JPS61147102A - Level measuring method - Google Patents

Level measuring method

Info

Publication number
JPS61147102A
JPS61147102A JP26837184A JP26837184A JPS61147102A JP S61147102 A JPS61147102 A JP S61147102A JP 26837184 A JP26837184 A JP 26837184A JP 26837184 A JP26837184 A JP 26837184A JP S61147102 A JPS61147102 A JP S61147102A
Authority
JP
Japan
Prior art keywords
flatness
level
measurement
track
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26837184A
Other languages
Japanese (ja)
Other versions
JPH023122B2 (en
Inventor
Senji Kobayashi
小林 専慈
Kunio Takeshita
竹下 邦夫
Satoru Kishimoto
哲 岸本
Masayuki Ito
昌之 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Hitachi High Tech Corp
Original Assignee
JAPANESE NATIONAL RAILWAYS<JNR>
Hitachi Ltd
Japan National Railways
Hitachi Electronics Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JAPANESE NATIONAL RAILWAYS<JNR>, Hitachi Ltd, Japan National Railways, Hitachi Electronics Engineering Co Ltd filed Critical JAPANESE NATIONAL RAILWAYS<JNR>
Priority to JP26837184A priority Critical patent/JPS61147102A/en
Publication of JPS61147102A publication Critical patent/JPS61147102A/en
Publication of JPH023122B2 publication Critical patent/JPH023122B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Machines For Laying And Maintaining Railways (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To detect the inclination of a track with high precision by running a two-shaft and four-wheel vehicle for measurement on the track and adding algebraically the flatness from the point of one wheel which contacts a rail surface to one plane determined by three optional points of wheels. CONSTITUTION:The analog signal for flatness measurement from a flatness measuring device 10 is converted by an A-D converter 12 into a digital value ion synchronism with pulses generated by an SP generating part 24 at intervals of the constant run distance of the measuring vehicle. Then, the digital signal of flatness after an offset is removed is switched and connected by a demultiplexer 12 to adders 15-1-15-m in synchronism with sampling pulses. Then, the respective adders sums up flatness cumulatively and the arithmetic result is branched into two; one is sent to a D-A converter 18 and the other is sent to a shift register (SF) 16. Then, the contents of the SF are returned to an input side and added to next flatness. A digital signal of level sent to the converter 18, on the other hand, is converted there into an analog value, and a bias switching part 19 performs bias switching to record the value on a recorder 21.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、測定機器を搭載した計測車を軌道上で走行さ
せながら、1対のレールの高低差(以下水率とりう)を
測定する方法に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention provides a method for measuring the height difference between a pair of rails (hereinafter referred to as water rate) while running a measuring vehicle equipped with a measuring device on a track. It is related to.

〔発明の背景〕[Background of the invention]

従来一般に、計測車による軌道の水準の測定においては
測定の基準面を定めるためにジャイロ手段が用いられて
匹る。
Conventionally, when measuring the level of a track using a measuring vehicle, gyro means are generally used to determine a reference plane for measurement.

上記のジャイロ手段には回転体を1個設けたものと2個
設けたものとがあってそれぞれ長短を有している。
The above-mentioned gyro means includes one with one rotating body and one with two rotating bodies, each having advantages and disadvantages.

回転体が1個のものは比較的短周期で振動するので長波
長の軌道狂いを針側する場合のffEが低い。また回転
体が2個のものは勾配とカープとが共存する軌道を計測
する場合に力学的作用によってジャイロの作る平面が傾
斜してドリフトを生じる。
Since a single rotating body vibrates in a relatively short period, the ffE is low when correcting a long-wavelength orbit deviation to the needle side. In addition, when two rotating bodies are used to measure a trajectory in which a slope and a curve coexist, the plane created by the gyro is tilted due to mechanical action, causing drift.

上記のジャイロ手段は一般に高価であって、簡易型の計
測車には不向きである。簡易型の計測車用として機械的
振子を用いたものも有るが、機械的振子を用いた場合は
計測車の走行速度が20 Km/Hを越えると計測精度
が低下し、カーブ区間においては更に低下する。
The above-mentioned gyro means are generally expensive and are not suitable for simple measuring vehicles. There are some types of simple measuring vehicles that use mechanical pendulums, but when using mechanical pendulums, the measurement accuracy decreases when the traveling speed of the measuring vehicle exceeds 20 Km/H, and even more so on curved sections. descend.

〔発明の目的〕[Purpose of the invention]

本発明は上述の事情に鑑みて為され、ジャイロを用いな
いで、安価な機器を用いて実施することができ、ジャイ
ロを用−た場合のように加速度の悪影響を受ける虞れが
無く、ジャイロを用いた場合に匹敵する高精度で軌道の
傾きを検出できる水準測定方法を提供することを目的と
する。
The present invention has been made in view of the above circumstances, and can be implemented using inexpensive equipment without using a gyro, and there is no risk of being adversely affected by acceleration as in the case of using a gyro. The purpose of the present invention is to provide a level measurement method that can detect the inclination of a trajectory with a high degree of accuracy comparable to that obtained when using a conventional method.

〔発明の概要〕[Summary of the invention]

上記の目的を達成する為、本願発明の第1の方法は、2
本のレールを有する軌道の水準を測定する方法において
、2軸、4輪の計測用車輌を被測定軌道上で走行させ、
上記4輪の車輪がレール踏面に接する4点のうちの任意
の3点によって決せられる一つの平面に、残シの1点か
ら下した垂線の長さによって表わされる平面度を、軸距
距離の走行ごとに代数加算して、左右レールの高低差を
算出することを特徴とする。
In order to achieve the above object, the first method of the present invention is as follows:
In a method for measuring the level of a track having real rails, a two-axle, four-wheel measuring vehicle is run on the track to be measured,
The flatness expressed by the length of a perpendicular drawn from one point of the remaining four wheels to a plane determined by any three of the four points where the four wheels touch the rail tread is the wheelbase distance. The feature is that the height difference between the left and right rails is calculated by algebraic addition for each run.

また、本願発明の第2の方法は、上記の平面度を、計測
車の車軸間を一定の数で除した単位長さ当たシ平面度を
算定し、一定走行距離ごとに上記の単位長さ当たシ平面
度をプンプリングしてその値を代数加算する距離積分に
よって左右レールの高低差を算出することを特徴とする
In addition, the second method of the present invention calculates the flatness per unit length by dividing the above flatness by a certain number between the axles of the measuring vehicle, and calculates the flatness per unit length for each fixed traveling distance. It is characterized by calculating the height difference between the left and right rails by distance integration, which is performed by pumping the flatness of the flatness and algebraically adding the values.

第1図(A)−(D)は本発明の詳細な説明図である。FIGS. 1A to 1D are detailed explanatory diagrams of the present invention.

第1図TA)に示すように剛性の大きい車体3を、前車
軸4に取シ付けた車輪6.7と、後車軸5に取シ付けた
単輪8,9とによシ支承する。6゜7.8.9はそれぞ
れ軸受箱である。上記の車輪6,8及び同7.9を、そ
れぞれ左し−/I/1、及び右レール2に乗せて矢印イ
方向に走行させる0 前記4個の軸受箱6′、7′、8′、9′をそれぞれ車
体3に対して弾性的に支承し、車体3を基準として上下
方向変位a、4.cr、clを電気的手法で検出し、レ
ール1,2の平面度P Is)をF(s)−(a −b
 ) −(r、 −cl )     ・・・(1)と
定義する。ここに3は軌道長さ方向の座標である。
As shown in FIG. 1 (TA), a highly rigid vehicle body 3 is supported by wheels 6.7 attached to a front axle 4 and single wheels 8, 9 attached to a rear axle 5. 6°7, 8.9 are bearing boxes, respectively. The above-mentioned wheels 6, 8 and 7.9 are placed on the left - / I / 1 and right rail 2, respectively, and run in the direction of arrow A. The four bearing boxes 6', 7', 8' , 9' are each elastically supported on the vehicle body 3, and vertical displacements a, 4. cr and cl are detected electrically, and the flatness P Is) of rails 1 and 2 is calculated as F(s) - (a - b
) −(r, −cl) ...(1) is defined. Here, 3 is the coordinate in the orbit length direction.

前記の上下変位a、b、a、jは、原理的には車輪とレ
ールとの接触点を以℃論ずべきであるが実用上必要な精
度の範囲内において車輪は眞円であると見做し、軸受箱
のガタは焦りと見做し得るので、軸受箱の上下方向変位
に基づいて前記の平面度Pis)を定義したものである
In principle, the above vertical displacements a, b, a, and j should be determined at the point of contact between the wheel and the rail, but within the range of accuracy required for practical purposes, the wheel is assumed to be perfectly circular. However, since play in the bearing box can be regarded as impatience, the above-mentioned flatness (Pis) is defined based on the vertical displacement of the bearing box.

前後の車軸4,5間の距離(軸距〕を71前後車軸間の
中点の座標(軌道方向についての座標)を31座標Sに
おける水準(左右レールの高低差)をH(81、前後車
軸位置間における水準差をΔH(s)とすれば l!E ΔH(sl工H(s+−) −H(s −−)   ・
・・(2)軌道計測車のジャイaを用いる水準測定原理
を第1図書)に示す。これは第1図(A)における車軸
4の位置の水準を測定する場合を例示したものであり、
3は基準平面となるジャイロ、Lは車軸4の左右両端軸
受箱6.7と車体3の相対変位用検出器間の距離、Gは
左右レールの間隔すなわち軌間を示す。車軸の傾斜角す
なわち軸道の水準角をθ、車体の傾斜角ψ、車軸と車体
の相対角をφ、また角度の符号は反時計方向を正として
、 ψツφ十〇 θ糟ψ−φ φ−ta1m−I−L−!− 第1図(A)を併用して、 H(8+  )−Gm(ψ−””  −)    −1
3)2                Lψはジャイ
ロに設けられた角度検出器(図示せず)によシ検出され
る。同様にして車軸5の位l            
        −嘲 d −c。
The distance (wheelbase) between the front and rear axles 4 and 5 is 71. The coordinates of the midpoint between the front and rear axles (coordinates in the track direction) are 31. The level at coordinate S (height difference between the left and right rails) is H (81, front and rear axles. If the level difference between positions is ΔH(s), then l!E ΔH(slwork H(s+-) −H(s −-) ・
...(2) The principle of level measurement using the gyroscope a of the track measurement vehicle is shown in Book 1). This is an example of measuring the level of the position of the axle 4 in FIG. 1(A).
3 is a gyro serving as a reference plane, L is a distance between the right and left end bearing boxes 6.7 of the axle 4 and the relative displacement detector of the vehicle body 3, and G is the distance between the left and right rails, that is, the gauge. The inclination angle of the axle, that is, the level angle of the axle road, is θ, the inclination angle of the vehicle body is ψ, the relative angle between the axle and the vehicle body is φ, and the sign of the angle is ψtsuφ10θθ−φ, with the counterclockwise direction being positive. φ-ta1m-IL-! - Using Figure 1 (A) together, H(8+)-Gm(ψ-""-)-1
3) 2Lψ is detected by an angle detector (not shown) provided in the gyro. Similarly, axle 5
-Mockery d -c.

H(s−−)−Gm(ψ−−−)   ・・・(4)2
                 Li2) 、 1
4)両式で用−られる軌間Gは厳密には等しいとはe兄
ないが、通常の計測では等しいと見なして支障ない。
H(s--)-Gm(ψ--)...(4)2
Li2), 1
4) Although the gauges G used in both formulas are not strictly equal, they can be regarded as equal in normal measurements and there is no problem.

(3)および(4)式を(2)式に代入すればO(ψ−
−τ)べψ−m−7) ここで、el−c、j−aの絶対値はLに比べて小さい
し1ψも小さいと見なせるので、 トrt ル。上掲のΔ用s)の式の最右辺を展開して、
これらの関係を代入し、2次以上の微小量を無視して整
理すれば、 ΔH(s)=2((j−6)−(j−a ) )−H(
(a−A )−(6−j ) )、、、(5)となる。
Substituting equations (3) and (4) into equation (2), O(ψ−
-τ) Beψ-m-7) Here, the absolute values of el-c and j-a are smaller than L and can be considered to be smaller by 1ψ, so tr. Expanding the right-most side of the equation for Δs) above, we get
By substituting these relationships and rearranging them by ignoring minute quantities of second order or higher, we get ΔH(s)=2((j-6)-(j-a))-H(
(a-A)-(6-j)), , (5).

第1図tc)は車体基準の軸受箱変位’l’l’H(s
−−!−)の関係を示す。それぞれの軸の右側走行輪と
レールの接触点FBとFDは同じ高さにあるとして図t
″簡単しである。笑栂と点線はそれぞn@4と5の位置
における状態を示す。
Figure 1tc) is the bearing box displacement 'l'l'H(s
--! -) shows the relationship. Figure t assumes that the contact points FB and FD between the right running wheel of each axis and the rail are at the same height.
``It's simple. The curved lines and dotted lines show the conditions at n@4 and 5 positions, respectively.

ム、B、C,Dはそれぞれ軸受箱6.7.8.9の位置
を、Pム、PJi、Pa、PDは走行輪6.7.8.9
とレールの接触点を、qム、Qn 、 Qo。
M, B, C, and D indicate the position of the bearing box 6.7.8.9, respectively, and P, PJi, Pa, and PD indicate the position of the running wheel 6.7.8.9.
The contact points of the rail and the rail are qum, Qn, and Qo.

Qnは走行@6.7.8.9の中心を、roは走行輪の
半径を示す。位置ム、Cはそれぞれ位置B、Cを通る水
平直線に位置ム、Bから下したflIIiIの足、Tは
接触点P)を通る水平直麿に接触点Pムから下した垂線
の足、Po′ハ線分pA。
Qn indicates the center of travel @6.7.8.9, and ro indicates the radius of the traveling wheel. Position M and C are the feet of flIIIiI drawn from position B and B on a horizontal line passing through positions B and C, respectively, T is the foot of a perpendicular line drawn from contact point P on a horizontal straight line passing through contact point P), Po 'C line segment pA.

TとPOlFDの交点である。また、θ′は後輪5の水
準角、φ′はその位置における車体と車軸の軸受箱変位
ら、b、a、tと水準題ΔH(S)の関係を理解し易く
するために、第1図(C)のΔ(三角形)p、c’、c
を平行移動させてDtBと重ねた状態を第1図(D)に
示す。第1図(勾はB1C点の上下方向変位成分である
This is the intersection of T and POIFD. In addition, θ' is the leveling angle of the rear wheel 5, φ' is the displacement of the bearing box of the vehicle body and axle at that position, and in order to make it easier to understand the relationship between b, a, t and the leveling problem ΔH(S), Δ (triangle) p, c', c in Figure 1 (C)
FIG. 1(D) shows a state where DtB is superimposed on DtB after being translated in parallel. FIG. 1 (The gradient is the vertical displacement component of point B1C.

前にも述べたように、変位検出点間の距離り軌間GK比
較すnば1畠−日、I’−’lは小さいので図の上から
も −−((’−”)−(”−j)) なることが明らかである。
As mentioned before, when comparing the distance between the displacement detection points and the gauge GK, n = 1 - day, I'-'l is small, so from the top of the diagram - (('-") - (" −j)) It is clear that

第1図(A)の平行度測定を実機で行う場合にも車軸両
地の変位検出点間の距離りと軌間Gが相異しているため
、演算の段階で係iG/Lを乗じて軌間Gに対応する量
に補正しているので実際の平面度F (s)は次のよう
になる。
Even when measuring parallelism in Figure 1 (A) using an actual machine, the distance between the displacement detection points on both sides of the axle and the gauge G are different, so the coefficient iG/L is multiplied at the calculation stage. Since the correction is made to the amount corresponding to the gauge G, the actual flatness F (s) is as follows.

1(−)−−((6−4)−(G−j ) )    
・・・(6)従って、(2)% ts)および(6)式
よ〕ΔH(s)=H(s←)−H(s−!−)−F(8
1・・・(7)となる。(7)式の中央辺と最右辺の関
係よシ/          l! H(S+−) −H(S−一)+ :[P(S)   
 、、、(8)となシ、測定開始点における測定用前後
車軸間の中点を座標原点にとり、軸距lごとの走行を1
回繰返し測定すれば、 直縁軌道と曲線軌道の接続部に設けられて曲率半径が無
限大から曲線の半径R′−1で連続的に変化する緩和1
巌部分につき、上掲の(2)式によシ表わされる。軸距
#atごとの水準の是ΔH4を第2図(A) Ic s
同じ個所で測定距離lの計測車により測定される平面度
l?′iを第2図(B)に示す。
1(-)--((6-4)-(G-j))
...(6) Therefore, according to (2)% ts) and equation (6)] ΔH(s)=H(s←)−H(s−!−)−F(8
1...(7). The relationship between the center side and the right-most side of equation (7) is /l! H(S+-) −H(S-1)+ :[P(S)
,,,(8) Take the midpoint between the front and rear axles for measurement at the measurement start point as the coordinate origin, and calculate the travel for each wheelbase distance l by 1.
If the measurement is repeated several times, the relaxation 1, which is provided at the connection between the straight-edge track and the curved track and whose radius of curvature changes continuously from infinity to the radius of the curve R'-1, is found.
The rock portion is expressed by the above equation (2). The level difference ΔH4 for each wheelbase distance #at is shown in Figure 2 (A) Ic s
Flatness l measured at the same location by a measuring car with a measuring distance l? 'i is shown in FIG. 2(B).

図の0点は測定開始時における平面度測定用z軸の中点
を示す。
The zero point in the figure indicates the midpoint of the z-axis for flatness measurement at the start of measurement.

前掲の(4)式によって表わでれる水準H(s)および
平面度F(s)を図示すると第3図(ム)および第3図
tB)の如くである。
The level H(s) and flatness F(s) expressed by the above equation (4) are illustrated in FIGS. 3(m) and 3(tB).

゛また、第3図(勾は前後軸間中点の位置と水準H45
)との関係を、同図(B)は同じく平面度F(s)との
関係を示す図表である。S、rj、nl!等は軸間中点
の原点(測定開始点)からの走行距離である。本図(司
は距離Eを距てた2点間の水準の差を平面度として示し
たものである。
゛Also, in Figure 3 (the slope is the position of the midpoint between the front and rear axles and the level H45
), and (B) is a chart showing the relationship with the flatness F(s). S, rj, nl! etc. is the traveling distance from the origin (measurement starting point) at the center point between the axes. This figure shows the difference in level between two points separated by a distance E as flatness.

第2図、第3図は走行距隘lごとに、即ち軸距pc相当
する距離の走行ごとに測定を行ったので、細かい変化を
含まない折縁グ57状の記録VCなっているが、正整数
mを用いてこの測定間隔と27mとし、走行層1m//
mごとにmimの水準測定値が得られるようにし、mを
1よシ大きい適当な値に選べば連続曲線に近い測定記録
が得られる。
In Figures 2 and 3, measurements were taken every time the distance traveled was 1, that is, every time a distance corresponding to the wheelbase distance pc was traveled, so the recorded VC was in the form of a folded edge 57 that did not include small changes. This measurement interval is set to 27m using a positive integer m, and the running layer is 1m//
If a level measurement value of mim is obtained every m, and if m is selected to be an appropriate value larger than 1, a measurement record close to a continuous curve can be obtained.

この場合はl!/mなる間隔だけずれたm組の加算演算
を自動演算手段で同時に行ない、m組の演算出力を順次
出力端子へ切換えて出力する。
In this case l! The automatic calculation means simultaneously performs m sets of addition operations shifted by an interval of /m, and outputs the m sets of calculations by sequentially switching to output terminals.

次に、以上の説明によると、同様に平面度測定用2軸の
中点の座=t−aとし、微小距離68間の水準変化がΔ
Rなる場合の水準変化率をΔH/Δ日と表し、平面度測
定基準長tは水準狂い波形の波長に比較して小さ−とす
れば微分記号を用−て水準の微小変化を !l5) ctH場□ d3 と表わし、測定開始点で、3m$11として積分す<s
の代シにΔs wm l!/mを用いて加算を行えば(
10)式の代夛に、 H((n+−)j)−H(−!−)+Flo)−1−!
−胃”  ?(−1)2         2    
   mrrj   m−H(L)+L−x;° F(
−j)  ・・・(11)Z   mrll   m が得られる。ここに、5−8o!njとしてあシSo 
w Oとすれば測定開始点が座標原点となる。
Next, according to the above explanation, similarly, the center point of the two axes for flatness measurement is set to = ta, and the level change during the minute distance 68 is Δ
If the level change rate in the case of R is expressed as ΔH/Δday, and the flatness measurement standard length t is small compared to the wavelength of the level deviation waveform, then use the differential symbol to calculate the minute change in level! l5) Express the ctH field □ d3 and integrate it as 3m$11 at the measurement start point <s
Δs wm l! If we perform addition using /m, we get (
10) Substituting the equation, H((n+-)j)-H(-!-)+Flo)-1-!
-Stomach”?(-1)2 2
mrrj m−H(L)+L−x;° F(
-j) ... (11) Z mrll m is obtained. Here, 5-8o! nj as ashi so
If w O, the measurement start point becomes the coordinate origin.

また、nは(9)式と同様に正!1数である。Also, n is positive as in equation (9)! The number is 1.

この方法では、平面度測定用前軸の水準を初期値として
、z/m走行ごとに測定基準Eで測定された平面度P(
s)の1/m倍を順次加算すればよいO 振flli ’ %波長λの正弦波形水準狂いから測定
基準長ノの平面度を求め、(10)式に代入して連続処
理による波長特性ム1/4を求めればに− λ/l   ’ が侍らnる。ここに、ム1は(10)式による水準〆′
J4頑未の振幅である。
In this method, the level of the front axis for flatness measurement is set as the initial value, and the flatness P (
The flatness of the measurement standard length is determined from the sine waveform level deviation of the wavelength λ, and is substituted into equation (10) to calculate the wavelength characteristic deviation by continuous processing. If we find 1/4, we get -λ/l'. Here, M1 is the level 〆′ according to equation (10)
This is the amplitude of J4 Gunmi.

同様にして、ディジタル処理の(11)式を用いた場合
の水準演算結果の振幅をA!とすれば波長特性は次のよ
うになる。
Similarly, the amplitude of the level calculation result when using digital processing equation (11) is A! Then, the wavelength characteristics are as follows.

””mA/l  ’       ・・・(15)距離
j/mづつずれたm組の加算演算をそれぞれ走行距離l
ごとに行なう水準R算結果の波長特性も(15)式とほ
ぼ同じである。また、(12)式と(13)式に示され
る特性もほぼ同一であると考えて支障な−0 〔発明の実施例〕 以上述べたような水準測定を行うには、例えば第4図に
示す構成の装置を用−nばよい。次に本発明の1笑施例
にり匹て述べる。
"" mA/l '...(15) m sets of addition calculations shifted by distance j/m are each calculated as mileage l
The wavelength characteristics of the level R calculation results performed at each time are also almost the same as those in equation (15). In addition, considering that the characteristics shown in equations (12) and (13) are almost the same, there is no problem in -0. All you need to do is use a device with the configuration shown. Next, one embodiment of the present invention will be described.

弗1図に模式化して示したit測単を第4図におりて平
面度測定装置10として表わしである。
The IT measurement schematically shown in FIG. 1 is shown in FIG. 4 as a flatness measuring device 10.

この装置から発せら几た平面度計測用アナログ信号はバ
ッファアンプ11で感度fA整の故、計測車の一定走行
距wa嚢にプングリングパルス(8P)発生部24で作
られるパルスと同期してA−D変換器12でデジタル量
に変換される。前記のサンプリングパルス間隔は平面度
の測定基準長lの整数分の1(m分の1)に設定しであ
る。
Since the analog signal for flatness measurement emitted from this device has its sensitivity fA adjusted by the buffer amplifier 11, it is synchronized with the pulse generated by the pulling pulse (8P) generator 24 at the constant travel distance wa bag of the measuring vehicle. It is converted into a digital quantity by an A-D converter 12. The above-mentioned sampling pulse interval is set to 1/m (1/m) of the flatness measurement standard length l.

平面度の測定信号にオフセットが有れば水準出力中に積
算されるので、正味狂い演算@13において平面度のデ
ジタル信号に移動平均演算を施し、それf:原信号から
引算するバイパスフィルタ処理により正味狂いを求める
。この際の移動平均演算によるa−バスフィルタ処理に
は例えば60m区間の2次移動平均演算法を用いる。
If there is an offset in the flatness measurement signal, it will be integrated during the level output, so in the net deviation calculation @ 13, a moving average calculation is performed on the flatness digital signal, and f: bypass filter processing to subtract it from the original signal. Find the net deviation. For the a-bus filter processing using the moving average calculation at this time, for example, a quadratic moving average calculation method for a 60 m interval is used.

オフセットを除去された平面度のデジタル信号は距離間
Vhl/mなるプングリングパルスと同期してデマルチ
グレク−r(多点切換スイッチ)14によシm1mの加
′S器15−1〜15−mが順次切換接続される。
The digital signal of the flatness from which the offset has been removed is sent to the demultiplexer (multi-point changeover switch) 14 in synchronization with the punching pulse with a distance of Vhl/m. are sequentially switched and connected.

それぞれの加算器では平面度の累積加算が行われ、演算
精米は加算器を出た後2つに分岐し、一方はマルチグレ
クf17を、鏝てDA変換器18へ送られ、他はそれぞ
れの加算器と組合されたシフトレジスタ(SF)16へ
送られる。シフトレジスタの内容はl!/m間隔のプン
グリングパルス(sp距−パルス)m個分だけすなわち
距離lだけタフトされて加算器の入力側へ戻され、測定
基準長lだけ遅れて入力される次の平面度と加算される
Each adder performs cumulative addition of flatness, and after leaving the adder, the arithmetic milling branches into two parts, one of which sends the multi-grain f17 to the DA converter 18, and the other part of each adder. The signal is sent to a shift register (SF) 16 that is combined with a shift register (SF) 16. The contents of the shift register are l! It is tufted by m Pungling pulses (sp distance pulses) spaced at /m intervals, that is, by a distance l, and returned to the input side of the adder, and is added to the next flatness input delayed by the measurement reference length l. Ru.

測定開始点における水準の初期値は、それぞれの該画点
における水準を1水準器、加速度計。
The initial value of the level at the measurement starting point is 1 level at each pixel point, level gauge, accelerometer.

或いは機械振子を用いて測定し、初期置設足部26より
それぞれの加算器へ予め入力しておく。
Alternatively, it is measured using a mechanical pendulum and inputted in advance to each adder from the initially installed foot section 26.

水準の初期値を加速度計によって測定する例を第5図、
第6図に示す。
An example of measuring the initial level value using an accelerometer is shown in Figure 5.
It is shown in FIG.

第5図は、静止時における水準、即ち左右レールの高低
差をレールとの間にバネ機能要素を介さないいわゆるバ
ネ下で測定する場合を示し口は加速度計である。また、
θは刃口速度計設置面の水準狂いによる傾斜角、fは重
力加速度である。計測車のバネ下に当たる足回シ構成部
材に、その左右方間の加速度を測定するように加速度計
を設置すると、重力加速度の水平分力を測定して傾斜角
を算定することができる。
FIG. 5 shows a case in which the level at rest, that is, the height difference between the left and right rails is measured under a so-called unsprung condition without intervening a spring function element between the rail and the rail, and the opening is an accelerometer. Also,
θ is the inclination angle due to the leveling error of the blade mouth velocity meter installation surface, and f is the gravitational acceleration. If an accelerometer is installed on the suspension component under the spring of the measurement vehicle to measure the acceleration between the left and right sides, the horizontal component of the gravitational acceleration can be measured and the angle of inclination can be calculated.

第6図はバネ上に設置した加速度計による水準測定を示
し、口は加速度計、ノ・は計測車4体である。水準角を
θ、バネ上の車体と車軸との相対傾斜角をφ、車軸端で
車体と軸受箱との上下方向相対変位を検出する検出器の
出力を4゜6車体傾斜角をψ、水準をEとすれば、第1
図(C)の場合と同様に、 ψ=φ十〇 θはψ−φ となる。ここにGは軌間、Lは左右の検出器の間隔であ
る。この水準Hは、第1図(C)のθ、ψφの符号を逆
にした場合のH(s+7)に相当し、検出器出力a、A
は第1図(A)、第1図IB)および第1図(C)の検
出器出力a、jと同じものである。
Figure 6 shows level measurement using an accelerometer installed on a spring. The level angle is θ, the relative inclination angle between the car body on the spring and the axle is φ, the output of the detector that detects the vertical relative displacement between the car body and the bearing box at the axle end is 4°6 the car body inclination angle is ψ, the level If E is the first
As in the case of figure (C), ψ=φ10θ becomes ψ−φ. Here, G is the track, and L is the distance between the left and right detectors. This level H corresponds to H(s+7) when the signs of θ and ψφ in FIG. 1(C) are reversed, and the detector outputs a, A
are the same as the detector outputs a and j in FIG. 1(A), FIG. 1IB) and FIG. 1(C).

この場合、加速度計が検出するのはf−ψであシ、通ψ
に比例した出力が得られる0第4図においてD−ム変換
器18へ送られた水準のデジタル信号はここでアナログ
量に変換される。本実施例においては、記録紙幅±20
厘の自動記録器21を用いて±100mの水準(高低差
〕を充分カバーできるようにバイアス切換部19でバイ
アス切換を行った後、増幅器20を経て記録器21に記
録せしめた。
In this case, what the accelerometer detects is f−ψ;
The digital signal of the level sent to the D-me converter 18 in FIG. 4 is here converted into an analog quantity. In this embodiment, the recording paper width ±20
After switching the bias using the bias switching unit 19 to sufficiently cover the level (height difference) of ±100 m using the automatic recorder 21 of Rin, the data was recorded on the recorder 21 via the amplifier 20.

また、D−ム変換器18の前から分岐された信号は計測
車上のオンラインデータ処理、若しくは磁気テープへの
集録を行なうデータ処理部22へ送られる。
Further, the signal branched from before the D-me converter 18 is sent to a data processing section 22 that performs online data processing on the measurement vehicle or records it on a magnetic tape.

実在する水準狂いの波長をλ、平面度測定基準長tzと
すれば、上述の実施例による波長特性は(12)式によ
υ、 で示すと第7図の如くである。
If the wavelength of the actual level deviation is λ and the flatness measurement standard length tz, then the wavelength characteristic according to the above embodiment is expressed as υ according to equation (12) as shown in FIG. 7.

次に、特許請求の範囲(2)に記載した発明を第11式
による実施例につφて説明する◎この演算を実施するに
は、第4図において、バッファアング11であるいは正
味狂−演算部13までのディジタル処理部で、平面度信
号を1/m倍し、1組の加算器とシフトレジスタ(例え
ば15−1.16−1の組)のみを用いてj/m間隔の
サンブリングパルスと同期して、1/m倍された平面度
信号を順次加算する。初期値は測定開始時における前方
測定軸の水準H(L)のみを初期値設定部23を経て加
算器15−1へ入力する。
Next, the invention recited in claim (2) will be explained with reference to an embodiment according to equation 11. ◎To implement this operation, in FIG. In the digital processing sections up to section 13, the flatness signal is multiplied by 1/m and sampled at j/m intervals using only one set of adder and shift register (for example, a set of 15-1, 16-1). In synchronization with the pulse, flatness signals multiplied by 1/m are sequentially added. As the initial value, only the level H (L) of the front measurement axis at the time of starting measurement is inputted to the adder 15-1 via the initial value setting section 23.

サンブリングパルスはl:7mおよびl間隔の2種類あ
ればよい。
There are only two types of sampling pulses: 1:7 m and 1 interval.

システム構成上は、デマルチブレフサ14およびマルチ
ブレフサ17、加算器15−2以降とシフトレジスター
6−2以降の構成が不要となシ、初期値設定部23とプ
ングリングパルス発部24が簡単化される。その他の部
分の機器と機能を前述の英施例と変らない。
In terms of system configuration, the configurations after the demultiplexer 14 and the multiplexer 17, the adder 15-2 and the shift register 6-2 are not required, and the initial value setting section 23 and the pulling pulse generation section 24 are simplified. The equipment and functions of other parts are the same as the previous English example.

波長特性は(13)式で示され、第715!i1とほぼ
同じになる。
The wavelength characteristic is shown by equation (13), and the 715th! It is almost the same as i1.

次に共通的な事項についての説明を加える。Next, we will add explanations about common matters.

8F 16−1−8716−mはシフトレジスタであシ
、加算器出力を取込んで平面度基準長I!またはbヤだ
けシフトさせて、加J:i器への次の平面度入力と同期
させて加算器入力側へ出力させる。初期値設定部23は
、測定開始点において測定開始前の静止状態で測定され
た平面度測定用前軸あるいは後軸の水準または後軸側か
ら17mの間隔で測定された軌道上のm情所の点の水準
を自動あるいは手動で入力し、スイッチ操作によって加
算器へ出力する。プングリングパルス発1fflS24
は、尤−的あるいは4磁的手段等によシ、走行車輪の回
転と同期しc t7m走行ごとに蝋気的パルスを発磁さ
せ、基本サンブリングパルスの外にtパルス、10M/
<ルス、 100Mパルス。
8F 16-1-8716-m is a shift register, takes in the adder output and calculates the flatness reference length I! Alternatively, it is shifted by b and is output to the adder input side in synchronization with the next flatness input to the adder J:i. The initial value setting unit 23 is configured to set the level of the front axis or the rear axis for flatness measurement measured in a stationary state before starting the measurement at the measurement start point, or the m information point on the orbit measured at an interval of 17 m from the rear axis side. The level of the point is input automatically or manually and output to the adder by operating a switch. Pungling pulse 1fflS24
In this method, a magnetic pulse is generated every 7 m in synchronization with the rotation of the running wheels using magnetic or magnetic means, and in addition to the basic sampling pulse, a t pulse and a 10 m/10 m pulse are generated.
<Lus, 100M pulse.

500Mパルスおよび1KMパルスの発生も可能である
Generation of 500M pulses and 1KM pulses is also possible.

クロック25は、信号授受、変換、演算等の各種動作の
タイiングをとるための基本となる高周波時間パルスを
発生させて装置の各部に送り出す。
The clock 25 generates high-frequency time pulses, which are the basis for timing various operations such as signal exchange, conversion, and calculation, and sends them to each part of the device.

電源26は商用4源あるいはバッテリー′域源を受けて
各部に必要な種々の電力を供給する。
The power supply 26 receives four commercial power sources or a battery power source and supplies various kinds of power necessary to each part.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように、本発明によれば高価なジャイロを
用いない簡単な装置を用−て軌道の水準を測定すること
ができ、ジャイロを用いた場合のように加速度による悪
影響を受ける虞れ無く、シかもジャイロを用−九場合に
匹敵する高精度で軌道のねじれを検出することができる
As described in detail above, according to the present invention, the level of the orbit can be measured using a simple device that does not use an expensive gyro, and unlike the case where a gyro is used, there is no risk of being adversely affected by acceleration. Orbit twists can be detected with a high degree of accuracy comparable to that of a conventional gyro.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(A)〜p)はりずれも本発明方法を実施するた
めに構成した計測車の1例を模式的に描いた説明図であ
る。第2図(A) 、 (B)及び第6図(ム)。 [E)は本発明方法の1実施例における作用を説明する
ため水準と平面度とを対応させて描いた図表である。第
4図は本発明の水準測定方法を実施するために構成した
水準測定装置の1例を示すブロック図である。棺5図及
び第6図は初期値の設定方法を説明する図表である。第
7図は本発明方法の1実施例における波長特性を示す図
表である。 1・・・左レール     2・・・右レール3・・・
計測車車体     4・・・前車軸5・・・後車軸 6.7,8.9・・・車輪 ゛(−1
FIGS. 1(A) to 1(p) are explanatory diagrams schematically depicting an example of a measuring vehicle configured to carry out the method of the present invention. Figures 2 (A), (B) and Figure 6 (M). [E] is a diagram depicting the correspondence between level and flatness in order to explain the operation in one embodiment of the method of the present invention. FIG. 4 is a block diagram showing an example of a level measuring device configured to carry out the level measuring method of the present invention. Figures 5 and 6 are charts for explaining the method of setting initial values. FIG. 7 is a chart showing wavelength characteristics in one embodiment of the method of the present invention. 1...Left rail 2...Right rail 3...
Measuring vehicle body 4...Front axle 5...Rear axle 6.7, 8.9...Wheel ゛(-1

Claims (1)

【特許請求の範囲】 1、2本のレールを有する軌道の水準を測定する方法に
おいて、2軸、4輪の計測用車輌を被測定軌道上で走行
させ、上記4輪の車輪がレール踏面に接する4点のうち
の任意の3点によつて決せられる一つの平面に、残りの
1点から下した垂線の長さによつて表わされる平面度を
軸距距離の走行ごとに代数加算して、左右レールの高低
差を算出することを特徴とする水準測定方法。 2、2本のレールを有する軌道の水準を測定する方法に
おいて、2軸、4輪の計測用車輌を被測定軌道上で走行
させ、上記4輪の車輪がレール踏面に接する4点のうち
任意の3点によつて決せられる一つの平面に、残りの1
点から下した垂線の長さによつて表わされる平面度を計
測車の車軸間を一定の数で除した単位長さ当たり平面度
を算定し、一定走行距離ごとに上記の単位長さ当り平面
度をサンプリングしてその値を代数加算する距離積分に
よつて左右レールの高低差を算出することを特徴とする
水準測定方法。
[Claims] In a method for measuring the level of a track having one or two rails, a measuring vehicle with two axles and four wheels is run on the track to be measured, and the four wheels are placed on the rail tread. To one plane determined by any three of the four touching points, the flatness expressed by the length of the perpendicular drawn from the remaining one point is algebraically added every time the wheelbase distance is traveled. A level measurement method characterized by calculating the height difference between the left and right rails. 2. In the method of measuring the level of a track with two rails, a two-axle, four-wheel measurement vehicle is run on the track to be measured, and any of the four points where the four wheels contact the rail tread is selected. In one plane determined by the three points, the remaining one
Measure the flatness expressed by the length of the perpendicular line drawn from the point. Calculate the flatness per unit length by dividing the distance between the axles of the vehicle by a certain number, and calculate the flatness per unit length by dividing the distance between the axles of the vehicle by a certain number. A level measurement method characterized by calculating the height difference between the left and right rails by distance integration, which samples degrees and algebraically adds the values.
JP26837184A 1984-12-21 1984-12-21 Level measuring method Granted JPS61147102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26837184A JPS61147102A (en) 1984-12-21 1984-12-21 Level measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26837184A JPS61147102A (en) 1984-12-21 1984-12-21 Level measuring method

Publications (2)

Publication Number Publication Date
JPS61147102A true JPS61147102A (en) 1986-07-04
JPH023122B2 JPH023122B2 (en) 1990-01-22

Family

ID=17457570

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26837184A Granted JPS61147102A (en) 1984-12-21 1984-12-21 Level measuring method

Country Status (1)

Country Link
JP (1) JPS61147102A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625467B2 (en) 2003-01-15 2009-12-01 Mitsubishi Rayon Co., Ltd. Support beam for easily polymerizeable substance treatment device and easily polymerizeable substance treatment device
US9963157B2 (en) 2013-09-06 2018-05-08 Nippon Steel & Sumitomo Metal Corporation Method of measuring condition of track using vehicle for commercial operation and vehicle for commercial operation for measuring condition of track

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625467B2 (en) 2003-01-15 2009-12-01 Mitsubishi Rayon Co., Ltd. Support beam for easily polymerizeable substance treatment device and easily polymerizeable substance treatment device
US9963157B2 (en) 2013-09-06 2018-05-08 Nippon Steel & Sumitomo Metal Corporation Method of measuring condition of track using vehicle for commercial operation and vehicle for commercial operation for measuring condition of track

Also Published As

Publication number Publication date
JPH023122B2 (en) 1990-01-22

Similar Documents

Publication Publication Date Title
CA2104716C (en) Method for calibrating inertial navigation instruments of aircraft
CN105517874B (en) The vehicle in use of the method that the state of track is determined using vehicle in use and the state for determining track
US3517307A (en) Track profile and gauge measuring system
AU2018246236B2 (en) Track geometry measurement system with inertial measurement
CN110108255A (en) Universal mobile data acquisition and processing tunnel detection system for multiple scanners
TW534884B (en) Method and system for locating a vehicle on a track
US6170344B1 (en) Pipeline distortion monitoring system
CN113324510B (en) Track line vertical curve curvature detection method and device and track line detection system
JPS6285815A (en) Navigation system for car
CN104047212A (en) Automatic track settlement measuring device and method based on angle measurement
Farkas Measurement of railway track geometry: A state-of-the-art review
JPS61147102A (en) Level measuring method
US6490912B1 (en) Probe for sensing the characteristics of a surface of a workpiece
RU2676951C1 (en) Device for determination and registration of mutual position of rail threads in vertical plane
JP4386985B2 (en) In-vehicle measuring device for road surface extension
JPS6055004B2 (en) Orbit error calculation device
CA2640565A1 (en) Track twist monitoring
JP2720172B2 (en) Parallel recording method of train sway data and track data
JPH109877A (en) Car speed detection device and navigator using the same
JPH0781858B2 (en) Vehicle position and attitude angle measuring device
JPH10206449A (en) Train speed measuring apparatus
RU2123445C1 (en) Method of and device for checking condition of railway gauge
RU2066283C1 (en) Device for measuring rail track curvature radius
US3500186A (en) Apparatus for high-speed measurement of track geometry
JPS5883210A (en) Inclinometer