JPS61151487A - Sonar apparatus - Google Patents

Sonar apparatus

Info

Publication number
JPS61151487A
JPS61151487A JP27804984A JP27804984A JPS61151487A JP S61151487 A JPS61151487 A JP S61151487A JP 27804984 A JP27804984 A JP 27804984A JP 27804984 A JP27804984 A JP 27804984A JP S61151487 A JPS61151487 A JP S61151487A
Authority
JP
Japan
Prior art keywords
transmission
receiving
transmitting
frequency
acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27804984A
Other languages
Japanese (ja)
Inventor
Masaaki Shishido
宍戸 正昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP27804984A priority Critical patent/JPS61151487A/en
Publication of JPS61151487A publication Critical patent/JPS61151487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To attain to reduce the number of delay wires and to shorten a detection required time, by using different frequency at every transmission acoustic beam and separating a reflected signal at ever picture element by a filter. CONSTITUTION:An oscillator 1 consists of transmission frequency oscillators G1-GN and a transmission beam forming device 2 consists of delay lines 21A-21Z with taps and power amplifiers 22A-22Z while a transmitter 3 is constituted of transmission elements 31A-31Z. The frequencies of the transmission beam directions B1-BN of the transmitter 3 respectively correspond to the frequencies f1-N of the transmission frequency oscillators G1-GN. Each receiving signal obtained by receiving beam is divided at every transmission frequency by a filter corresponding to the frequency constituting transmission beam to obtain the reflected signal at the part of the intersecting surface (that is, the picture element) of transmission beam and receiving beam, and the distance up to each picture element and the azimuth thereof are outputted.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はソーナー装置に関し、特に複数個の送波音響ビ
ームお工び少なくとも1個の受波音響ビームとを交差せ
しめて運用する多重ビーム方式を採用して物標までの距
離お工び万位を測定するンーナー装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a sonar device, and particularly to a multi-beam system in which a plurality of transmitting acoustic beams and at least one receiving acoustic beam are operated by crossing each other. This invention relates to a device that measures the distance and position to a target.

(従来の技術) ソーナー装置を用いて水中にある物標までの距離とその
方位を拠知する場合には、予じめ想定される領域に向っ
て音波の短いパルスを放射し、物標から反射した音波を
複数個の受波音響ビーム管有する受波器で受け、その往
復に要した時間と水中の音波の速度から物標までの距離
を算出し、受波音圧への最大となる受波音響ビームの方
位をもって物標の方位としている。
(Prior art) When using a sonar device to determine the distance and direction to an underwater target, short pulses of sound waves are emitted toward a predetermined area and the distance from the target is determined. The reflected sound waves are received by a receiver with multiple reception acoustic beam tubes, and the distance to the target is calculated from the time required for the round trip and the speed of the sound waves in the water, and the maximum reception to the received sound pressure is calculated. The direction of the wave acoustic beam is taken as the direction of the target.

上述の受波音響ビームは、細分割され几受波器の各受波
素子の出力にその方向に応じた遅延量を持つ複数の遅延
線を接続しその出力の和を求める回路を受波音響ビーム
の数だけ設けて構成されている。従って検出する方位を
細かくすると遅延線の数が膨大となって、狭い船内に設
置されるソーナー装置の検出方位の細分化にはおのずか
ら限定を生ずる。
The above-mentioned received acoustic beam is subdivided, and a circuit that connects the output of each receiving element of the receiver with a plurality of delay lines having a delay amount according to the direction and calculates the sum of the outputs is used to generate the received acoustic beam. It is configured by providing the same number of beams. Therefore, if the direction to be detected becomes finer, the number of delay lines becomes enormous, which naturally limits the finer division of the direction to be detected by a sonar device installed in a narrow ship.

また、か工すな限度から逃れるため、探知する領域を移
つかに分割して、何回かに分けて必要探知個所を探知す
る方法もとられているが、そのため所要時間が増加して
、航行する船舶から探知するときは探知物標を見失う可
能性を生ずる。
Additionally, in order to avoid the no-touch limit, methods have been adopted in which the area to be detected is moved or divided and the necessary detection points are detected several times, but this increases the time required. When detecting from a navigating ship, there is a possibility of losing sight of the detection target.

(発明が解決し工9とする問題点) 本発明が解決しょうとする従来の技術の問題点は、上述
の工うに受波音響ビームを細分化するにあたって遅延線
の数量が膨大となり、ソーナー装置の設置場所の制限を
生じ、これの対策として探知領域を分割して遅延線の数
量を制限した場合は所要時間が増大するということにあ
る。従って本発明の目的は上記欠点を解決したソーナー
装置を提供することにある。
(Problems to be Solved by the Invention and Problem 9) The problems in the conventional technology that the present invention attempts to solve are as follows: In the above-mentioned method, the number of delay lines is enormous when subdividing the received acoustic beam, and sonar equipment As a countermeasure to this problem, if the detection area is divided to limit the number of delay lines, the required time will increase. SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide a sonar device which overcomes the above-mentioned drawbacks.

(問題点を解決するための手段) 本発明のソーナー装置に、それぞれあらかじめ設定する
個数の隣接した送波お工び受波音響ビーム全圧いに交差
せしめつつ探知面を捜索する多重ビーム方式のソーナー
装置において、前記送波音響ビーム金互いに相異なる複
数の周波数に工って形成する送波音響ビーム形成手段と
、この送波音響ビーム形成手段によって形成された送波
音響ビームと交差せしめるLI)形成し友少なくとも1
個の受波音響ビームとの交差面からの反射信号を受信し
て出力する受信手段と全具備して構成される。
(Means for Solving the Problems) The sonar device of the present invention employs a multiple beam system in which a predetermined number of adjacent transmitting and receiving acoustic beams intersect with each other to search the detection surface. In a sonar device, a transmitting acoustic beam forming means for forming the transmitting acoustic beam at a plurality of different frequencies, and a LI for intersecting the transmitting acoustic beam formed by the transmitting acoustic beam forming means. Formed at least 1 friend
The receiving acoustic beam receives and outputs the reflected signal from the plane of intersection with the received acoustic beam.

(実施例) 次に本発明について実施例を示す図面を参照して詳細に
説明する。第1図は本発明の一実施例を示すブロック図
、第2図お工び第3図は本発明の動作原理を示す斜視図
、第4図お工び第5図に第1図の詳細な構成を示すブロ
ック図である。
(Example) Next, the present invention will be described in detail with reference to drawings showing examples. Fig. 1 is a block diagram showing one embodiment of the present invention, Fig. 2 shows the construction, Fig. 3 is a perspective view showing the operating principle of the invention, Fig. 4 shows the construction, and Fig. 5 shows details of Fig. 1. FIG. 2 is a block diagram showing a configuration.

本発明の概要に、水中にある物標までの距離とその方位
を探知するにあたって、送波音響ビーム(以下送波ビー
ムという)ごとに相異なる周波数を用い、受波音響ビー
ム(以下受波ビームという)は送波ビームのそれぞれと
重なり合うように配置し、受波ビームに工って得られた
各受信信号に送波ビームを構成する周波数に相当する戸
波器によって送信周波数ごとに分割されて、受波ビーム
と送波ビームの交差面(すなわち画素)の部分の反射信
号を得て、各画素までの距離と方位とを出力する工うに
なしたものである。また本発明のンーナー装置は、第2
図に示す工うに船舶の楢に装備され船舶の衝突予防また
は座標予防に使用される場合が多く、WX3図に示す二
うに一定点から海底の凹凸の計測を行うこともできる。
In an overview of the present invention, in detecting the distance and direction to a target underwater, different frequencies are used for each transmitting acoustic beam (hereinafter referred to as the transmitting beam), and a receiving acoustic beam (hereinafter referred to as the receiving beam ) are arranged so as to overlap with each of the transmitting beams, and each received signal obtained by modifying the receiving beam is divided by transmitting frequency by a transducer corresponding to the frequencies that make up the transmitting beam. It is designed to obtain a reflected signal at the intersection of the received beam and the transmitted beam (that is, a pixel) and output the distance and direction to each pixel. Further, the toner device of the present invention has a second
The device shown in the figure is often installed on the roof of a ship and used to prevent collisions or coordinates of ships, and it is also possible to measure the unevenness of the seabed from a fixed point, as shown in Figure WX3.

Wc1図を参照するに、本実施例においては送信手段の
一例として発振器1と送波ビーム形成器2と送波器3と
全備え、受信手段の一例として受波器4と受波ビーム形
成器5どを備えている。
Referring to Figure Wc1, this embodiment includes an oscillator 1, a transmitting beamformer 2, and a transmitter 3 as an example of a transmitting means, and a receiver 4 and a receiving beamformer as an example of a receiving means. It is equipped with 5 things.

ここで音響ビームを中心に第2図および第3図にエリ原
理を述べる。送波ビーム形成器2から出力された送信信
号は送波器3で音響信号に変換され送波ビームを形成し
て輻射される。このビームの物標・障害物または海底(
以下物標等という)に対する投影に参照符号T工・〜・
TNに示す工うに8個に分割され、それぞれが相異る周
波数f1・〜・fx  で構成されるLうになされてい
る。、また物標等で反射して受波器4に戻って米た音波
は電気信号に変換されて受波ビーム形成器5で各受波ビ
ームごとに対応する信号として出力される。その物標等
に対する投影に参照符号几、・〜・RMil′c7ff
+:す工うにM個に分割される0例えば送波ビームの投
影T、と受波ビームの投影R2との又わりt画素P2鵞
とすれば、画素P22からの反射信号は送波ビームの投
影T2の周波数F、となっている。ま友送波ビームの投
影T1と受波ビームの投影R2との交わりを画素puと
すれば、画素ptz からの反射信号は送波ビームの投
影T1の周波数ftとなる。
Here, the Eri principle will be described with reference to FIGS. 2 and 3, focusing on acoustic beams. The transmission signal output from the transmission beam former 2 is converted into an acoustic signal by the transmitter 3, forms a transmission beam, and is radiated. This beam targets/obstacles or the seabed (
For projection onto objects (hereinafter referred to as targets, etc.), the reference symbol T...
The circuit shown in TN is divided into eight parts, each of which is composed of different frequencies f1...fx. Also, the sound waves that are reflected by targets and the like and returned to the receiver 4 are converted into electrical signals and outputted by the receiving beam former 5 as signals corresponding to each receiving beam. Reference symbol 几...RMil'c7ff for projection onto the target etc.
+: Totally divided into M pieces 0 For example, if the projection T of the transmitting beam and the projection R2 of the receiving beam are t pixels P2, then the reflected signal from the pixel P22 is the same as that of the transmitting beam. The frequency of projection T2 is F. If the intersection of the projection T1 of the transmitted beam and the projection R2 of the received beam is a pixel pu, then the reflected signal from the pixel ptz has the frequency ft of the projection T1 of the transmitted beam.

従って受波ビームの投影R1に対応する受波ビーム形成
器で得られる出力は、画素PI2・〜・”N2からの反
射信号はそれぞれの画素に対応する周波数fl・〜・f
Nが含まれているので、これを戸波器で分割して画素P
1!・〜・PN2 からの反射信号を別々に得ることが
できる。
Therefore, the output obtained by the receiving beamformer corresponding to the projection R1 of the receiving beam is the reflected signal from the pixels PI2...''N2, which has the frequency fl......f corresponding to each pixel.
Since it contains N, it is divided by a door waver to make pixel P.
1! ...The reflected signals from PN2 can be obtained separately.

次に送信手段の構成および動作について第4図を参照し
て述べる。
Next, the configuration and operation of the transmitting means will be described with reference to FIG.

発振器1は送信周波発振器G1・〜・GNからなリ、送
波ビーム形成器2にタップ付き遅延線21A・〜・21
Z  お工び電力増幅器22A・〜・22Z からをり
、タップ付き遅延線の端子間の距離はおお工その遅延時
間に対応しており、送波器3は送波素子31A・〜・3
1Zから構成されている。また送波器3の送波ビーム方
向B1・〜・BN の周波数はそれぞれ送信周波数発振
器G1・〜・GN の周波数fx・〜・fN  と対応
している。
The oscillator 1 consists of transmission frequency oscillators G1...GN, and the transmission beamformer 2 includes tapped delay lines 21A...21.
Z The distance between the terminals of the tapped delay line corresponds to the delay time of the installed power amplifier 22A...22Z, and the transmitter 3 connects the transmitting elements 31A...
It is composed of 1Z. Further, the frequencies of the transmitting beam directions B1...BN of the transmitter 3 correspond to the frequencies fx...fN of the transmitting frequency oscillators G1...GN, respectively.

送信手段の動作について例をあげて説明する。The operation of the transmitting means will be explained by giving an example.

例えば送信周波数発振器Gz(周波数fx  )の出力
は、タップ付き遅延線21A・〜・21Zに入力し、そ
の遅延量は21B・21C・・・・・の順に従って短か
くなり、その出力は他の周波数の送信信号と共に電力増
幅器22A・〜・22Ztニ一通して送波素子31A・
〜・31Zに入力し音波に変換されて輻射される。
For example, the output of the transmission frequency oscillator Gz (frequency fx) is input to the tapped delay lines 21A...21Z, and the delay amount decreases in the order of 21B, 21C, etc., and the output is The frequency transmission signal is passed through the power amplifiers 22A to 22Zt to the wave transmitting elements 31A and 22Zt.
It is input to ~・31Z, converted into a sound wave, and radiated.

音波の輻射方向は遅延線の遅延量に対応して送波素子の
正面1同から離れて、Cの場合は送波ビーム輻射方向B
2の方向となる。以上の動作が他の送信周波数発振器に
ついても同様に行なわれ、送信周波数発振器の出力周波
数f1・〜・fNが同時に送波器3から送波ビーム輻射
方向B工・〜・BN の方向にそれぞれ輻射される。
The radiation direction of the sound wave is away from the front side of the wave transmitting element in accordance with the delay amount of the delay line, and in the case of C, the direction of the transmission beam radiation is B.
2 direction. The above operation is performed similarly for the other transmission frequency oscillators, and the output frequencies f1, ..., fN of the transmission frequency oscillators are simultaneously radiated from the transmitter 3 in the transmission beam radiation directions B, ..., BN, respectively. be done.

また受信手段の構成および動作について第5図全参照し
て述べる。
Further, the configuration and operation of the receiving means will be described with full reference to FIG.

受波器4は受波素子41A・〜・41Zからなり、受波
ビーム形成器5はタップ付き遅延線51A・〜・51Z
と加算器D1・〜・DMとp波器F□1・〜・lINM
から構成されている。また受波器4の受波ビーム方向C
・〜・CM は、遅延線の出力の和の数丁なわち加算器
D1・〜・DM  に対応している。
The receiver 4 consists of receiving elements 41A...41Z, and the receiving beamformer 5 includes tapped delay lines 51A...51Z.
and adder D1...DM and p-wave unit F□1...lINM
It consists of Also, the receiving beam direction C of the receiver 4
. . . CM corresponds to the sum of the outputs of the delay lines, that is, the adders D1 . . . DM.

受信手段の動作について例をあげて説明する。The operation of the receiving means will be explained by giving an example.

例えば受波ビーム方向C鵞から反射音波が受波器4に入
射したとき、受波素子41A・〜・41Zの出力はタッ
プ付き遅延線51A・〜・51Zにそれぞれ人力してい
る。受波ビーム方向から到来し友音波の波面に対応する
各遅延線の出力が合致する工うな遅延量のタップからの
出力を加算器D2で加算して、その出力t−F波器F1
2・〜・PN2に加えて画素P ・〜・PN2に対応す
るデータすなわち受倍信号が得られる。従ってこの出力
を他の画素に対応したデータと共に表示手段6に人力し
て表示させることができる。
For example, when a reflected sound wave is incident on the wave receiver 4 from the receiving beam direction C, the outputs of the wave receiving elements 41A to 41Z are input to tapped delay lines 51A to 51Z, respectively. The adder D2 adds the outputs from the taps with such delay amounts that the outputs of the respective delay lines corresponding to the wavefront of the friendly sound wave arriving from the receiving beam direction match, and the output is added to the tF waveform unit F1.
In addition to 2..about.PN2, data corresponding to pixels P.about.PN2, that is, a multiplied signal, is obtained. Therefore, this output can be manually displayed on the display means 6 together with data corresponding to other pixels.

上述の説明では送波素子31A・〜・31Zと受波素子
41A・〜・41Zの数が同数となっているが、必らず
しも同数であること全便しない。
In the above description, the number of wave transmitting elements 31A to 31Z and the number of wave receiving elements 41A to 41Z are the same, but this does not necessarily mean that they are the same in all cases.

また、複数個の送波ビームと1個の受波ビームを有する
ソーナー装置全構成すること、または周波数の異なる送
波ビームを順次形成せしめてソーナー装ftjLを構成
することもできる。
Further, it is also possible to construct the entire sonar device having a plurality of transmitting beams and one receiving beam, or to construct the sonar device ftjL by sequentially forming transmitting beams with different frequencies.

以上説明したように本発明では遅延線の数量の増大を招
かないで三次元空間の物標の探知を達成することができ
る。
As explained above, according to the present invention, it is possible to detect a target in three-dimensional space without increasing the number of delay lines.

(発明の効果) 以上詳細に説明した工うに、本発明のンーナー装置は、
送波音響ビームごとに異る周波数を使用することにエリ
画素ごとの反射信号をF波器で分離できるので遅延線の
数量の膨大な増加が避けられ、探知領域の分割探知が不
要となるので探知所要時間の増大覗回避できるばかりで
なく、狭す船内に設置することも容易となるといつ効果
がある。
(Effects of the Invention) As described above in detail, the sensor device of the present invention has the following features:
By using a different frequency for each transmitted acoustic beam, the reflected signal for each pixel can be separated using an F-wave device, which avoids a huge increase in the number of delay lines and eliminates the need to divide the detection area. Not only can it avoid increased detection time, but it can also be easily installed inside narrow ships, which would be effective.

【図面の簡単な説明】[Brief explanation of the drawing]

@1図は本発明の一実施例を示すブロック図、第2図・
第3図は動作原理を示す斜視図、第4図・第5図は第1
図の詳細構成を示すブロック図。 1・・・・・・発振器、2・・・・・・送波ビーム形成
器、3・・・・・・送波器、4・・・・・・受波器、5
・・・・・・受波ビーム形成器、6・・・・・・表示手
段。 +−+/ 声 21フ
@ Figure 1 is a block diagram showing one embodiment of the present invention, Figure 2
Figure 3 is a perspective view showing the operating principle, Figures 4 and 5 are the 1st
FIG. 2 is a block diagram showing the detailed configuration of the figure. 1... Oscillator, 2... Transmission beam former, 3... Transmitter, 4... Receiver, 5
. . . Receiving beam former, 6 . . . Display means. +-+/ Voice 21f

Claims (1)

【特許請求の範囲】[Claims] それぞれあらかじめ設定する個数の隣接した送波および
受波音響ビームを互いに交差せしめつつ探知面を捜索す
る多重ビーム方式のソーナー装置において、前記送波音
響ビームを互いに相異なる複数の周波数によって形成す
る送波音響ビーム形成手段と、この送波音響ビーム形成
手段によって形成された送波音響ビームと交差せしめる
よう形成した少なくとも1個の受波音響ビームとの交差
面からの反射信号を受信して出力する受信手段とを備え
て成ることを特徴とするソーナー装置。
In a multi-beam sonar device that searches a detection surface by intersecting a predetermined number of adjacent transmitting and receiving acoustic beams, the transmitting acoustic beam is formed by a plurality of mutually different frequencies. A receiver for receiving and outputting a reflected signal from an intersection plane between an acoustic beam forming means and at least one receiving acoustic beam formed to intersect with the transmitting acoustic beam formed by the transmitting acoustic beam forming means. A sonar device comprising: means.
JP27804984A 1984-12-25 1984-12-25 Sonar apparatus Pending JPS61151487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27804984A JPS61151487A (en) 1984-12-25 1984-12-25 Sonar apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27804984A JPS61151487A (en) 1984-12-25 1984-12-25 Sonar apparatus

Publications (1)

Publication Number Publication Date
JPS61151487A true JPS61151487A (en) 1986-07-10

Family

ID=17591938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27804984A Pending JPS61151487A (en) 1984-12-25 1984-12-25 Sonar apparatus

Country Status (1)

Country Link
JP (1) JPS61151487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222853A (en) * 1988-10-08 1990-09-05 Honda Motor Co Ltd Ultrasonic radar
US7289390B2 (en) 2004-07-19 2007-10-30 Furuno Electric Company, Limited Ultrasonic transmitting/receiving apparatus and scanning sonar employing same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02222853A (en) * 1988-10-08 1990-09-05 Honda Motor Co Ltd Ultrasonic radar
US7289390B2 (en) 2004-07-19 2007-10-30 Furuno Electric Company, Limited Ultrasonic transmitting/receiving apparatus and scanning sonar employing same

Similar Documents

Publication Publication Date Title
US11119211B2 (en) Acoustic doppler system and method
US4270191A (en) Doppler current meter for use at great depths
US5355888A (en) High resolution phased array echo imager
US11846704B2 (en) Acoustic doppler system and method
KR20090084877A (en) Ship mounted underwater sonar system
JPH05273333A (en) High speed multibeam side searching sonar
JP2006284257A (en) Method and apparatus for estimating propagation distance of sonic wave
US6052335A (en) Multiple-frequency sonar system
JPS59107285A (en) Display device of submarine topography
JPS61151487A (en) Sonar apparatus
US4961174A (en) High data rate continuous wave towed sonar
JP2002168937A (en) Device and method for detecting position of submerged target
JP5050935B2 (en) Sonar receiver
JP4075472B2 (en) Ship detecting method and ship detecting device using cross fan beam
JP2558637B2 (en) Sound source position measurement method
Tinh Investigation on beamforming solution for multi-receiver synthetic aperture sonar using CW pulse with sound velocity profiles in Vietnam’s sea
JP3530636B2 (en) Geological survey equipment
JP2647041B2 (en) Passive sonar signal processing method
JP2886330B2 (en) Signal direction measurement device
JP2710578B2 (en) Directivity synthesis processing method
JPH11264873A (en) Object measuring device
JP2586958B2 (en) Exploration method in medium using pulse wave
RU2699938C1 (en) Deep-sea carrier forward sonar
JP2012103054A (en) Underwater target detector, target detection method and target detection program to be used for detector
JP2021076384A (en) Sonar device, method, and program