JPS6115246B2 - - Google Patents

Info

Publication number
JPS6115246B2
JPS6115246B2 JP2388579A JP2388579A JPS6115246B2 JP S6115246 B2 JPS6115246 B2 JP S6115246B2 JP 2388579 A JP2388579 A JP 2388579A JP 2388579 A JP2388579 A JP 2388579A JP S6115246 B2 JPS6115246 B2 JP S6115246B2
Authority
JP
Japan
Prior art keywords
water
boiler
exhaust gas
gas turbine
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2388579A
Other languages
Japanese (ja)
Other versions
JPS55114835A (en
Inventor
Tatsuo Imaizumi
Setsuo Nonaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2388579A priority Critical patent/JPS55114835A/en
Publication of JPS55114835A publication Critical patent/JPS55114835A/en
Publication of JPS6115246B2 publication Critical patent/JPS6115246B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明はガスタービンと蒸気タービンの複合サ
イクルプラントの起動方法に係り、特に夜間停止
後の起動方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for starting a combined cycle plant of a gas turbine and a steam turbine, and particularly to a method for starting a plant after a nighttime shutdown.

ガスタービンの排ガスは一般に高温であるの
で、この排熱を排ガスボイラにて回収し蒸気を発
生し、これによつて蒸気タービンを駆動し発電を
行う複合サイクルプラントが計画され、建設され
る。ガスタービンは起動時間(点火より全員荷迄
の時間)が短かいので、ピーク負荷用として運用
される事が多い。複合サイクルプラントもこのガ
スタービンの起動特性を活かすため、毎日起動停
止(一般的には毎夜間停止となる事が多い)の運
用が行われる場合が多い。この場合、プラントの
停止中の熱放散量を最少限に止める事が、プラン
トの運転効率(起動・停止ロスを考慮)を高め、
また、起動時間を短縮する上で重要となる。この
ため、ガスタービン排気煙道にはボイラの出入口
にダンパーを設け、ガスタービン停止中はこれを
閉止してバンキングを行う。蒸気側も脱気器への
シール蒸気等必要最少限に止め、他のリークは完
全に防止する様に努める。
Since the exhaust gas of a gas turbine is generally high temperature, a combined cycle plant is planned and constructed in which this exhaust heat is recovered in an exhaust gas boiler to generate steam, which drives a steam turbine and generates electricity. Gas turbines have a short start-up time (time from ignition to full load), so they are often used for peak load applications. In order to take advantage of the startup characteristics of gas turbines, combined cycle plants are often operated with daily startup and shutdown (generally, they are often shut down every night). In this case, minimizing the amount of heat dissipation while the plant is stopped increases the operating efficiency of the plant (considering start-up and stop losses),
It is also important in reducing startup time. For this reason, a damper is provided in the gas turbine exhaust flue at the entrance and exit of the boiler, and when the gas turbine is stopped, the damper is closed to perform banking. On the steam side, seal steam to the deaerator, etc., to keep it to the minimum necessary, and strive to completely prevent other leaks.

一方、運転中に生ずるボイラ保有水量の変化を
閉サイクル内で吸収するための一手段として、最
近、脱気器水位または、ドラム水位と脱気器水位
の両者を蒸気タービン負荷(またはこれに比例す
る主蒸気流量等)信号により変化させる方式が試
みられている。この方式によつて、蒸気タービン
負荷の増大と共にボイラ蒸発量が増加し、みかけ
上ボイラ保有水が体積膨脹する事によつて生ずる
ボイラ余剰水を補給水タンク等閉サイクル外に排
出する事なく、脱気器に貯える事が可能となる。
On the other hand, as a means of absorbing changes in the amount of water held in the boiler that occur during operation within a closed cycle, recently, the deaerator water level or both the drum water level and the deaerator water level have been adjusted to the steam turbine load (or proportional to this). Attempts have been made to use signals to change the main steam flow rate, etc. With this method, the amount of boiler evaporation increases as the steam turbine load increases, and the boiler's surplus water, which is caused by the apparent volumetric expansion of the water held in the boiler, is not discharged outside the closed cycle, such as in the make-up water tank. It can be stored in a deaerator.

しかし、毎日起動停止するプラントにおいて
は、停止中の放熱によりボイラドラム圧力は徐々
に低下し、保有水温度が低下しその体積を減ずる
ので、これを補うため一時的に給水を補給する。
すなわち、プラント起動時はドラム水位は制御レ
ベルより大巾に低下しているため、給水ポンプ起
動によりボイラへ送水され、ドラム水位が制御レ
ベルまで高められる。しかし、ガスタービンが運
転され、その排ガス温度が高まると、ボイラは熱
回収により保有水の温度が上昇し、その体積を増
し、水位が上昇する。ドラム水位が高水位レベル
に達すると缶水ブロー管より系外へブローされ
る。ある複合サイクルプラントの例では、起動時
のボイラへの給水量は脱気器シール蒸気量分1m3
と放熱による保有水の体積減少分8m3の合計9m3
であり、これに対し、ガスタービン起動後のボイ
ラ保有水温度回復により体積は8m3増加する、こ
のうちドラム水位が高水位レベルを越える6m3
起動時の缶水ブローとして系外へ放出される。
However, in plants that are started and stopped every day, the boiler drum pressure gradually decreases due to heat radiation during the shutdown, and the temperature of the retained water decreases, reducing its volume. To compensate for this, water supply is temporarily replenished.
That is, since the drum water level is significantly lower than the control level when the plant is started, water is sent to the boiler by starting the water supply pump, and the drum water level is raised to the control level. However, when the gas turbine is operated and the temperature of its exhaust gas increases, the temperature of the water held in the boiler increases through heat recovery, increasing its volume and raising the water level. When the drum water level reaches a high water level, canned water is blown out of the system through the blow pipe. In an example of a combined cycle plant, the amount of water supplied to the boiler at start-up is equal to 1 m3 of deaerator seal steam.
and the volume reduction of retained water due to heat radiation of 8m3 , totaling 9m3 .
On the other hand, the volume increases by 8 m 3 due to the boiler water temperature recovery after the gas turbine is started, and of this, 6 m 3 where the drum water level exceeds the high water level is discharged outside the system as canned water blow at startup. Ru.

ボイラは一般にチユーブの過熱防止のためドラ
ム水位低では起動しない様保護インターロツクを
設けているので、前記の如く起動前のドラム低を
補償するため、ボイラに給水される。しかし給水
した量の大半はガスタービン起動後に缶水ブロー
(熱水)として放出されるため、起動時の熱損失
を大きくし、また水を無駄に浪費する点でも問題
があつた。
Boilers are generally equipped with a protective interlock to prevent the boiler from starting when the drum water level is low in order to prevent the tube from overheating, so water is supplied to the boiler to compensate for the low drum water level before starting as described above. However, most of the supplied water is discharged as canned water blow (hot water) after the gas turbine is started, which poses a problem in that heat loss during startup is large and water is wasted unnecessarily.

本発明の目的は排ガスボイラ起動時の一時的な
ドラム水位低現象に対し、ボイラへ給水する事な
くガスタービンを起動することにより、起動損失
を最少限に止める複合サイクルプラントの起動方
法を提供するにある。
The purpose of the present invention is to provide a method for starting a combined cycle plant that minimizes startup loss by starting a gas turbine without supplying water to the boiler in response to a temporary low drum water level phenomenon when starting an exhaust gas boiler. It is in.

本発明はガスタービンの排ガス熱回収を行う排
ガスボイラ(特に補助燃焼装置をもたず、排ガス
のみで加熱するもの)においては、ガスタービン
無負荷時の排ガス温度は排ガスボイラのチユーブ
を過熱に到らしめない温度である事に注目し、ガ
スタービンを無負荷もしくは軽負荷(その排ガス
温度がボイラチユーブの過熱を生じない範囲)で
運転し、プラント停止中の熱放散分に見合う分だ
けボイラを加熱すれば、排ガスボイラの圧力は停
止時と同一圧力まで高める事ができ、保有水の温
度も上昇し、その体積も回復するので、その後に
ボイラに給水を開始すれば、余分な給水を行う事
はなくなり、前述の如き起動時多量の熱水を缶水
ブローとして放出する事はさけられ、起動損失を
最少限に止める事を可能としたものである。
In an exhaust gas boiler that recovers exhaust gas heat from a gas turbine (particularly one that does not have an auxiliary combustion device and heats only with exhaust gas), the exhaust gas temperature when the gas turbine is not loaded reaches a point where the tube of the exhaust gas boiler becomes overheated. The gas turbine is operated under no load or light load (within a range where the exhaust gas temperature does not cause overheating of the boiler tube), and the boiler is turned on to compensate for the heat dissipation during plant shutdown. If heated, the pressure in the exhaust gas boiler can be raised to the same pressure as when it was stopped, the temperature of the retained water will also rise, and its volume will be restored, so if you start supplying water to the boiler afterwards, you will be able to supply excess water. This eliminates the problem, and avoids discharging a large amount of hot water as a canned water blow at startup as described above, making it possible to minimize startup loss.

以下本発明の一実施例を図面によつて説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第1図はガスタービンと蒸気タービンの複合サ
イクルプラントの一例を示す概略系統図である。
ガスタービン1により発電機2を駆動し発電を行
うが、ガスタービンの排ガスは高温であるので煙
道6を通して排ガスボイラ5に送り熱回収を行
う。ボイラで発生した蒸気は過熱器14で過熱さ
れ、主蒸気管116を通して蒸気タービン17に
送られ仕事をし、発電機18を回して発電を行
う。蒸気タービンで仕事を終えた蒸気は復水器2
1で冷却され水(復水)となる。復水は復水ポン
プ22で加圧され復水流量を制御する(例えば、
復水器の水位を一定に保持する様に制御される)
調節弁23を通し、復水管24にて脱気器25に
送られる。一方、蒸気タービンより抽気管41を
通して蒸気を抽出し、脱気器に送つて復水を加
熱・脱気させ、飽和水を脱気器に貯える。抽気管
41には逆止弁42を設け、タービンへの逆流を
防止する。脱気器に貯えられた水は給水ポンプ3
1によりさらに加圧され、給水管33を通して排
ガスボイラ5に送られる。給水管33には逆流を
防止するための逆止弁34と排ガスボイラのドラ
ム水位を規定値に制御するための調節弁32が設
けられる。ボイラに送られた給水は、節炭器11
で加熱して、ドラム12に送られる。缶水は蒸発
器13に送られて蒸発し、ドラム12に戻されて
気水分離し、蒸気分は過熱器14へと送られる。
ドラム内の水質は蒸発によつて不純物が徐々に濃
縮されるので、水質を規定の値に保つため、缶水
ブロー管71より缶水をブローする。缶水ブロー
管71には仕切弁72が設けられる。本プラント
の運用を毎日起動停止とし、夜間は停止されるも
のとする。プラント停止中は補助蒸気管51によ
り、ドラム12の蒸気を一部抽出し、脱気器25
に送り、調節弁52で脱気器圧力を大気圧より若
干高く保持(蒸気シール)する。これによつて大
気中の酸素が脱気器貯水に溶け込むのを防止で
き、プラント起動時のボイラ給水の水質を規定値
内に保つ事ができる。プラント内の水は閉ループ
をなしているが、缶水ブローもしくはリーク等に
よつて水が系外に流出した分は、補給水タンク6
1より補給水管62を通して復水器21に補給さ
れる。補給水量は復水器21もしくは脱気器25
の水位により調節弁63で制御されるが、復水流
量調節弁23が復水器水位を一定にする様制御さ
れる場合には、補給水調節弁63は脱気器の水位
が規定水位(可変の事もある)より低下した時こ
れを補償する様に制御される。毎日起動停止する
プラントでは、夜間停止中の熱放散を最少限に止
める事がプラントの熱効率を高め、また起動時間
を短縮する上で重要となる。このため、ガスター
ビン1の排ガス煙道6には排ガスボイラ5の出入
口にダンパー3を設け、プラント停止中はこれを
閉止している。また、プラント停止中の蒸気側リ
ークを最少限に止めるため、過熱器14の出口部
に仕切弁15を設け、プラント停止中はこれを閉
止する。
FIG. 1 is a schematic system diagram showing an example of a combined cycle plant of a gas turbine and a steam turbine.
The gas turbine 1 drives the generator 2 to generate electricity, but since the exhaust gas of the gas turbine is high temperature, it is sent to the exhaust gas boiler 5 through the flue 6 for heat recovery. Steam generated in the boiler is superheated in a superheater 14, sent to a steam turbine 17 through a main steam pipe 116, where it does work, and rotates a generator 18 to generate electricity. The steam that has completed its work in the steam turbine is sent to condenser 2.
1 and becomes water (condensate). The condensate is pressurized by the condensate pump 22 to control the condensate flow rate (for example,
(Controlled to maintain a constant water level in the condenser)
It passes through a control valve 23 and is sent to a deaerator 25 via a condensate pipe 24. On the other hand, steam is extracted from the steam turbine through the bleed pipe 41, and sent to a deaerator to heat and degas condensate, and saturated water is stored in the deaerator. A check valve 42 is provided in the bleed pipe 41 to prevent backflow to the turbine. Water stored in the deaerator is pumped to water supply pump 3
1 and sent to the exhaust gas boiler 5 through the water supply pipe 33. The water supply pipe 33 is provided with a check valve 34 for preventing backflow and a control valve 32 for controlling the drum water level of the exhaust gas boiler to a specified value. The water supplied to the boiler is sent to the energy saver 11.
is heated and sent to the drum 12. The canned water is sent to the evaporator 13 to be evaporated, returned to the drum 12 to separate steam and water, and the steam component is sent to the superheater 14.
Since impurities are gradually concentrated in the water in the drum due to evaporation, can water is blown from the can water blow pipe 71 in order to maintain the water quality at a specified value. A gate valve 72 is provided in the canned water blow pipe 71. The operation of this plant will be started and stopped every day, and will be shut down at night. When the plant is stopped, a portion of the steam in the drum 12 is extracted through the auxiliary steam pipe 51, and the steam is removed from the deaerator 25.
The control valve 52 maintains the deaerator pressure slightly higher than atmospheric pressure (steam seal). This prevents atmospheric oxygen from dissolving into the deaerator storage water, making it possible to maintain the quality of the boiler feed water within specified values at plant start-up. Water in the plant forms a closed loop, but water that flows out of the system due to canned water blowing or leaks is stored in the make-up water tank 6.
1 and is supplied to the condenser 21 through the supply water pipe 62. The amount of make-up water is determined by the condenser 21 or deaerator 25
However, when the condensate flow rate control valve 23 is controlled to keep the condenser water level constant, the make-up water control valve 63 adjusts the water level of the deaerator to the specified water level ( It is controlled to compensate for this when it drops (sometimes it is variable). For plants that are started and stopped every day, it is important to minimize heat dissipation during nighttime shutdowns in order to increase the plant's thermal efficiency and shorten the startup time. For this reason, a damper 3 is provided in the exhaust gas flue 6 of the gas turbine 1 at the entrance and exit of the exhaust gas boiler 5, and the damper 3 is closed when the plant is stopped. Furthermore, in order to minimize leakage on the steam side while the plant is stopped, a gate valve 15 is provided at the outlet of the superheater 14, and this is closed while the plant is stopped.

第2図は第1図に示す複合サイクルプラントの
従来技術による起動特性の一例を示す。第2図に
おいて、Aはガスタービン回転数、Bはガスター
ビン負荷、Cは排ガス量、Dは排ガス温度、Eは
ドラム水位、Fはドラム圧力をそれぞれ示す。前
述の如く、ガスタービン起動に先立ち、給水ポン
プを起動し、ボイラに給水し、ドラム水位を規定
値迄上昇させる。ガスタービン起動により排ガス
ボイラが昇温・昇圧されるとボイラ保有水は体積
膨脹を来たし、ドラム水位が上昇する。この時、
起動前に給水した量の大半は缶水ブローとして熱
水が系外に放出され、熱効率の低下を招くと共
に、水を無駄に浪費し好ましくなかつた。
FIG. 2 shows an example of the start-up characteristics of the combined cycle plant shown in FIG. 1 according to the prior art. In FIG. 2, A indicates the gas turbine rotation speed, B indicates the gas turbine load, C indicates the exhaust gas amount, D indicates the exhaust gas temperature, E indicates the drum water level, and F indicates the drum pressure. As described above, prior to starting the gas turbine, the water supply pump is started to supply water to the boiler and raise the drum water level to a specified value. When the exhaust gas boiler is heated and pressurized by starting the gas turbine, the water held in the boiler expands in volume, and the drum water level rises. At this time,
Most of the water supplied before startup was discharged as hot water from the system as a canned water blow, resulting in a decrease in thermal efficiency and wasting water, which was undesirable.

第3図は本発明による起動方法を採用した場合
の起動特性の一例である。第3図において、記号
A乃至Fはそれぞれ第2図の場合と同一のものを
示す。ドラム水位低のまゝガスタービンを起動
し、ガスタービン負荷40%で一旦保持し、ボイラ
ドラム圧力が上昇するのを待つ。ドラム圧力が
45atgになつた時、給水ポンプを起動すると共に
ガスタービンの負荷を再度上昇させる様にしたも
のである。この場合、夜間停止中の熱放散による
ボイラ水の体積減少分は、給水ポンプ起動迄の昇
圧(昇温を伴う)によりその大半を回復する事が
出来、給水ポンプを起動しても、過大にボイラへ
給水されないため、不必要な缶水ブローを行う事
なくプラントを起動する事が出来る。ボイラへの
給水が第2図に比べスムースに行われるのは、給
水ポンプ起動時のドラム水位が制御レベルに比較
的近いため、給水調節弁32が過大に開くのを防
止する事が出来る(例えば調節弁をドラム水位に
対し、比例動作で制御させる)事と、給水ポンプ
起動時点ではボイラの発生蒸気の一部が、主蒸気
管のウオーミングもしくは、ボイラの昇圧速度を
制御するためタービンバイパスライン(第1図に
は記載されていないが、主蒸気管16より蒸気タ
ービン17をバイパスして復水器21に接続する
配管を設ける場合がある)より復水器へ放出さ
れ、ドラム水位を下げる側に働くためである。
(第2図では給水ポンプ起動時点ではボイラの蒸
発量は皆無である) 第3図ではガスタービンの排ガス温度を規定値
以下に押える手段として、ガスタービン負荷を規
定値(この場合は40%負荷)に保持した例を述べ
たが、ガスタービンの排ガス温度は運転時の大気
温度、ガスタービンへの蒸気注入の有無、ガスタ
ービンの効率(経年変化)等種々の条件により変
化するため、一般的には、第1図に示す如く、排
ガスボイラ5の入口部煙道6に温度検出器4を設
け、排ガス温度を直接検出して、排ガス温度を規
定値以下に押える様、ガスタービン負荷を制限す
る運転法が採用される。排ガス温度の制限はボイ
ラチユーブを過熱させない範囲として決められる
が、300℃〜450℃に選定される事が多い。
FIG. 3 shows an example of startup characteristics when the startup method according to the present invention is adopted. In FIG. 3, symbols A to F indicate the same things as in FIG. 2, respectively. Start the gas turbine with the drum water level low, maintain the gas turbine load at 40%, and wait for the boiler drum pressure to rise. drum pressure
When it reached 45atg, the water supply pump was started and the load on the gas turbine was increased again. In this case, most of the volume reduction in boiler water due to heat dissipation during nighttime shutdown can be recovered by increasing the pressure (accompanied by temperature rise) until the feed water pump starts, and even if the feed water pump is started, Since water is not supplied to the boiler, the plant can be started without unnecessary can water blowing. The reason why water is supplied to the boiler more smoothly than in Figure 2 is because the drum water level when the water supply pump is started is relatively close to the control level, which prevents the water supply control valve 32 from opening excessively (for example, The control valve is controlled proportionally to the drum water level), and when the feed water pump is started, a portion of the steam generated by the boiler is used to warm the main steam pipe or to control the boiler pressure increase rate, so that it is transferred to the turbine bypass line ( Although not shown in Fig. 1, there may be a case where a pipe is provided that bypasses the steam turbine 17 and connects to the condenser 21 from the main steam pipe 16) to the condenser and lowers the drum water level. This is for the purpose of working.
(In Figure 2, there is no evaporation in the boiler when the feedwater pump is started.) In Figure 3, the gas turbine load is set to the specified value (in this case, 40% load) as a means of suppressing the exhaust gas temperature of the gas turbine to below the specified value. ), but since the exhaust gas temperature of a gas turbine varies depending on various conditions such as the atmospheric temperature during operation, whether or not steam is injected into the gas turbine, and the efficiency of the gas turbine (changes over time), it is generally As shown in Fig. 1, a temperature detector 4 is installed in the inlet flue 6 of the exhaust gas boiler 5 to directly detect the exhaust gas temperature and limit the gas turbine load to keep the exhaust gas temperature below a specified value. The following driving method will be adopted. The exhaust gas temperature limit is set as a range that does not overheat the boiler tube, and is often set at 300°C to 450°C.

給水ポンプ起動の条件として、第3図では、ド
ラム圧力が45atgに回復する時点としたが、この
例では、ドラム圧力が定格圧力の56atgになる迄
に、ボイラ保有水はさらに体積膨腸を続けるた
め、給水した分が過剰となる恐れがあるが、前述
の如く給水調節弁の制御を適切に行えば、ボイラ
よりの蒸発分もあり、不必要な缶水ブローを行う
事なく正常な水位制御へ移行出来る。一般にボイ
ラへ給水を開始するドラム圧力はボイラの定格圧
力迄待つ必要はなく、定格圧力の50%〜100%に
選定される事が多い。
In Figure 3, the condition for starting the water pump is the point at which the drum pressure recovers to 45 atg, but in this example, the boiler water continues to expand in volume until the drum pressure reaches the rated pressure of 56 atg. Therefore, there is a risk that the amount of water supplied may be excessive, but if the water supply control valve is properly controlled as described above, there will be evaporation from the boiler, and the water level will be controlled normally without unnecessary can water blowing. You can move to Generally, it is not necessary to wait until the drum pressure reaches the rated pressure of the boiler before starting water supply to the boiler, and it is often set at 50% to 100% of the rated pressure.

以上本発明の一実施例では、ボイラへの給水開
始の条件として、ボイラのドラム圧力が規定値ま
で回復する事を条件としたが、ドラムは飽和蒸気
が保有されている故、ドラム温度でこれを代行す
る事ができる事は明らかである。
As described above, in one embodiment of the present invention, the condition for starting water supply to the boiler is that the drum pressure of the boiler recovers to the specified value. It is clear that it is possible to act on behalf of

本発明によれば、プラント起動時の一時的なド
ラム水位低現象を補償するための過剰な給水の補
給を行う事が不要となり、起動損失及び水の浪費
を最少限に止める事ができる。
According to the present invention, there is no need to replenish excessive water supply to compensate for a temporary low drum water level phenomenon at the time of plant startup, and startup loss and water waste can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はガスタービンと蒸気タービンの複合サ
イクルプラントの一例を示す概略系統図、第2図
は第1図に示す複合サイクルプラントの従来技術
による起動特性の一例、第3図は本発明による起
動特性の一例である。 1……ガスタービン、4……温度検出器、5…
…排ガスボイラ、12……ドラム、17……蒸気
タービン、31……給水ポンプ、32……調節
弁。
Fig. 1 is a schematic system diagram showing an example of a combined cycle plant of a gas turbine and a steam turbine, Fig. 2 is an example of start-up characteristics of the combined cycle plant shown in Fig. 1 according to the prior art, and Fig. 3 is a start-up according to the present invention. This is an example of a characteristic. 1...Gas turbine, 4...Temperature detector, 5...
...Exhaust gas boiler, 12...Drum, 17...Steam turbine, 31...Water pump, 32...Control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 ガスタービンとその排ガスの熱回収を行う排
ガスボイラとそのボイラで発生した蒸気により発
電するための蒸気タービンとにより構成される複
合サイクルプラントにおいて、毎日起動・停止運
用におけるプラント起動時、ボイラドラム水位低
のままボイラへ給水する事なくガスタービンを起
動し、ガスタービンの排ガス温度を規定値以下に
押えて運転し、ボイラドラム圧力が規定値まで回
復するのを待つてボイラに給水を始める事を特徴
とする複合サイクルプラントの起動方法。
1. In a combined cycle plant consisting of a gas turbine, an exhaust gas boiler that recovers heat from its exhaust gas, and a steam turbine that generates electricity using the steam generated by the boiler, the boiler drum water level at the time of plant startup during daily startup and shutdown operations. Start the gas turbine without supplying water to the boiler at a low temperature, operate the gas turbine while keeping the exhaust gas temperature below the specified value, and wait for the boiler drum pressure to recover to the specified value before starting to supply water to the boiler. A method for starting a combined cycle plant featuring features.
JP2388579A 1979-02-27 1979-02-27 Start-up method for combined-cycle plant Granted JPS55114835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2388579A JPS55114835A (en) 1979-02-27 1979-02-27 Start-up method for combined-cycle plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2388579A JPS55114835A (en) 1979-02-27 1979-02-27 Start-up method for combined-cycle plant

Publications (2)

Publication Number Publication Date
JPS55114835A JPS55114835A (en) 1980-09-04
JPS6115246B2 true JPS6115246B2 (en) 1986-04-23

Family

ID=12122894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2388579A Granted JPS55114835A (en) 1979-02-27 1979-02-27 Start-up method for combined-cycle plant

Country Status (1)

Country Link
JP (1) JPS55114835A (en)

Also Published As

Publication number Publication date
JPS55114835A (en) 1980-09-04

Similar Documents

Publication Publication Date Title
JP4786504B2 (en) Heat medium supply facility, solar combined power generation facility, and control method thereof
JPS6149485B2 (en)
JPS6218724B2 (en)
US4311013A (en) Method of controlling condensation system of steam plant
JPS6239645B2 (en)
JP2012102711A (en) Temperature reducing device steam heat recovery facilities
JP2005163628A (en) Reheat steam turbine plant and method for operating the same
JPS62325B2 (en)
CA1241881A (en) Start-up control system and vessel for lmfbr
JPS6115246B2 (en)
TW202113285A (en) Power generation plant and method for storing excess energy in power generation plant
JP2019173697A (en) Combined cycle power generation plant and operation method of the same
JPH09112801A (en) Pressured fluidized bed boiler generating system
JP2000303803A (en) Power generation system
JP2021001597A5 (en)
JP2737884B2 (en) Steam turbine generator
US3361117A (en) Start-up system for forced flow vapor generator and method of operating the vapor generator
JPH11294713A (en) Water supply device for exhaust heat recovery boiler
JPS5926765B2 (en) Control method and device for a turbine plant having a turbine bypass line
JP2531801B2 (en) Exhaust heat recovery heat exchanger controller
JP2625487B2 (en) Hot start method of boiler
JPS60178908A (en) Steam turbine plant and its operation method
JPS6242123B2 (en)
JP2764825B2 (en) Power plant and start-up method thereof
JP2002227611A (en) Pressure fluidized bed boiler power generation plant and its controlling method