有害なP、S、0、N等の元
素の偏析、非金属介在物として析出を生じる特定の温度
域、シミュレーション実験において、1300〜900
°C温度域で断面収縮率の最小値が60%未満になると
表面割れが多発することに着目し、これらの元素の析出
形態を制御することにより鋳片の熱間割れ抑制を行うも
のである。
The above method was conducted in a specific temperature range where elements harmful to hot workability such as P, S, 0, N, etc. are segregated and precipitated as non-metallic inclusions, and in simulation experiments.
Focusing on the fact that surface cracks occur frequently when the minimum cross-sectional shrinkage rate is less than 60% in the °C temperature range, hot cracking in slabs is suppressed by controlling the precipitation form of these elements. .

又、特開昭55−109503 、同55−11072
4号公報においても、同様に連鋳片を熱間圧延前に徐冷
却し、直接圧延する方法が開示されている。
Also, JP-A No. 55-109503, No. 55-11072
Publication No. 4 also discloses a method in which a continuously cast piece is slowly cooled before hot rolling and then directly rolled.

又、特公昭49−6974号公報においては鋳造ストラ
ンドの処理において、表面と中心液体との温度差が大き
くなりすぎないよう、冷却、加熱を行い割れの防止を行
う方法が開示されている。
Further, Japanese Patent Publication No. 49-6974 discloses a method of preventing cracks by cooling and heating the cast strand in order to prevent the temperature difference between the surface and the center liquid from becoming too large.

発明の目的 本発明者は、鋳片品質悪化が単なる凝固偏析の量のみに
よるものではなく、α安定化元素(P、Sl、 S、、
Cr、Nb、■、Mo等)とγ安定化元素(C1Mn、
旧等)とが同一部分に濃化されることにょって偏析の重
複による相乗的悪影響が一層著しくなることに着目し、
又、これらα安定化元素とγ安定化元素とがδ相とγ相
において溶解度に差異のあることに着目し、これらの溶
質分離に有効な温度範囲が上記公知技術と異る、又は開
示されていない特定の温度域において存在することを見
出し、凝固偏析を軽減させる本発明方法を完成させたも
のである。
Purpose of the Invention The present inventor has discovered that the deterioration in slab quality is not simply due to the amount of solidification segregation, but is caused by α-stabilizing elements (P, Sl, S,
Cr, Nb, ■, Mo, etc.) and γ stabilizing elements (C1Mn,
Focusing on the fact that the synergistic negative effects of overlapping segregation become even more pronounced when
In addition, focusing on the fact that these α-stabilizing elements and γ-stabilizing elements have a difference in solubility between the δ phase and the γ phase, the effective temperature range for separating these solutes is different from the above-mentioned known technology or has not been disclosed. We have discovered that this phenomenon exists in a specific temperature range, and have completed the method of the present invention to reduce solidification segregation.

発明の構成 すなわち、本発明は炭素濃度0.005〜0.53重量
%の鋼の連続鋳造二次冷却において、冷却中に生ずる包
晶反応、Ar4変態あるいはその両者の相変化を利用し
て、該相変化域で鋳片を緩冷却させ偏析部の溶質元素を
相互に分離させて、凝固偏析に伴う材質の欠陥を軽減さ
せることを特徴とする鋼の連続鋳造法である。
Structure of the Invention That is, the present invention utilizes phase changes of peritectic reaction, Ar4 transformation, or both that occur during continuous casting secondary cooling of steel with a carbon concentration of 0.005 to 0.53% by weight, This continuous steel casting method is characterized by slowly cooling the slab in the phase change region to separate the solute elements in the segregation area from each other, thereby reducing defects in the material due to solidification segregation.

作用 溶融状態にある鋼は冷却されて温度が低下するに従って
固相が晶出するが、その状態変化と炭素濃度との関係を
第1図に崩した。炭素濃度が0.17〜0.53%(重
量%、以下同じ、)の間にある鋼は冷却により液相(直
線1より上の域)から(液相十δ相)を経て1495°
C(図の直線3)以下で(液相十γ相)に変化し、さら
に冷却が進んで直線6以下の温度で全てγ相になる。変
態温度1485°Cを境にして液相とδ相の界面におい
て(液相+δ相)→(液相+γ相)に変化する反応、い
わゆる包晶反応を利用して、α安定化元素であるP。
Steel in a molten state is cooled and a solid phase crystallizes as the temperature decreases, and the relationship between the change in state and the carbon concentration is shown in Figure 1. Steel with a carbon concentration between 0.17 and 0.53% (wt%, same hereinafter) changes from the liquid phase (area above straight line 1) to the (liquid phase and δ phase) to 1495° by cooling.
At a temperature below C (line 3 in the figure), it changes to (liquid phase ten γ phase), and as cooling progresses further, at a temperature below straight line 6, it changes to γ phase. It is an α-stabilizing element that utilizes the so-called peritectic reaction, a reaction that changes from (liquid phase + δ phase) to (liquid phase + γ phase) at the interface between the liquid phase and the δ phase at the transformation temperature of 1485°C. P.

Sl、 S、 Or等、特に問題となるPとSとをδ相
中に取りこみ、γ安定化元素であるC、 Mn、 Ni
、特にMnをγ相中に取りこむ。さらに冷却が進んで全
量がγ相に達したときに、最も遅れてγ相に変態した部
分番乙上記のα安定化元素が偏在する。その結果例えば
Pの濃度のピークの存在する部分は、Mnの濃度のピー
クの存在する部分と分離され、PとMnの重複偏析が避
けられる。
Sl, S, Or, etc., which are particularly problematic, P and S, are incorporated into the δ phase, and γ stabilizing elements C, Mn, Ni
In particular, Mn is incorporated into the γ phase. When the cooling progresses further and the total amount reaches the γ phase, the above α stabilizing element in number B, which transformed to the γ phase the last time, is unevenly distributed. As a result, for example, a portion where a peak concentration of P exists is separated from a portion where a peak concentration of Mn exists, and overlapping segregation of P and Mn is avoided.

炭素含量が0.005〜0.08%の鋼においては、冷
却により液相→(液相十δ相)→δ相→γ相になる。こ
の場合δ相からγ相への変態はAr4変態と呼ばれ、第
1図の直線4の温度ではじまり、直線5の温度まで続く
。この間Ar4変態域において、δ相とγ相が共存する
ことを利用して前記α安定化元素とγ安定化元素を、溶
解度の差を利用して一旦分離させる。例えばδ相にPを
、γ相にKnを移行させて一旦分離させる。さらに冷却
が進んで全量がγ相に変化したときにも最も遅れてγ相
に変態した部分に前記のα安定化元素が偏在する。
In steel with a carbon content of 0.005 to 0.08%, cooling changes the phase from liquid phase to (liquid phase ten delta phases) to delta phase to gamma phase. In this case, the transformation from the δ phase to the γ phase is called Ar4 transformation, which starts at the temperature indicated by the straight line 4 in FIG. 1 and continues up to the temperature indicated by the straight line 5. During this time, in the Ar4 transformation region, the α-stabilizing element and the γ-stabilizing element are temporarily separated by utilizing the difference in solubility by utilizing the coexistence of the δ phase and the γ phase. For example, P is transferred to the δ phase and Kn is transferred to the γ phase and separated once. Even when the cooling progresses further and the entire amount changes to the γ phase, the α stabilizing element is unevenly distributed in the portion that transformed to the γ phase most late.

その結果、例えばP濃度のピークの存在する部分は、M
nの濃度のピークの存在する部分と分離され、PとMn
の重複偏析が避けられる。
As a result, for example, the part where the P concentration peak exists is M
It is separated from the part where the concentration peak of n exists, and P and Mn
double segregation is avoided.

炭素濃度が0.08%〜0.17%の鋼については、前
述の包晶反応とAr4変態における分離を共に利用する
ことができる。
For steels with a carbon concentration of 0.08% to 0.17%, both the above-mentioned peritectic reaction and separation in Ar4 transformation can be utilized.

相変化に要する時間すなわち実操業における冷却速度と
 PとMnの分離度の関係を第2図に示した。図におい
て7は冷却速度2.7℃/分、8は同じ<27℃/分、
9は現行の連続鋳造機の鋳片中心部の冷却速度を示すも
ので、この図かられかるように、40°C/分以下の徐
冷により現行連続鋳造の場合の2倍以上の分離度を得る
ことができた。
Figure 2 shows the relationship between the time required for phase change, that is, the cooling rate in actual operation, and the degree of separation of P and Mn. In the figure, 7 indicates a cooling rate of 2.7°C/min, 8 indicates the same <27°C/min,
9 shows the cooling rate of the center of the slab in the current continuous casting machine, and as can be seen from this figure, by slow cooling at 40°C/min or less, the degree of separation is more than twice that of the current continuous casting. I was able to get

ここで分離度として、次の3つの指檄を用いた。Here, the following three criteria were used as the degree of separation.

=(寵) / 1.80 =(1分’) / 1.80 Mn/Mn’ 面積分離度ヶ=l Kn高濃度部とP高濃度部の重複面
積率Mn高濃度部の面積率 Mn” 、P”は、濃度分離度CIにおいて、最初にδ
相からγ相に変態した部分、濃度分離度c2においては
、最後にδ相からγ相に変態した部分におけるMnおよ
びPの濃度を表わす。また、 Mn’、 P。
= (H) / 1.80 = (1 minute') / 1.80 Mn/Mn' Area separation = l Overlap area ratio of Kn high concentration area and P high concentration area Mn Area ratio of high concentration area Mn'' , P'' is initially δ at the concentration resolution CI
The concentration separation degree c2, which is the portion where the phase is transformed into the γ phase, represents the concentration of Mn and P in the portion where the δ phase is finally transformed into the γ phase. Also, Mn', P.

はそれぞれ、MnとPの平均濃度であり、ka/bは成
分iのδ相とb相聞の平衡分配係数を表わす。平衡分配
係数は、第1表に示した値を用いた。面積分離度Aにお
いて、MnおよびPの高濃度部の面積率は、5zとした
are the average concentrations of Mn and P, respectively, and ka/b represents the equilibrium distribution coefficient of component i between the δ and b phases. For the equilibrium distribution coefficient, the values shown in Table 1 were used. In the area separation degree A, the area ratio of the high concentration portion of Mn and P was set to 5z.

第1表 MnとPのδ相またγ相と 液相間の平衡分配係数 なお第2図は、50kg/ mmz鋼(CO,13%)
におて150.0〜1450℃間の冷却を速度を変えて
行い、その後4500°C/分で急冷した場合の値であ
る。
Table 1: Equilibrium distribution coefficients between Mn and P δ phase or γ phase and liquid phase.
These values are obtained when cooling is performed at different speeds from 150.0 to 1450°C, and then rapidly cooled at 4500°C/min.

この点につき、さらに詳述すると、溶質元素は冷却速度
が従来技術の如く速すぎては、分離する余裕が保てず成
果が期待できない。下限は、経済性によって決すればよ
い。
To explain this point in more detail, if the cooling rate of the solute element is too fast as in the prior art, there will be no margin for separation and results cannot be expected. The lower limit may be determined based on economic efficiency.

さらに、相変化あるいは変態分離終了後は、単一固相に
なるので、溶解度の差による分離は起らない。従って単
−相内での温度を急激に低下させないと、折角分離した
元素が再び、拡散する傾向にある。処理後の冷却速度に
ついては種々研究の結果30℃/分以上にするのがよい
ことがわかった。
Furthermore, after the phase change or transformation separation is completed, a single solid phase is formed, so separation due to differences in solubility does not occur. Therefore, unless the temperature within the single phase is rapidly lowered, the elements that have been separated will tend to diffuse again. As a result of various studies, it has been found that the cooling rate after treatment is preferably 30° C./min or more.

さらに前述の包晶反応および変態分離の効率を高めるた
め一度これらの温度域から低下した鋼を急速加熱して再
び分離域まで昇温させ、徐冷、急速加熱をくりかえすこ
とによっても、分離できること、さらに、それらの操作
後、前述と同様に30°C/分以上の冷却により分離を
確実にすること等の知見が得られた。これらの具体例は
、実施例として後述する。
Furthermore, in order to increase the efficiency of the peritectic reaction and transformation separation described above, the steel can be separated by rapidly heating the steel once it has dropped from these temperature ranges, raising the temperature again to the separation range, and repeating slow cooling and rapid heating; Furthermore, after these operations, it was found that separation can be ensured by cooling at 30° C./min or more in the same way as described above. Specific examples of these will be described later as examples.

実施例1 50kg/mm’鋼(炭素濃度0.13%)において、
1450°Cまで2.7°C/分の冷却速度で冷却後、
 4500”07分で冷却して常温まで下げた。この鋼
の偏析部のPとMnの分離度は、濃度分離度C1および
C2、面積分離度Aで表わすとそれぞれ0.67.1.
00.1.00であった。2次元EPMA分析によるK
n、 Si、 Pの凝固組織の特性X線像(写真上14
mmは200#Lに相当する。)を第4図に示した(画
像処理により5段階の濃度差により表示した。)。(a
) Mn(1,4〜1.8zMnを5段階表示) 、 
(b) 5i(0,03〜0.04%Siを5段階表示
) 、 (c) P (0,008〜0.021X P
を5段階表示)を示し、白く見える部分が各元素の高濃
度部で、SiとPは重複しているが、Mnとは明らかに
分離していることがわかる。また、Mnと Pの高濃度
部5zの面積率の部分を示したのが、第5図(写真上1
4mmは200ルに相当する。)である。
Example 1 In 50 kg/mm' steel (carbon concentration 0.13%),
After cooling to 1450°C at a cooling rate of 2.7°C/min,
It was cooled down to room temperature in 4500"07 minutes. The degree of separation of P and Mn in the segregated part of this steel is 0.67.1.
It was 00.1.00. K by 2D EPMA analysis
Characteristic X-ray images of coagulated structures of n, Si, and P (photo 14)
mm corresponds to 200#L. ) is shown in FIG. 4 (displayed using five levels of density difference through image processing). (a
) Mn (1.4-1.8zMn displayed in 5 levels),
(b) 5i (0.03~0.04%Si displayed in 5 levels), (c) P (0,008~0.021X P
It can be seen that the white parts are high concentration parts of each element, and Si and P overlap, but are clearly separated from Mn. In addition, the area ratio of the high concentration area 5z of Mn and P is shown in Figure 5 (upper photo 1).
4 mm corresponds to 200 l. ).

(a) Mn、(b) pを示し、白い部分が高濃度部
5%の面積率の部分である。この図からもMnとPは明
らかに分離していることがわかる。なお、本実施例の熱
履歴グラフは第3図の■に示した。
(a) Mn and (b) p are shown, and the white part is the high concentration part with an area ratio of 5%. This figure also shows that Mn and P are clearly separated. The thermal history graph of this example is shown in (■) in FIG.

実施例2 実施例1と同様の鋼を、1500−1450’o(7)
間、冷却速度が27℃/分になるように冷却した。この
鋼の偏析部のP、:Mnの分離度は、濃度分離度C1,
02および面積分離度Aで表わすとそれぞれo、41.
0.40.0.38であった。なお、本実施例の熱履歴
グラフは第3図の■に示した。
Example 2 The same steel as Example 1 was made of 1500-1450'o(7)
During this period, cooling was performed at a cooling rate of 27° C./min. The separation degree of P, :Mn in the segregated part of this steel is the concentration separation degree C1,
02 and the area separation degree A are o and 41.0, respectively.
It was 0.40.0.38. The thermal history graph of this example is shown in (■) in FIG.

実施例3 炭素濃度0.30%の鋳片を1500 N1470℃間
30”07分の速度で冷却し、その後eo℃/分の速度
で1500℃まで加熱し同様の速度で冷却、さらにもう
一度加熱冷却を繰返したときの分離度は濃度分離度C1
およびC2、面積分離度Aで表わすとそれぞれ0.32
.0.30.0.28であった。
Example 3 A slab with a carbon concentration of 0.30% was cooled at a rate of 30"07 min for 1500 N1470°C, then heated at a rate of eo°C/min to 1500°C, cooled at the same rate, and then heated and cooled again. The degree of separation when repeating is concentration separation degree C1.
and C2, each expressed as area separation A is 0.32
.. It was 0.30.0.28.

なお本実施例の熱履歴のグラフは第3図の■に示した。A graph of the thermal history of this example is shown in (■) in FIG.

実施例4 実施例3と同様の操作を行ったのち、4500℃/分の
冷却速度で常温まで冷却したときの分離度は濃度分離度
C1およびC2、面積分離度Aで表わすとそれぞれ0.
40.0.42.0.38であった。
Example 4 After carrying out the same operation as in Example 3, the degree of separation when cooled to room temperature at a cooling rate of 4500° C./min was 0.0, respectively, expressed as concentration separation C1 and C2 and area separation A.
It was 40.0.42.0.38.

なお本実施例の熱履歴グラフは第3図■に示した。The thermal history graph of this example is shown in Figure 3 (■).

発明の効果 以」二詳述したように本発明により、連続鋳造による製
造法において問題となる偏析部の溶質、特にMnとPの
複合偏析を避け、鋳片および成品の品質欠陥の原因を除
くことができ、耐ラメラティア鋼や耐サワー鋼等の品質
が向上するなど鉄鋼業の発展に寄与するところは大きい
Effects of the Invention As described in detail in 2, the present invention avoids solutes in the segregated areas, especially the combined segregation of Mn and P, which is a problem in continuous casting production methods, and eliminates the causes of quality defects in slabs and finished products. This greatly contributes to the development of the steel industry, such as by improving the quality of lamellar tear-resistant steel and sour-resistant steel.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素鋼の状態図、第2図は鋳片の冷却速度と分
離度の関係を示す図、第3図は実施例の熱履歴を示す説
明図、第4図は、Mn、 Si、Pの鋼の組織内での分
布を示す写真、第5図はMnとPの高濃度部5zの面積
率の部分の組織内での分布を示す写真である。 特許出願人 新日本製鐵株式会社 代理人 弁理士 井 上 雅 生 第1図 0% 第2図 ;争却遁度じC/杏) 第3図 81間(今) A IIJI (分) 第41”i!1
Figure 1 is a state diagram of carbon steel, Figure 2 is a diagram showing the relationship between the cooling rate and degree of separation of slabs, Figure 3 is an explanatory diagram showing the thermal history of the example, and Figure 4 is a diagram of Mn, Si. , a photograph showing the distribution of P in the structure of the steel, and FIG. 5 is a photograph showing the distribution of the area ratio of the high concentration area 5z of Mn and P in the structure. Patent Applicant Nippon Steel Corporation Representative Patent Attorney Masaru Inoue Figure 1 0% Figure 2; Dispute Dispute C/An) Figure 3 81 (now) A IIJI (minute) 41 “i!1

Claims (1)

【特許請求の範囲】 1、 炭素濃度0.005〜0.53i量%の鋼の連続
鋳造二次冷却において、冷却中番と生ずる包晶反応。 Ar4変態あるいはその両者の相変化を利用して、該相
変化域で鋳片を緩冷却させ偏析部の溶質元素を相互に分
離させて、凝固偏析に伴う材質の欠陥を軽減させること
を特徴とする鋼の連続鋳造法。 2、 相変化開始から終了までの温度域において、鋳片
中の各部分の冷却速度が40℃/分以下である特許請求
の範囲第1項記載の鋼の連続鋳造法。 3、 相変化域において鋳片の加熱冷却をくり返し、加
熱速度を冷却速度以上とすることを特徴とする特許請求
の範囲第1項記載の鋼の連続鋳造法。 46 相変化終了後の冷却速度が30℃/分以上である
特許請求の範囲第1.2又は3項記載の鋼の連続鋳造法
[Scope of Claims] 1. A peritectic reaction that occurs during cooling during secondary cooling of continuous casting of steel with a carbon concentration of 0.005 to 0.53 i mass %. It is characterized by utilizing the phase change of Ar4 transformation or both of them to slowly cool the slab in the phase change region and separate the solute elements in the segregation area from each other, thereby reducing defects in the material due to solidification segregation. Continuous casting method for steel. 2. The continuous steel casting method according to claim 1, wherein the cooling rate of each part of the slab is 40° C./min or less in the temperature range from the start to the end of the phase change. 3. The continuous steel casting method according to claim 1, characterized in that the slab is repeatedly heated and cooled in the phase change region so that the heating rate is equal to or higher than the cooling rate. 46. The continuous casting method for steel according to claim 1.2 or 3, wherein the cooling rate after the phase change is completed is 30° C./min or more.
JP2194084A 1984-02-10 1984-02-10 Continuous casting method of steel Granted JPS60166150A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2194084A JPS60166150A (en) 1984-02-10 1984-02-10 Continuous casting method of steel
EP85300700A EP0153062B1 (en) 1984-02-10 1985-02-01 Method for mitigating solidification segregation of steel
DE8585300700T DE3580767D1 (en) 1984-02-10 1985-02-01 METHOD FOR A WEAKENED STEIGAGE SOLARIZATION OF STEEL.
US06/892,475 US4738301A (en) 1984-02-10 1986-08-05 Method for mitigating solidification segregation of steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2194084A JPS60166150A (en) 1984-02-10 1984-02-10 Continuous casting method of steel

Publications (2)

Publication Number Publication Date
JPS60166150A true JPS60166150A (en) 1985-08-29
JPH0245536B2 JPH0245536B2 (en) 1990-10-09

Family

ID=12069041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2194084A Granted JPS60166150A (en) 1984-02-10 1984-02-10 Continuous casting method of steel

Country Status (1)

Country Link
JP (1) JPS60166150A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187431A (en) * 1975-01-31 1976-07-31 Kawasaki Steel Co Hyomenwarenonai haganechuhennorenzokuchuzonyoruseizohoho
JPS5584203A (en) * 1978-12-19 1980-06-25 Nippon Steel Corp Surface cracking suppressing method of slab at hot rolling
JPS55110724A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Manufacture of low-carbon hot rolled steel
JPS566704A (en) * 1979-06-28 1981-01-23 Nippon Steel Corp Hot width-gauge control rolling method for cast slab of middle and low carbon steel
JPS566703A (en) * 1979-06-28 1981-01-23 Nippon Steel Corp Hot rolling method for steel billet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5187431A (en) * 1975-01-31 1976-07-31 Kawasaki Steel Co Hyomenwarenonai haganechuhennorenzokuchuzonyoruseizohoho
JPS5584203A (en) * 1978-12-19 1980-06-25 Nippon Steel Corp Surface cracking suppressing method of slab at hot rolling
JPS55110724A (en) * 1979-02-16 1980-08-26 Nippon Steel Corp Manufacture of low-carbon hot rolled steel
JPS566704A (en) * 1979-06-28 1981-01-23 Nippon Steel Corp Hot width-gauge control rolling method for cast slab of middle and low carbon steel
JPS566703A (en) * 1979-06-28 1981-01-23 Nippon Steel Corp Hot rolling method for steel billet

Also Published As

Publication number Publication date
JPH0245536B2 (en) 1990-10-09

Similar Documents

Publication Publication Date Title
CN111455219A (en) Electron beam cold hearth smelting method for nickel-based alloy
CN110358930B (en) Electroslag remelting slag capable of protecting sulfur and electroslag remelting method
US4738301A (en) Method for mitigating solidification segregation of steel
JPS60166150A (en) Continuous casting method of steel
US3598170A (en) Fluid-mold casting process
KR100963021B1 (en) Method for manufacturing continuous casting of martensite stainless steel having with excellent surface quality
EP0186512B1 (en) Method for controlling solidification segregation of steel
JP3363490B2 (en) Ingot making method of Fe-Ni based alloy ingot
JPS61157612A (en) Controlling method of solidification segregation of steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JPS5852444B2 (en) Method for suppressing steel billet surface cracking during hot rolling
JPH0568525B2 (en)
JPS61154748A (en) Method for controlling solidification segregation of continuous casting steel ingot
JPH06246414A (en) Continuous casting of high carbon steel
JPS60166151A (en) Continuous casting machine for steel
US2048824A (en) Alloys and method of manufacture
JPH10211546A (en) Hot-top casting method
JPS626744A (en) Continuous casting method for high-carbon steel
KR100276342B1 (en) Manufacturing Method of Special Welding Broom Casts with Excellent Internal Quality
US3820585A (en) Method for the production of multilayer metal blanks
US3249996A (en) Method of making hot rolled strip suitable for cold rolling to #3 best finish using a double scarfing treatment
US3024508A (en) Process for obtaining ingots with a small amount of pipe and of segregation
JPH0347601A (en) Hot edging method for continuously cast and unidirectionally oriented magnetic steel slab
JPH04309446A (en) Continuous casting method
US3639117A (en) Method for producing bearing grade alloy steels

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees