JPS61147961A - Production of element parts consisting of composite material - Google Patents

Production of element parts consisting of composite material

Info

Publication number
JPS61147961A
JPS61147961A JP27112984A JP27112984A JPS61147961A JP S61147961 A JPS61147961 A JP S61147961A JP 27112984 A JP27112984 A JP 27112984A JP 27112984 A JP27112984 A JP 27112984A JP S61147961 A JPS61147961 A JP S61147961A
Authority
JP
Japan
Prior art keywords
composite material
preform
whiskers
mold
bolt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27112984A
Other languages
Japanese (ja)
Inventor
Sotoshiro Tetori
手取 外志朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27112984A priority Critical patent/JPS61147961A/en
Publication of JPS61147961A publication Critical patent/JPS61147961A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gears, Cams (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

PURPOSE:To obtain easily element parts having high strength in the stage of producing the element parts consisting of a fiber reinforced metal-base composite material by inserting a preform, which is formed of the above-mentioned composite material and is formed thereon with a metallic coating film, into a half- molten metal contg. whiskers by casting. CONSTITUTION:The preform 12 consisting of the circular cylindrical composite material which is arranged axially with alumina fibers 13 and is composed of an Al alloy as matrix is prepd. in the production of, for example, a bolt. A coated film 14 is formed by copper vapor deposition after surface polishing of the preform 12. The preform 12 is held and fixed into metallic mold 9 by screwing with a chuck 15. A liquid mixture 16 composed of the whiskers and Al in the cavity of the mold 9 corresponding to the bolt to be produced is solidified and molded under the pressure exerted thereto by lowering a pressurizing chip 17.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は繊維強化型金属基の複合材料による要素部品の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing an element part using a fiber-reinforced metal-based composite material.

[発明の技術的背景] 近時工業材料の高強度化に対する要求が高まっている。[Technical background of the invention] Recently, there has been an increasing demand for higher strength industrial materials.

これに答える材料として金属マトリックスをa維9粒子
もしくはウィスカで強化した金属基複合材料が注目され
ている。
A metal matrix composite material in which a metal matrix is reinforced with α-fiber 9 particles or whiskers is attracting attention as a material that can solve this problem.

これら金属基複合材料の製造法には溶浸法、拡散接合法
、粉末冶金法及び箔冶金法などがある。
Methods for manufacturing these metal matrix composite materials include infiltration methods, diffusion bonding methods, powder metallurgy methods, and foil metallurgy methods.

しかしながら各製造方法を実際の電気機器等の要素部品
の製造に適用しようとする場合の形状が単純な丸棒や平
板と興なるため製造範囲に限界があり、また製造工程が
複雑となる問題点がある。
However, when trying to apply each manufacturing method to manufacturing elemental parts of actual electrical equipment, etc., there is a problem that the manufacturing range is limited because the shape is a simple round bar or flat plate, and the manufacturing process becomes complicated. There is.

また、丸棒や平板の機械加工による切削、又、鍛造によ
り成形することも可能であるが、繊維の破断により強度
の低下が生ずる欠点がある。
It is also possible to cut a round bar or flat plate by machining or to form it by forging, but this has the disadvantage that the strength decreases due to fiber breakage.

これら製造法のうち比較的に形状制限が少ない方法とし
て5IIIl材料を溶融マトリックス金属で鋳くるむ方
法がある。
Among these manufacturing methods, a method with relatively few restrictions on shape is a method in which a 5IIII material is cast in a molten matrix metal.

第4図は上記方法の一例を示したもので、1゜2は金型
、3は略T字状をなすように繊維を要素部品に対応した
形状に成形した予備成形体(プリフォーム)、4は溶融
アルミニウム、5は溶融アルミニウム4をブリウオーム
3に浸透させ、加圧凝固するチップである。プリフォー
ム3は繊維に粘結剤を投入し、加圧成型されたものであ
る。プリフォーム3を金型1.2内にセットし、加熱し
、粘結剤を消失した後、溶融アルミニウム4を供給し加
圧凝固する。第5図は第4図に示す金型にて製造された
要素部品が実際に使用される様子を示すもので、6は長
手方向に繊維が配列された軸部、7は面方向に繊維が配
列されたフランジ部であり、第3図におけるプリフォー
ム3に対応した形状となっている。8はフランジ7の支
持部であり、荷重は軸部6の軸方向に対し垂直方向に負
荷するように配置されている。
FIG. 4 shows an example of the above-mentioned method, in which 1.2 is a mold, 3 is a preform formed by molding fibers into a shape corresponding to the element part so as to form a substantially T-shape; 4 is molten aluminum, and 5 is a chip that infiltrates the molten aluminum 4 into the bulliworm 3 and solidifies it under pressure. The preform 3 is obtained by adding a binder to fibers and molding the fibers under pressure. The preform 3 is set in the mold 1.2, heated to eliminate the binder, and then molten aluminum 4 is supplied and solidified under pressure. Fig. 5 shows how the element parts manufactured with the mold shown in Fig. 4 are actually used. 6 is the shaft part where the fibers are arranged in the longitudinal direction, and 7 is the shaft part where the fibers are arranged in the plane direction. These are arranged flange portions, and have a shape corresponding to the preform 3 in FIG. Reference numeral 8 denotes a support portion of the flange 7, which is arranged so as to apply a load in a direction perpendicular to the axial direction of the shaft portion 6.

し背景技術の問題点] ここで、繊維強化材は繊維配列方向の荷重に対しては充
分な強度を有するが、垂直方向の荷重に対しての強度は
望めない。従うて第4図に示す構成で製造した要素部品
では、そのフランジ部7の強化に対しては有効ではない
[Problems with Background Art] Here, although the fiber reinforced material has sufficient strength against loads in the direction of fiber arrangement, it cannot be expected to have strength against loads in the vertical direction. Therefore, the component manufactured with the configuration shown in FIG. 4 is not effective in strengthening the flange portion 7.

このような1111配列方向の難しさに加え、ブリ7 
t−ムIC直接溶融金属を500〜1000Kg/c1
12の圧力で溶浸するため繊維のかたまり、曲がりが生
じ強度が低下する問題がある。
In addition to the difficulty in arranging 1111,
t-mu IC direct melting metal 500-1000Kg/c1
Since the infiltration is performed at a pressure of 12, there is a problem that the fibers clump and bend, resulting in a decrease in strength.

一方、ウィスカ強化材は、上述したような方向性の問題
はないが、長11M強化材に比べ強度が劣る欠点がある
On the other hand, although the whisker reinforcement does not have the above-mentioned problem of directionality, it has the disadvantage of being inferior in strength compared to the 11M long reinforcement.

また、ブリウオーム3の成形のために専用の工程や装置
が必要となり経済性や作業性を害する問題がある。
Further, there is a problem in that special processes and equipment are required for molding the yellowtail worm 3, which impairs economic efficiency and workability.

[発明の目的] 本発明は上記事情に基づいてなされもので、その目的は
、複合材料を用い、要素部品が高強度性を有し且つ製造
容易とし得る複合材料による要素部品の製造方法を提供
することにある。
[Object of the Invention] The present invention has been made based on the above circumstances, and its purpose is to provide a method for manufacturing an element part using a composite material, in which the element part has high strength and can be easily manufactured. It's about doing.

[発明の概要] 本発明による複合材料による要素部品の製造方法は、上
記目的を達成するために、繊維強化型複合材料からなる
粗予備成形体に金属被膜を形成して予備成形体を得、該
予備成形体を半溶融金属とウィスカの混合液により鋳ぐ
るみ、加圧凝固するようにして要素部品を製造するよう
にしたことを特徴とする。
[Summary of the Invention] In order to achieve the above object, the method for manufacturing an element part using a composite material according to the present invention includes forming a metal coating on a rough preform made of a fiber-reinforced composite material to obtain a preform, A feature of the present invention is that the preform is cast in a liquid mixture of semi-molten metal and whiskers and solidified under pressure to produce an element part.

[発明の実施例] 以下本発明を第1図に示す一実施例に基づいて詳細に説
明する。
[Embodiment of the Invention] The present invention will be described in detail below based on an embodiment shown in FIG.

第1図はボルト製造法の実施例を示すものである。第1
図において9は製造されるボルトに対応したキャビティ
部10が形成された金型、11は金型9のキャビティ部
10近傍に埋設され金型9を200〜600℃の温度範
囲に予熱するヒータ、12はアルミナ(AJ、203 
)II維(F)13を軸方向に配列し、表面研磨して粗
プリフォームを成形し、この粗プリフォームの表面に銅
(OL+ )を2〜5μmの厚みで蒸着して金属被膜層
14が形成され、アルミニウム合金をマトリックスとし
た円柱状の複合材料からなるプリフォームである。
FIG. 1 shows an embodiment of the bolt manufacturing method. 1st
In the figure, 9 is a mold in which a cavity 10 corresponding to the bolt to be manufactured is formed, 11 is a heater embedded in the vicinity of the cavity 10 of the mold 9 and preheats the mold 9 to a temperature range of 200 to 600°C. 12 is alumina (AJ, 203
) II fibers (F) 13 are arranged in the axial direction, the surface is polished to form a rough preform, and copper (OL+) is evaporated to a thickness of 2 to 5 μm on the surface of the rough preform to form a metal coating layer 14. It is a preform made of a cylindrical composite material with an aluminum alloy as a matrix.

15はここでは図示しない回転可能なロッドを介して上
下駆動するシリンダに連結し複合材料からなるプリフォ
ーム12をネジ結合により保持固定するチャック16は
レオキャスティングなどで知られる半溶融金属製造法に
よりシリコン・カーバイド(Si C)のウィスカ(W
)を30%の率で攪拌混合され、温度595〜605℃
に調節されたアルミニウム系合金との混合液、17はこ
こでは図示しない上下駆動するシリンダーに連結した加
圧チップである。
15 is connected to a cylinder that is driven up and down via a rotatable rod (not shown), and holds and fixes the preform 12 made of composite material by screw connection. A chuck 16 is made of silicon using a semi-molten metal manufacturing method known as rheocasting.・Carbide (SiC) whiskers (W
) were stirred and mixed at a rate of 30%, and the temperature was 595-605℃.
17 is a pressurizing tip connected to a vertically driven cylinder (not shown).

次に上記構成の製造装置によるボルトの製造について説
明する。即ち、加圧チップ17を下降し混合液16を5
00Kg/ciの圧力で加圧しながら凝固成形する。成
形後、加圧チップ17を上方に後退させ、チャック15
を成形したネジのゆるみ方向に回転しながら上界し、抜
型する。抜型後の複合材料よりなるプリフォーム12は
、その固定に利用したボルト先端及び頭部の不要部を除
去しボルトを得る。
Next, manufacturing of bolts using the manufacturing apparatus having the above configuration will be explained. That is, the pressure tip 17 is lowered and the mixed liquid 16 is
Solidification molding is performed under pressure of 00 kg/ci. After molding, the pressurizing tip 17 is retreated upward and the chuck 15
While rotating in the direction of loosening of the molded screw, it is lifted up and removed from the mold. After the preform 12 made of composite material has been punched out, unnecessary parts of the tip and head of the bolt used for fixing the preform 12 are removed to obtain a bolt.

次に本実施例の作用について説明する。即ち、複合材料
よりなるプリフォーム12の表面研磨後に銅Cu蒸着に
よる被膜層14を形成することで、鋳造時に大気中で加
熱されても複合材料の表面酸化はおきず、また、蒸着に
よる層14は2〜5μmの厚みであること及び、銅被I
l1層14がアルミ系合金に固溶しやすい性質のため、
混合液16との接触により容易に混合液16中に溶は込
み、複合材料によるプリフォーム12のアルミニウム合
金マトリックスと混合液が酸化層がない状態で直接に接
触する。
Next, the operation of this embodiment will be explained. That is, by forming the coating layer 14 by copper vapor deposition after polishing the surface of the preform 12 made of the composite material, the surface of the composite material will not be oxidized even if it is heated in the atmosphere during casting, and the layer 14 by vapor deposition will not occur. shall be 2 to 5 μm thick, and the copper coating I
Due to the property of the l1 layer 14 being easily dissolved in aluminum alloy,
It is easily dissolved into the mixed liquid 16 by contact with the mixed liquid 16, and the mixed liquid directly contacts the aluminum alloy matrix of the composite material preform 12 without an oxidized layer.

このような接触状態の混合液16に圧力を負荷微細な凹
凸部へ、混合液16が浸入し、接触面積が増大するとと
もに、密着性も高まり複合材料によるプリフォーム12
の表面層14〈銅被膜層)も、その一部が拡散し複合材
料12の金属マトリックスの繊維の半溶融金属及びウィ
スカが混合した層が形成できる。
Pressure is applied to the mixed liquid 16 in such a contact state, and the mixed liquid 16 penetrates into the fine irregularities, increasing the contact area and increasing the adhesion of the composite material preform 12.
A portion of the surface layer 14 (copper coating layer) also diffuses to form a layer in which the semi-molten metal of the fibers of the metal matrix of the composite material 12 and whiskers are mixed.

用効果を奏する。It has a useful effect.

形状が単純な円柱形の繊維強化複合材は比較的容易に製
造することが可能で、arm配列の、規則性も良く、材
料強度も安定している。
A fiber-reinforced composite material having a simple cylindrical shape can be manufactured relatively easily, has good arm arrangement regularity, and has stable material strength.

本実施例では前記の複合材料を半WIR金属とウィスカ
の混合液で鋳くるむ方法を採用している。
In this embodiment, a method is adopted in which the above-mentioned composite material is cast in a mixed liquid of semi-WIR metal and whiskers.

このため主要強化部に複合材料を精度よく配することが
できるとともにこの加圧溶浸時に繊維のよれやかたより
が生じないため部品の強一度、特性が安定する。
For this reason, the composite material can be placed in the main reinforcement part with high precision, and the fibers do not twist or twist during this pressurized infiltration, so the strength and properties of the part are stabilized.

第1表は本実施例により製造したボルトとウィスカ複合
材、繊維複合材製及び高力アルミ合金製のボルトの引張
強度を比較試験した結果である。
Table 1 shows the results of a comparative test of the tensile strength of the bolts manufactured according to this example and bolts made of whisker composite material, fiber composite material, and high-strength aluminum alloy.

ボルトはM8x30x20 (六角)で、試験は軽金属
規格協会規格に準拠した「アルミニウム合金製ボルトナ
ツト、座金」に従い実施した。なお本発明のAI、20
:I−複合材料はφ5jIIIでボルトの中心に配して
いる。
The bolts were M8x30x20 (hexagonal), and the test was conducted in accordance with "aluminum alloy bolt nuts and washers" in accordance with the Light Metal Standards Association standards. Note that AI of the present invention, 20
:I-The composite material is φ5jIII and placed in the center of the bolt.

試験結果より本実施例によるボルト強度は現状で最高の
強度を有する高力アルミ合金製の約2倍。
The test results show that the bolt strength of this example is approximately twice that of the bolt made of high-strength aluminum alloy, which currently has the highest strength.

そして他の強化型材料製よりも高強度にて安定している
ことがわかる。
It can be seen that it has higher strength and stability than other reinforced materials.

第2図は平歯車製造法の実施例を示すもので1は下型、
2は上型、11はヒータ、12はアルミナ繊維13を軸
方向に配列し銅(Cu )の蒸着層14を有し、アルミ
ニウム合金をマトリックスとした角柱状の複合材料から
なるプリフォームである。16はシリコン・カーバイド
ウィスカを体積率にて30%含有する半溶融状のアルミ
ニウム合金、17は該金属16を加圧するチップである
Figure 2 shows an example of the spur gear manufacturing method, where 1 is the lower mold;
2 is an upper mold, 11 is a heater, and 12 is a preform made of a prismatic composite material having aluminum alloy as a matrix and having alumina fibers 13 arranged in the axial direction and a vapor-deposited layer 14 of copper (Cu). 16 is a semi-molten aluminum alloy containing 30% by volume of silicon carbide whiskers, and 17 is a chip for pressurizing the metal 16.

第3図は該金III 6e500#/al17)圧力テ
加圧成形した歯車を示す。内周、外周の突出部を除去し
、歯面を仕上げる。各歯18は中央部を長繊維、周辺部
をウィスカで強化した構成である。
FIG. 3 shows a gear formed by pressure molding of the gold III 6e500#/al17). Remove protrusions on the inner and outer peripheries and finish the tooth surface. Each tooth 18 has a structure in which the central portion is reinforced with long fibers and the peripheral portion is reinforced with whiskers.

上記により製造された歯車は、その各歯は、先の実施例
と同様の材料特性を示し、歯の折損が防止できるととも
に、歯面にはウィスカが分散しているため耐摩耗性が向
上し、ピッチングの防止に有効である。これを高力アル
ミ合金製の歯車とバックラッシュの量で比較すると、概
略1:30の比である。
In the gear manufactured in the above manner, each tooth exhibits the same material properties as in the previous example, which prevents tooth breakage, and improves wear resistance because whiskers are dispersed on the tooth surface. , is effective in preventing pitching. Comparing this with a gear made of high-strength aluminum alloy in terms of amount of backlash, the ratio is approximately 1:30.

本発明は上記実施例に限定されるものではなく、本発明
の要旨を逸脱しない範囲で種々変形して実、施できるも
のである。
The present invention is not limited to the above-described embodiments, and can be implemented and implemented with various modifications without departing from the gist of the present invention.

[発明の効果] 以上述べたように本発明によれば、繊維強化型複合材料
からなる粗予備成形体に金属被膜を形成して予備成形体
を得、該予備成形体を半溶融金属とウィスカの混合液に
より鋳ぐるみ、加圧凝固するようにしたので、要素部品
が高強度性を有し且つ製造容”易とすることが可能な複
合材料による要素部品の製造方法が提供できる。
[Effects of the Invention] As described above, according to the present invention, a metal coating is formed on a rough preform made of a fiber-reinforced composite material to obtain a preform, and the preform is mixed with semi-molten metal and whiskers. Since the mixed liquid is cast and solidified under pressure, it is possible to provide a method for manufacturing an element part using a composite material in which the element part has high strength and can be manufactured easily.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例によりボルトを製造する方法
を示す図、第2図は本発明の他の実施例を示す図、第3
図は第2図により製造された平歯車の断面の構成を示す
図、第4図は従来の製造方法の一例を示す図、第5因は
第4図で製造された要素部品の使用例を示す図である。 1・・・下型、2・・・上型、3・・11.4・・・溶
湯、5・・・チップ、6・・・軸部、7・・・7ランジ
部、8・・・支持部、9・・・金型、10−・・ネジ部
、11・・・ヒータ、12・・・複合材料、13・・・
all!、14−・・蒸着層、15・・・チャック、1
6・・・混合液、17−・・チップ、18・・・歯。 出願人代理人 弁理士 鈴江武彦 第1図 第 2 図 $3  図 第4図 15図
FIG. 1 is a diagram showing a method for manufacturing a bolt according to one embodiment of the present invention, FIG. 2 is a diagram showing another embodiment of the present invention, and FIG.
The figure shows the configuration of the cross section of the spur gear manufactured according to Figure 2, Figure 4 shows an example of the conventional manufacturing method, and the fifth factor shows an example of the use of the element parts manufactured in Figure 4. FIG. DESCRIPTION OF SYMBOLS 1... Lower mold, 2... Upper mold, 3... 11.4... Molten metal, 5... Chip, 6... Shaft part, 7... 7 Lunge part, 8... Support part, 9...Mold, 10-...Screw part, 11...Heater, 12...Composite material, 13...
All! , 14--deposited layer, 15--chuck, 1
6... Mixed liquid, 17-... Chip, 18... Teeth. Applicant's agent Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure $3 Figure 4 Figure 15

Claims (1)

【特許請求の範囲】[Claims] 予備成形体を繊維強化型金属基の複合材料により成形し
且つ金属被膜を形成し、該予備成形体を鋳型内で加圧さ
れたウィスカを含む半溶融金属により鋳ぐるみ、凝固成
形して要素部品を製造することを特徴とする複合材料に
よる要素部品の製造方法。
A preform is molded from a fiber-reinforced metal-based composite material and a metal coating is formed, and the preform is cast in a semi-molten metal containing pressurized whiskers in a mold and solidified to form an element part. A method for manufacturing an element part using a composite material, the method comprising: manufacturing an element part using a composite material.
JP27112984A 1984-12-22 1984-12-22 Production of element parts consisting of composite material Pending JPS61147961A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27112984A JPS61147961A (en) 1984-12-22 1984-12-22 Production of element parts consisting of composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27112984A JPS61147961A (en) 1984-12-22 1984-12-22 Production of element parts consisting of composite material

Publications (1)

Publication Number Publication Date
JPS61147961A true JPS61147961A (en) 1986-07-05

Family

ID=17495726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27112984A Pending JPS61147961A (en) 1984-12-22 1984-12-22 Production of element parts consisting of composite material

Country Status (1)

Country Link
JP (1) JPS61147961A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202355A (en) * 1988-02-08 1989-08-15 Mitsubishi Motors Corp Internal chilling casting method
JPH01202356A (en) * 1988-02-08 1989-08-15 Mitsubishi Motors Corp Internal chilling casting method
US6544636B1 (en) 1999-02-02 2003-04-08 Hiroshima University Ceramic-reinforced metal-based composite material and a method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01202355A (en) * 1988-02-08 1989-08-15 Mitsubishi Motors Corp Internal chilling casting method
JPH01202356A (en) * 1988-02-08 1989-08-15 Mitsubishi Motors Corp Internal chilling casting method
US6544636B1 (en) 1999-02-02 2003-04-08 Hiroshima University Ceramic-reinforced metal-based composite material and a method for producing the same

Similar Documents

Publication Publication Date Title
DE69734419T2 (en) Material for semiconductor carrier substrate and its production
DE69912564T2 (en) Silicon carbide composite, process for its manufacture and heat dissipation assembly using same
CN100485067C (en) Method for preparing high-strength plasticity aluminum-base composite material by employing TiB2 particles
CN1045049A (en) A kind of method that between material product and foundry goods, obtains metallurgical, bond
US5791397A (en) Processes for producing Mg-based composite materials
JPS6147891B2 (en)
WO2021035774A1 (en) Preparation method for lithium-containing magnesium/aluminum-based composite material
JPH01252741A (en) Fiber-reinforced composite material
JPS6341966B2 (en)
JPS61147961A (en) Production of element parts consisting of composite material
CN1244149A (en) Ambient temperature method for increasing the green strength of parts and articles made by consolidating powder, particulate, sheet or foil materials
JPS5974247A (en) Fiber reinforced metallic composite member and its production
JP2000225457A (en) Ceramic reinforced metallic compound material, and its manufacture
JPS59153860A (en) Composite aluminum material reinforced with carbon fiber and its manufacture
JPH01180927A (en) Manufacture of piston
KR0180104B1 (en) Method of manufacturing aluminum alloy composite materials
JPS62227049A (en) Manufacture of metal-base composite material
EP0501539A2 (en) Metal matrix composite composition and method
JPH01258862A (en) Production of particle reinforced metal-base composite material
JP3053592B2 (en) Base metal for superabrasive wheels
JPS61147917A (en) Working method of fiber reinforced metallic material
KR100251324B1 (en) Production method of consume resisting al- casting
AT230429B (en) Graphite alloy form
JPH02259031A (en) Manufacture of reinforced metallic composite material
JPH0472891B2 (en)