JPS61152929A - Compound generating system - Google Patents

Compound generating system

Info

Publication number
JPS61152929A
JPS61152929A JP27379884A JP27379884A JPS61152929A JP S61152929 A JPS61152929 A JP S61152929A JP 27379884 A JP27379884 A JP 27379884A JP 27379884 A JP27379884 A JP 27379884A JP S61152929 A JPS61152929 A JP S61152929A
Authority
JP
Japan
Prior art keywords
methanol
gas
gas turbine
steam
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27379884A
Other languages
Japanese (ja)
Inventor
Toshio Haneda
羽田 壽夫
Masamichi Kashiwazaki
柏崎 正道
Satoki Motai
甕 聰樹
Makoto Aoki
誠 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP27379884A priority Critical patent/JPS61152929A/en
Publication of JPS61152929A publication Critical patent/JPS61152929A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/22Fuel supply systems
    • F02C7/224Heating fuel before feeding to the burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1807Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines
    • F22B1/1815Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines using the exhaust gases of combustion engines using the exhaust gases of gas-turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

PURPOSE:To enhance the safety of a system by sending both steam and heated water, which are obtained at different heat exchanging areas in an exhaust duct, in which gas turbine exhaust gas goes through, to a reactor which decomposes methanol by heating. CONSTITUTION:Gas turbine exhaust gas goes through a single exhaust duct 20. The inside of the exhaust duct 20 is divided into different heat exchanging areas, and feed-water 33 is forced to pass through the respective areas. Steam 37, which is generated in a super high pressure evaporator 24, heated water 38 coming out of the outlet of a secondary fuel economiser 28, and heated water 39 coming out of the outlet of a primary fuel economiser 30 are sent to a reactor 36. In the reactor 36, methanol is decomposed by heating, and the decomposed gas 40 is sent to a gas turbine combustor. With this contrivance, since methanol is not directly exposed to exhaust gas, the safety of the system can be enhanced.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、メタノールを燃料として使用するガスタービ
ンと蒸気タービンとの組合せによる複合発電システムに
関し、そのメタノールを排ガスを利用して加熱分解する
技術に利用される。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a combined power generation system using a combination of a gas turbine and a steam turbine that uses methanol as fuel, and is applied to a technology for thermally decomposing methanol using exhaust gas. be done.

従来の技術 メタノールが250°C〜300°Cにおいて水素と一
酸化炭素とに分解し、その際多食の熱を吸収する性質を
有することに着目して、ガスタービンの燃料として石油
、LNGなどに代えてメタノールを使用することが最近
試みられている。
Conventional technology Focusing on the fact that methanol decomposes into hydrogen and carbon monoxide at 250°C to 300°C and has the property of absorbing the heat of excessive consumption, oil, LNG, etc. are used as fuel for gas turbines. Recently attempts have been made to use methanol instead.

第3図は、従来提案されているメタノールを燃料とする
ガスタービンと蒸気タービンとの組合せによる複合発電
システムの一例を示す。
FIG. 3 shows an example of a conventionally proposed combined power generation system using a combination of a gas turbine and a steam turbine using methanol as fuel.

同図において、1は空気圧縮器、2は燃焼器、3はガス
タービン、4は発電機であシ、これらによってガスター
ビンの発電系が構成されている。
In the figure, 1 is an air compressor, 2 is a combustor, 3 is a gas turbine, and 4 is a generator, which constitute a power generation system of the gas turbine.

一方、5は蒸気タービン、6は発電機、7は復水器、8
はポンプであり、これらによって蒸気タービンの発電系
が構成され、蒸気タービン5は排熱回収ダクト部9にて
ガスタービン3からの排ガス10の一部10aを利用し
て水11を直接加熱して得た高温高圧の蒸気12により
駆動される。
On the other hand, 5 is a steam turbine, 6 is a generator, 7 is a condenser, 8
is a pump, and these constitute a power generation system of a steam turbine, and the steam turbine 5 directly heats water 11 using a part 10a of the exhaust gas 10 from the gas turbine 3 in the exhaust heat recovery duct section 9. It is driven by the obtained high-temperature, high-pressure steam 12.

しかして、ガスタービン燃焼器2に燃料とじて供給され
るメタノール13は他の排熱回収ダクト部14内に送ら
れてくる排ガス10の他の一部10bによって直接加熱
されて熱分解器15にて熱分解し、そのメタノール分解
ガス16が燃焼器2に供給されて燃焼する。
Therefore, the methanol 13 supplied to the gas turbine combustor 2 together with fuel is directly heated by the other part 10b of the exhaust gas 10 sent into the other exhaust heat recovery duct part 14, and is then sent to the pyrolyzer 15. The methanol decomposition gas 16 is supplied to the combustor 2 and combusted.

発明が解決しようとする問題点 以上述べた従来例においては、しかし、メタノール13
はガス煙道で構成される排熱回収ダクト部14内におい
てガスタービン3からの排ガス10の一部10bとのい
わゆる直接熱交換方式によって加熱されるものである。
Problems to be Solved by the Invention In the conventional example described above, however, methanol 13
is heated by a so-called direct heat exchange method with a portion 10b of the exhaust gas 10 from the gas turbine 3 in the exhaust heat recovery duct section 14 constituted by a gas flue.

このような方式は、熱効率向上という点では直接熱交換
であるため非常に有効な手段ではあるが、反面メタノー
ルが漏れて排ガスに曝されることがあり、その結果場合
によっては排ガスの02成分が多いことから火災・爆発
が発生する危険もあり得る。
Although this type of method is a very effective means of improving thermal efficiency because it is a direct heat exchange, on the other hand, methanol may leak and be exposed to the exhaust gas, and as a result, the 02 components of the exhaust gas may Due to the large number of cases, there is a risk of fire or explosion.

また、従来例においては、このようなメタノールが漏れ
た場合における危険防止又は起動時などを考慮して、排
ガスlOの一部10aが流れる蒸気供給系と他の一部i
obが流れるメタノール反応系とを分離してふたつの排
熱回収ダクト部9及び14をそれぞれ独立して設けるい
わゆる分岐ダクト方式を採用している。このような方式
は、しかし、各分岐ダクトの排ガス量、ドラフト調整等
実用上問題となる点も少なくなかった。
In addition, in the conventional example, in consideration of danger prevention in the event of such methanol leakage or during startup, the steam supply system through which part 10a of the exhaust gas lO flows and the other part i
A so-called branch duct system is adopted in which two exhaust heat recovery duct sections 9 and 14 are provided independently from the methanol reaction system through which ob flows. However, such a system has many practical problems, such as the amount of exhaust gas in each branch duct and draft adjustment.

そこで、本発明は、メタノールを燃料とするガスタービ
ン及び蒸気タービンの組合せよりなる複合発電システム
において、従来の直接熱交換方式及び分岐ダクト方式に
代わる安全で実用上問題の少ないメタノール加熱分解方
式を提供しようとするものである。
Therefore, the present invention provides a methanol thermal decomposition method that is safe and has fewer practical problems as an alternative to the conventional direct heat exchange method and branch duct method in a combined power generation system consisting of a combination of a gas turbine and a steam turbine that use methanol as fuel. This is what I am trying to do.

問題点を解決するための手段 本発明は、ガスタービンによる発電系とこのガスタービ
ンからの排ガスにより駆動される蒸気タービンによる発
電系とからなり、メタノールをガスタービンからの排ガ
スを利用して反応器で加熱分解し、その分解ガスをガス
タービン燃焼器に燃料として供給する複合発電システム
において、前記ガスタービンからの排ガスを単一の排気
ダクトを通して流すとともに、この排気ダクト内の異な
る熱交換区域で得た蒸気及び熱水を前記反応器に送って
メタノールを加熱分解するようにしたものである。
Means for Solving the Problems The present invention consists of a power generation system using a gas turbine and a power generation system using a steam turbine driven by the exhaust gas from the gas turbine. In a combined power generation system in which the decomposed gas is thermally decomposed in a gas turbine and the decomposed gas is supplied as fuel to a gas turbine combustor, the exhaust gas from the gas turbine is passed through a single exhaust duct and the exhaust gas is decomposed in different heat exchange zones within this exhaust duct. The steam and hot water are sent to the reactor to thermally decompose methanol.

実施例 以下図面を参照して本発明の実施例について詳述する。Example Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の第1実施例を示し、20は複合発電シ
ステムにおけるガスタービンからの排ガス21が流れる
排気ダクトである。この排気ダクト20内には、排ガス
上流側から下流側に、順次、高圧過熱器22、超高圧過
熱器23、超高圧蒸発器24、高圧蒸発器25、超高圧
節炭器26、高圧節炭器27、二次節炭器28、低圧蒸
発器29、−次節炭器30及び低圧節炭器31が配設さ
れている。したがって、排気ダクト20は、これら種種
の熱交換区域22〜31が配設されていることから、排
ガスボイラ本体ということができる。
FIG. 1 shows a first embodiment of the present invention, and 20 is an exhaust duct through which exhaust gas 21 from a gas turbine in a combined power generation system flows. Inside this exhaust duct 20, from the exhaust gas upstream side to the downstream side, a high-pressure superheater 22, an ultra-high-pressure superheater 23, an ultra-high-pressure evaporator 24, a high-pressure evaporator 25, an ultra-high-pressure energy saver 26, and a high-pressure energy saver are installed. A secondary economizer 27, a secondary economizer 28, a low pressure evaporator 29, a secondary economizer 30, and a low pressure economizer 31 are provided. Therefore, the exhaust duct 20 can be called an exhaust gas boiler main body since these various heat exchange sections 22 to 31 are arranged therein.

そして、複合発電システムにおける蒸気タービンへの高
圧蒸気32は給水33が熱交換区域31→29→27→
25→22を通過することによって得られ、また低圧蒸
気34は給水33が熱交換区域31→29を通過するこ
とによって得られる。
The high pressure steam 32 to the steam turbine in the combined power generation system is supplied to the heat exchange area 31→29→27→
25→22, and low pressure steam 34 is obtained by passing feed water 33 through heat exchange zone 31→29.

一方、複合発電システムにおけるガスタービン燃焼器の
燃料として使用されるメタノール35は、排気ダクト2
0とは独立して設けられている反応器36に送られる。
On the other hand, methanol 35 used as fuel for the gas turbine combustor in the combined power generation system is transported to the exhaust duct 2.
0 is sent to a reactor 36 which is provided independently.

このメタノール反応器36への熱供給は3つのクローズ
ドサイクルによって行なわれる。すなわち、高温熱源と
しては熱交換区域26→24→23を通過して得られる
蒸気37が使用され、この場合蒸気37の圧力を上げて
その凝縮潜熱もメタノール分解に利用される。また、中
温熱源としては熱交換区域(二次節炭器)28の出口熱
水38が使用され、更に低温熱源としては熱交換区域(
−次節炭器)30の出口熱水39が使用される。
Heat is supplied to the methanol reactor 36 by three closed cycles. That is, the steam 37 obtained by passing through the heat exchange zones 26→24→23 is used as a high-temperature heat source, and in this case, the pressure of the steam 37 is increased and its latent heat of condensation is also utilized for methanol decomposition. In addition, the outlet hot water 38 of the heat exchange area (secondary economizer) 28 is used as a medium-temperature heat source, and the heat exchange area (secondary economizer) is used as a low-temperature heat source.
- Outlet hot water 39 of the second economizer) 30 is used.

しかして、メタノール35は、反応器36内において、
このような蒸気37及び熱水38.39の熱媒によって
加熱されて分解し、その分解ガス40がガスタービン燃
焼器へ送られて燃焼する。
Therefore, methanol 35 is contained in the reactor 36.
It is heated and decomposed by the heat medium of steam 37 and hot water 38, 39, and the decomposed gas 40 is sent to the gas turbine combustor and burned.

第2図は本発明の第2実施例を示し、第1図に示した第
1実施例における超高圧過熱器23、超高圧蒸発器24
及び超高圧節炭器26に代えて、二次過熱器41及び−
次週熱器42を配設したものである。この構成は、メタ
ノールへの高温熱源として凝縮潜熱を利用せず、蒸気の
みを使用するようにした点が第1図のものと異なる。
FIG. 2 shows a second embodiment of the present invention, in which an ultra-high pressure superheater 23 and an ultra-high pressure evaporator 24 in the first embodiment shown in FIG.
And in place of the ultra-high pressure economizer 26, a secondary superheater 41 and -
A heating device 42 will be installed next week. This configuration differs from the one in FIG. 1 in that only steam is used as a high-temperature heat source for methanol, instead of using latent heat of condensation.

発明の効果 以上詳述したように、本発明によれば、メタノールを加
熱分解させるにあたって、蒸気及び熱水を熱媒とするい
わゆる間接熱交換方式を採用しているので、メタノール
が直接排ガスに曝されて火災等を引き起こす恐れがなく
なシ、安全性が向上する。
Effects of the Invention As detailed above, according to the present invention, in thermally decomposing methanol, a so-called indirect heat exchange method using steam and hot water as a heating medium is adopted, so that methanol is not directly exposed to exhaust gas. There is no risk of fire or the like being caused by the accident, and safety is improved.

また、排気ダクトとメタノール反応器とを分離すること
により、排気ダクト内はガスと水/蒸気だけの熱交換と
なって、現在の排ガスボイラ設計技術を容易に適用出来
る。
Furthermore, by separating the exhaust duct and the methanol reactor, heat exchange occurs only between gas and water/steam in the exhaust duct, making it easy to apply current exhaust gas boiler design technology.

しかも、本発明によれば、排気ダクトを従来の分岐ダク
ト方式からシリーズダクト方式としているので、次のよ
うな利点がある。すなわち、直接熱交換方式では、メタ
ノールが漏れた場合の危険性及び起動時等を考慮すると
、分岐ダクトにして、メタノール反応器と蒸気タービン
の蒸気供給系とを分離する必要があったが、間接熱交換
方式では、メタノール反応器が排気ダクト外にあるため
、メタノールへの熱供給系と蒸気タービンの蒸気供給系
とを分ける必然性はない。従って、間接熱交換方式の場
合、シリーズダクト方式にして、分岐ダクト方式による
ボイラ構造の複雑さ、各ダクトのガス量、ドラフトロス
調整の困難さを解消することができる。
Moreover, according to the present invention, the exhaust duct is changed from the conventional branch duct system to a series duct system, so there are the following advantages. In other words, in the direct heat exchange method, it was necessary to use a branch duct to separate the methanol reactor and the steam supply system of the steam turbine, considering the risk of methanol leakage and the startup time. In the heat exchange method, since the methanol reactor is located outside the exhaust duct, there is no necessity to separate the heat supply system for methanol from the steam supply system for the steam turbine. Therefore, in the case of the indirect heat exchange system, it is possible to use the series duct system to eliminate the complexity of the boiler structure, the gas amount of each duct, and the difficulty in adjusting draft loss caused by the branch duct system.

更に、本発明によれば、メタノールへの熱供給を多段階
に分けて行うことにより効率の向上を計ることができる
。詳しく説明すれば、メタノール反応に必要な全熱量を
排ガス温度レベルの高い所で得られる熱のみで供給する
ことは、メタノールの反応器入口温度が常温である点、
及び、高圧系の熱吸収量が減ってその蒸発量が少なくな
る点からも最適な熱供給方式とは言えず、メタノールの
各段階温度に合った熱源により熱を供給してやるべきで
ある。すなわち、メタノールの高温域には排ガス温度の
高温域で得られる熱を、メタノールの低温域には排ガス
温度の低温域で得られる熱を供給すべきである。この点
、本発明によれば、排気ダクト内の異なる熱交換区域で
得た蒸気及び熱水を反応器に送ってメタノールを加熱し
ているので、効率の向上を計ることができ、これにより
ブラント発電端効率では直接熱交換方式にほぼ匹敵する
効率が得られる。
Further, according to the present invention, efficiency can be improved by supplying heat to methanol in multiple stages. To explain in detail, the fact that the total amount of heat required for the methanol reaction is supplied only by the heat obtained at the high exhaust gas temperature level is because the methanol reactor inlet temperature is at room temperature.
In addition, it cannot be said that this is the optimal heat supply method because the amount of heat absorbed by the high-pressure system is reduced and the amount of evaporation is also reduced, and heat should be supplied by a heat source that matches the temperature of each stage of methanol. That is, the heat obtained in the high temperature range of exhaust gas should be supplied to the high temperature range of methanol, and the heat obtained in the low temperature range of exhaust gas should be supplied to the low temperature range of methanol. In this regard, according to the present invention, the steam and hot water obtained in different heat exchange zones in the exhaust duct are sent to the reactor to heat the methanol, so efficiency can be improved and the blunt In terms of generating end efficiency, the efficiency is almost comparable to that of the direct heat exchange method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による複合発電システムの一例を示す要
部の系統図、第2図はその他の例を示す系統図、第3図
は従来の複合発電システムを示す系統図である。
FIG. 1 is a system diagram of essential parts showing an example of a combined power generation system according to the present invention, FIG. 2 is a system diagram showing another example, and FIG. 3 is a system diagram showing a conventional combined power generation system.

Claims (1)

【特許請求の範囲】[Claims] ガスタービンによる発電系とこのガスタービンからの排
ガスにより駆動される蒸気タービンによる発電系とから
なり、メタノールをガスタービンからの排ガスを利用し
て反応器で加熱分解し、その分解ガスをガスタービン燃
焼器に燃料として供給する複合発電システムにおいて、
前記ガスタービンからの排ガスを単一の排気ダクトを通
して流すとともに、この排気ダクト内の異なる熱交換区
域で得た蒸気及び熱水を前記反応器に送つてメタノール
を加熱分解するようにしてなる複合発電システム。
It consists of a power generation system using a gas turbine and a power generation system using a steam turbine driven by the exhaust gas from the gas turbine. Methanol is thermally decomposed in a reactor using the exhaust gas from the gas turbine, and the decomposed gas is combusted by the gas turbine. In a combined power generation system that supplies fuel to the
A combined power generation system in which exhaust gas from the gas turbine is passed through a single exhaust duct, and steam and hot water obtained in different heat exchange zones within the exhaust duct are sent to the reactor to thermally decompose methanol. system.
JP27379884A 1984-12-27 1984-12-27 Compound generating system Pending JPS61152929A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27379884A JPS61152929A (en) 1984-12-27 1984-12-27 Compound generating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27379884A JPS61152929A (en) 1984-12-27 1984-12-27 Compound generating system

Publications (1)

Publication Number Publication Date
JPS61152929A true JPS61152929A (en) 1986-07-11

Family

ID=17532729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27379884A Pending JPS61152929A (en) 1984-12-27 1984-12-27 Compound generating system

Country Status (1)

Country Link
JP (1) JPS61152929A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385207A (en) * 1986-09-27 1988-04-15 Mitsubishi Heavy Ind Ltd Combined power generating system
JPH01244123A (en) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol Manufacture of methanol decomposition reformed gas fuel
EP0391082A2 (en) * 1989-04-03 1990-10-10 Westinghouse Electric Corporation Improved efficiency combined cycle power plant
EP0638715A1 (en) * 1993-08-06 1995-02-15 United Technologies Corporation Recovery of heat from the combustion products of a gas turbine engine
JP2008185034A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Method and system for increasing range of modified wobbe index control

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6385207A (en) * 1986-09-27 1988-04-15 Mitsubishi Heavy Ind Ltd Combined power generating system
JPH01244123A (en) * 1988-03-25 1989-09-28 Agency Of Ind Science & Technol Manufacture of methanol decomposition reformed gas fuel
EP0391082A2 (en) * 1989-04-03 1990-10-10 Westinghouse Electric Corporation Improved efficiency combined cycle power plant
JPH02283803A (en) * 1989-04-03 1990-11-21 Westinghouse Electric Corp <We> Operating method for combinedcycle power plant, and combinedcycle power plant
EP0638715A1 (en) * 1993-08-06 1995-02-15 United Technologies Corporation Recovery of heat from the combustion products of a gas turbine engine
JP2008185034A (en) * 2007-01-30 2008-08-14 General Electric Co <Ge> Method and system for increasing range of modified wobbe index control

Similar Documents

Publication Publication Date Title
KR100363071B1 (en) Gas Turbine and Steam Turbine Plants and Methods for Operating Gas Turbine and Steam Turbine Plants
US5590518A (en) Hydrogen-rich fuel, closed-loop cooled, and reheat enhanced gas turbine powerplants
JP3974519B2 (en) Compressed air steam generator for combustion turbine transition.
US4288979A (en) Combined cycle power plant incorporating coal gasification
JP6245404B1 (en) Combustion equipment and power generation equipment
US8959917B2 (en) Method for operating a forced-flow steam generator operating at a steam temperature above 650°C and forced-flow steam generator
US20070017207A1 (en) Combined Cycle Power Plant
RU2009333C1 (en) Combined steam-gas power plant and method of its operation
JPS6017967B2 (en) Exhaust heat recovery boiler equipment
JP2005534883A (en) Waste heat steam generator
TW200427898A (en) System for producing energy at a pulp mill
JP2757290B2 (en) Gas / steam turbine combined facility with coal gasification facility
US5715682A (en) Combined-cycle power generation system using waste matter as fuel
RU2661231C1 (en) Method of hydrogen steam overheating at npp
JPS61152929A (en) Compound generating system
JP2554060B2 (en) Combined generation system
EA032655B1 (en) Heat recovery unit and power plant
GB1583808A (en) Convective heat transfer steam boiler for fuels of low energy and ash content
JPH06212909A (en) Compound electric power plant
JPH0323807B2 (en)
JPS60247001A (en) Thermal stress control device for steam turbine casing
JP2000133295A (en) Solid electrolyte fuel cell composite power generation plant system
RU2707182C1 (en) Method to increase power of double circuit npp by combining with hydrogen cycle
RU2709783C1 (en) Method of hydrogen heating of feed water to npp
JPS63230501A (en) Methanol reformer for fuel cell