JPS61146392A - Treatment of waste water containing cod - Google Patents

Treatment of waste water containing cod

Info

Publication number
JPS61146392A
JPS61146392A JP26746384A JP26746384A JPS61146392A JP S61146392 A JPS61146392 A JP S61146392A JP 26746384 A JP26746384 A JP 26746384A JP 26746384 A JP26746384 A JP 26746384A JP S61146392 A JPS61146392 A JP S61146392A
Authority
JP
Japan
Prior art keywords
cod
liq
treatment
hydrogen peroxide
fenton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26746384A
Other languages
Japanese (ja)
Other versions
JPH0331120B2 (en
Inventor
Kiwamu Matsubara
極 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP26746384A priority Critical patent/JPS61146392A/en
Publication of JPS61146392A publication Critical patent/JPS61146392A/en
Publication of JPH0331120B2 publication Critical patent/JPH0331120B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

PURPOSE:To reduce remarkably COD and BOD by oxidizing waste water contg. hardly-decomposable COD with a Fenton's reagent, adding an alkali to the treated liq. to regulate the pH to a specified value,,aerating, then sedimenting, and separating the liq. into flocs and supernatant liq. CONSTITUTION:An acid, hydrogen peroxide, and ferrous sulfate are added to waste contg. COD and agitated to regulate the pH to <=3.5, the liq. is oxidized with a Fenton's reagent, then an alkali is added to regulate the pH to >=10, the obtained liq. with adjusted pH is aerated for 1-2hr at the aeration rate of 0.3-1.5m<3>/hr.m<3>, and then the liq. is separated by sedimentation into sludge and supernatant water. Namely, residual hydrogen peroxide (residual COD) incapable of being removed by the conventional technique is removed in the Fenton treatment. Furthermore, CaCO3 causing the formation of scales in a pipeline is removed by the operation, total nitrogen is removed, and metals such as Fe(OH)2 incapable of being removed in the neutral pH region can be removed.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はCOD含有廃水、特に難分解性COD含有廃水
の処理方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for treating COD-containing wastewater, particularly persistent COD-containing wastewater.

(従来の技術) 近年、公共用水域における水質汚泥防止に対する社会的
要請の高まるに伴い、各種廃水処理方法、装置が提案さ
れきた。この肉離分解性COD含有廃水の処理に関して
「水処理技術」第23巻、第12号、第13〜22頁(
日本水処理技術研究会、昭和57年12月15日発行)
および「環境技術」第11巻1、第4号、第63〜65
頁(環境技術研究会、昭和57年4月30日発行)に、
フェントン処理およびフェントン法と活性汚泥法との組
合せ処理による難分解性有機化合物廃水の処理技術が記
載されている。
(Prior Art) In recent years, with the increasing social demand for preventing water sludge in public water bodies, various wastewater treatment methods and devices have been proposed. Regarding the treatment of this separable COD-containing wastewater, "Water Treatment Technology" Vol. 23, No. 12, pp. 13-22 (
Japan Water Treatment Technology Study Group, published December 15, 1982)
and “Environmental Technology” Vol. 11, No. 4, No. 63-65
Page (Environmental Technology Research Group, published April 30, 1982),
A technology for treating persistent organic compound wastewater by Fenton treatment and a combination treatment of the Fenton method and activated sludge method is described.

一般に7エントン処理は、過酸化水素 (H202)の酸化力を利用した難分解性CODを処理
する方法である。従来のフェントン法では、第3図に示
すように、難分解性COD含有廃水(原水)に硫酸第1
鉄、過酸化水素を加え、酸にてpHを3.5以下に調整
して1〜3時間液を攪拌することにより行なわれる。そ
してこの間過酸化水素が、硫酸第1鉄を触媒として難分
解性CODに作用し、COD処理する。次いで処理済の
液をpH=7〜7.5に中和し、鉄等のフロック(汚泥
)を形成し、0.5〜1時間静置して処理水とフロック
を分離する。
In general, 7-enton treatment is a method of treating refractory COD using the oxidizing power of hydrogen peroxide (H202). In the conventional Fenton method, as shown in Figure 3, sulfuric acid is added to wastewater (raw water) containing persistent COD.
This is done by adding iron and hydrogen peroxide, adjusting the pH to 3.5 or less with an acid, and stirring the solution for 1 to 3 hours. During this time, hydrogen peroxide acts on the refractory COD using ferrous sulfate as a catalyst to treat the COD. Next, the treated liquid is neutralized to pH=7 to 7.5 to form flocs (sludge) of iron or the like, and is left to stand for 0.5 to 1 hour to separate the treated water and flocs.

(発明が解決しようとする問題点) このような従来のフェントン沫を用いる難分解性COD
含有廃水の処理法においては、フェントン処理後、処理
液のpHを7〜1.5に調整して処理水とするので、過
酸化水素の過剰添加の場合あるいは過酸化水素の必要歯
が時間によって変動す 。
(Problems to be solved by the invention) Persistent COD using conventional Fenton droplets
In the treatment method for wastewater containing wastewater, after the Fenton treatment, the pH of the treated liquid is adjusted to 7 to 1.5 and used as treated water. It changes.

る場合などには過酸化水素が残留し、かえってC00、
BODを高めることがあり、必ずしも満足のゆく廃水処
理が行われないという問題点がある。
In cases such as when
There is a problem that BOD may be increased and wastewater treatment is not always satisfactory.

(問題点を解決するための手段) 本発明はCOD含有廃水、特に難分解性COD含有廃水
を7エントン酸化処理した後、処理液にアルカリを加え
てpHを10以上にし、更に曝気したのち沈降分離し、
フロックと上澄水とに分離することにより、CODおよ
びBODを著しく低下させることができることを知見し
たことに基づく。
(Means for Solving the Problems) The present invention involves subjecting COD-containing wastewater, especially persistent COD-containing wastewater, to 7-enton oxidation treatment, adding an alkali to the treated solution to make the pH 10 or more, and further aerating the solution, followed by sedimentation. separate,
This is based on the finding that COD and BOD can be significantly reduced by separating flocs and supernatant water.

本発明の方法においては、第1図に示すように従来の7
エントン処理と同様に、難分解性COD含有水を塩酸ま
たは硫酸にてpHを3.5以下に調整し、次いでこれに
過酸化水素および硫酸第1鉄(FeS04・7H2o)
を添加し、1〜3時間、例えばaorpiで3時間攪拌
しフェントン処理を行い、処理後pHを10以上、好ま
しくは10.5〜12に調整し、調整後、処理液を曝気
槽において好ましくは槽113当り0.3〜1.5m 
3/Hrの曝気量で1〜2時間曝気する、この際曝気量
が少いほど曝気時間を長くする。曝気後静置して上澄水
を分離し、上澄水は塩酸または硫酸にて中和し、処理水
とし、沈降汚泥は更に静置して上澄水を原水に戻す。
In the method of the present invention, as shown in FIG.
Similar to the Enthone treatment, the pH of persistent COD-containing water is adjusted to 3.5 or less with hydrochloric acid or sulfuric acid, and then hydrogen peroxide and ferrous sulfate (FeS04.7H2o) are added to this.
is added, stirred for 1 to 3 hours, for example, 3 hours with an aorpi, and subjected to Fenton treatment. After the treatment, the pH is adjusted to 10 or more, preferably 10.5 to 12. After adjustment, the treated liquid is preferably placed in an aeration tank. 0.3-1.5m per tank 113
Aerate for 1 to 2 hours at an aeration rate of 3/Hr; the smaller the aeration rate, the longer the aeration time. After aeration, the sludge is allowed to stand and the supernatant water is separated, and the supernatant water is neutralized with hydrochloric acid or sulfuric acid to be used as treated water, and the settled sludge is left to stand still and the supernatant water is returned to raw water.

上記処理においては、(イ)過酸化水素の添加量は水質
により異なるが最初O〜20001tll/ J2の範
囲で3段階添加し、水質結果から増減して正式なデータ
を採る。(ロ)硫酸第1鉄(Fe 804・7H20)
の添加量は一般に過酸化水素量の80〜100%の添加
で良いがフェントン処理、曝気時の過酸化水素分解(C
OD減少)反応、沈降処理の際の凝集性が悪い場合は増
加する。(ハ)フェントン処理の際のpHは、前記の如
く一般に3.5以下が良いとされている。(ニ)残留過
酸化水素を分解するにはpH11付近の強アルカリがよ
く、弱アルカリでは分解速度が遅い。第2図に曝気時間
と残留H2O2量の関係を示すが、図示するように曝気
時の過酸化水素分解(COD減少)反応にはFeが存在
しないと分解速度が遅くなる。
In the above treatment, (a) the amount of hydrogen peroxide added varies depending on the water quality, but is initially added in three stages in the range of 0 to 20,001 tll/J2, and formal data is obtained by increasing or decreasing the amount based on the water quality results. (b) Ferrous sulfate (Fe 804/7H20)
The amount of hydrogen peroxide added is generally 80 to 100% of the amount of hydrogen peroxide, but hydrogen peroxide decomposition during Fenton treatment and aeration (C
OD decrease) reaction, increases if flocculation during sedimentation treatment is poor. (c) As mentioned above, it is generally said that the pH during the Fenton treatment is 3.5 or less. (d) To decompose residual hydrogen peroxide, a strong alkali with a pH around 11 is preferable, and a weak alkali has a slow decomposition rate. FIG. 2 shows the relationship between the aeration time and the amount of residual H2O2. As shown in the figure, in the absence of Fe, the decomposition rate becomes slow in the hydrogen peroxide decomposition (COD reduction) reaction during aeration.

本発明の方法においてフェントン処理後の液のpHを1
0以上とするが、10未満では過酸化水素の分解速度が
1/10に低下するので好ましくない。
In the method of the present invention, the pH of the solution after Fenton treatment is set to 1.
It is set to be 0 or more, but if it is less than 10, the decomposition rate of hydrogen peroxide decreases to 1/10, which is not preferable.

また中性で析出しにくい金属の析出たとえばFe(OH
)2 、Ca 003等の析出はpHが約10.5以上
であり、10.5〜12の範囲にすることにより、鉄等
のフロックの形成、中性では析出しにくいCaCO5等
のフロックの形成 Ca CO2+Cσ−3+2Na OH→Ca CO3
L + 2 N a CIl + OHCa  (HC
O3)2  +Na  OH−HCa co3.+Na
 2 CO3+2H20残留過酸化水素の分解性の促進
並びにアンモニア性窒素のストリッピング NH4C,g+Na OH→ NHs +Na CJ+H20 (NH4)z 804 +2Na OH→2NHs +
Na 2 SO4+2H20の促進が行われるので10
.5〜12とするのが好ましい。
In addition, the precipitation of metals that are neutral and difficult to precipitate, such as Fe(OH)
) 2, Ca 003, etc. are precipitated at a pH of approximately 10.5 or higher, and by adjusting the pH to a range of 10.5 to 12, it is possible to form flocs such as iron, and to form flocs such as CaCO5, which are difficult to precipitate at neutral pH. Ca CO2+Cσ-3+2Na OH→Ca CO3
L + 2 Na CIl + OHCa (HC
O3)2 +Na OH-HCa co3. +Na
2 CO3+2H20 Promotion of decomposition of residual hydrogen peroxide and stripping of ammonia nitrogen NH4C,g+Na OH→ NHs +Na CJ+H20 (NH4)z 804 +2Na OH→2NHs +
Na2SO4+2H20 is promoted, so 10
.. It is preferable to set it as 5-12.

次にpHが10以上に調整された液を曝気するが、この
曝気により残留過酸化水素が分解され、アンモニア性窒
素のストリッピングおよび金属フロックの成長が行われ
る。この曝気における曝気量は前記の如り0.3〜1.
51113/Hr、I3槽とするのが好ましいが、この
理由は0.3未満では残留過酸化水素の分解が不十分で
あると共にフロックが沈降し、逆に1.5を越えると金
属フロックが細分化して沈降性が悪くなるためである。
Next, the liquid whose pH has been adjusted to 10 or higher is aerated, and this aeration decomposes residual hydrogen peroxide, strips ammonia nitrogen, and causes metal flocs to grow. The amount of aeration in this aeration is 0.3 to 1.
51113/Hr, I3 tank is preferable, because if it is less than 0.3, the decomposition of residual hydrogen peroxide is insufficient and the flocs will settle, whereas if it exceeds 1.5, the metal flocs will be finely divided. This is because the sedimentation properties become worse.

また曝気時間の好適範囲は1〜2時間であるが、1時間
未満では残留過酸化水素の分解が不十分であり、一方2
時間を越すと成長した金属のフロックが細分化して好ま
しくない。
In addition, the preferred range of aeration time is 1 to 2 hours, but if it is less than 1 hour, the decomposition of residual hydrogen peroxide is insufficient;
If the time is exceeded, the grown metal flocs will become fragmented, which is undesirable.

(実施例) 本発明を次の実施例および比較例により説明する。(Example) The invention will be illustrated by the following examples and comparative examples.

衷111 ゴミ埋立地排水(原水)につき、第1表に示すN001
〜3の試験を行った。各試験において原水200℃を2
00℃用量のステンレスドラム缶に入れた。このドラム
缶に攪拌機をセットし60rpmで攪拌した。次いで原
水につき1000mM i、の硫酸(10%)を添加し
、pHを3に調整し、この溶液に第1表に示す分量で8
202(30%)、FeSO4・7H20(100%)
の順に添加し、このまま60rpmで3時間攪拌を継続
した。
111 Landfill wastewater (raw water), N001 shown in Table 1
-3 tests were conducted. In each test, raw water was heated to 200℃ for 2
It was placed in a 00°C stainless steel drum. A stirrer was set in this drum and stirred at 60 rpm. Then 1000 mM i of sulfuric acid (10%) per raw water was added to adjust the pH to 3, and to this solution 8
202 (30%), FeSO4・7H20 (100%)
were added in this order, and stirring was continued at 60 rpm for 3 hours.

3時間の処理後夫々第1表に示す分量のNa0H(10
%)を添加しpHを11に調整した。
After 3 hours of treatment, Na0H (10
%) was added and the pH was adjusted to 11.

このI)l−1調整水を曝気槽(0,3+e x O,
3i x高さ2.5m :散気板付き)に移し、160
J2 / Hr(0,8m 3/Hr −m 3曝気槽
)で1.5時間曝気した。
This I)l-1 conditioned water is transferred to an aeration tank (0,3+e x O,
3i x height 2.5m: with air diffuser), 160
Aeration was carried out for 1.5 hours with J2/Hr (0,8 m 3 /Hr - m 3 aeration tank).

曝気終了後、30分静置し、上澄水を傾斜法で分離し、
先の2001容量ステンレスドラム缶に移し、夫々第1
表に示す分量から100On+lJ/ Jを引いた残量
の硫酸(10%)を添加しI)Hを1.5〜8に調整し
処理水とした。原水および処理水の分析を行い、得た結
果を第1表に併記する。
After completing the aeration, let it stand for 30 minutes and separate the supernatant water using the decanting method.
Transfer to the 2001-capacity stainless steel drum, and
The remaining amount of sulfuric acid (10%) obtained by subtracting 100 On+lJ/J from the amount shown in the table was added to adjust I)H to 1.5 to 8 to obtain treated water. Raw water and treated water were analyzed, and the results are listed in Table 1.

第1表 この処理においてBODもCODとほぼ同じ除去性を示
す。
Table 1 In this treatment, BOD also exhibits almost the same removability as COD.

また窒素除去については排水中の窒素(N)はアンモニ
ア性Nと有機性Nがほとんどである。この中の有機性N
が7エントン処理によりアンモニア性Nに変わり、1l
H11で曝気することによってもともと存在したアンモ
ニア性Nと共にアンモニアストリッピングにより除去さ
れ、T−Nの減少を示し、CaCO5の除去については
、排水中にはCaが溶解度の高いCaCJ!zおよびC
a(HCO3’)2として存在する。これを1)Hll
に調整して曝気することにより、CaCβ2はもともと
排水中に存在しているCo、i2及び曝気により供給さ
れたC0−2と結合して溶解度の低いCaCO3となっ
て除去されCa  (HCO3)2もNa OHと反応
してCaCO5になるので著しい低下を示している。
Regarding nitrogen removal, most of the nitrogen (N) in waste water is ammoniacal N and organic N. Organic N in this
is converted to ammoniacal N by 7 entone treatment, and 1l
It was removed by ammonia stripping together with the ammoniacal N originally present by aeration with H11, showing a decrease in T-N, and as for the removal of CaCO5, CaCJ! z and C
It exists as a(HCO3')2. This is 1) Hll
By adjusting the temperature and aeration, CaCβ2 combines with Co and i2 originally present in the wastewater and C0-2 supplied by aeration to become CaCO3 with low solubility and is removed, and Ca(HCO3)2 is also removed. It shows a significant decrease because it reacts with NaOH to form CaCO5.

実施例と同様のゴミ埋立地排水(原水)につき、第2表
に示すN001〜3の試験を行った。各試験とも原水2
00℃を実施例と同様のステンレスドラム缶に入れ攪拌
した。次いで原水につき第2表に示す分量の硫酸(10
%)を添加し、DHを3に調整し、この溶液にH2O2
(30%)。
Tests Nos. 001 to 3 shown in Table 2 were conducted on the same garbage landfill wastewater (raw water) as in the example. Raw water 2 for each test
The mixture was heated to 00°C and stirred in the same stainless steel drum as in the example. Next, add sulfuric acid (10
%), adjust the DH to 3, and add H2O2 to this solution.
(30%).

Fe 804 ・7H20(100%) 17)順に:
添加シ、このまま60rpmで3時間攪拌を継続した。
Fe 804 ・7H20 (100%) 17) In order:
After the addition, stirring was continued at 60 rpm for 3 hours.

3時間の処理後第2表に示す分量のNa0H(10%)
を添加しIIHを1.5に調整し処理水とした。原水お
よび処理水の分析を行い、得た結果を第2表に併記する
After 3 hours of treatment, the amount of Na0H (10%) shown in Table 2
was added to adjust IIH to 1.5 to obtain treated water. Raw water and treated water were analyzed, and the results are listed in Table 2.

第2表 第1表および第2表の結果から、実施例の方法により、
従来のフェントン法による比較例の方法より著しく優れ
た処理効果が得られたことが明らかである。
Table 2 From the results in Tables 1 and 2, by the method of the example,
It is clear that a treatment effect significantly superior to that of the comparative example using the conventional Fenton method was obtained.

(発明の効果) 以上説明してきたように本発明のCOD含有廃水処理方
法はフェントン処理を行った後、処理済液のpHを10
以上に調整し、曝気し、沈澱させ、次いで上澄液を中和
して処理水として排出する構成としたため、従来技術で
は対応し得なかったフェントン処理における残留過酸化
水素を除去(残留COD除去)し、更にこの操作に伴っ
て配管スケールの原因となるCaCO5の除去、トータ
ル窒素(T−N)の除去、中性pH域では除去不能なF
e  (OH)2等の金属等も除去できるようになった
という効果が得られる。従って本発明の方法は有機廃水
の廃水処理、特に難分解性COD含有廃水処理に利用で
き、従って硬度処理、窒素除去も必要なゴム埋立地廃水
処理に有効である。
(Effects of the Invention) As explained above, in the COD-containing wastewater treatment method of the present invention, after performing the Fenton treatment, the pH of the treated liquid is reduced to 10.
By adjusting the above, aerating, precipitating, and then neutralizing the supernatant liquid and discharging it as treated water, residual hydrogen peroxide in Fenton treatment, which could not be handled with conventional technology, can be removed (residual COD removal). ), and this operation also removes CaCO5, which causes pipe scale, total nitrogen (T-N), and F, which cannot be removed in the neutral pH range.
The effect is that metals such as e (OH)2 can also be removed. Therefore, the method of the present invention can be used to treat organic wastewater, especially wastewater containing persistent COD, and is therefore effective in treating rubber landfill wastewater, which also requires hardness treatment and nitrogen removal.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法の工程図、 第2図は曝気時間と残留H202量の関係を示す線図、 第3図は従来の廃水フェントン処理法の工程図である。 FIG. 1 is a process diagram of the method of the present invention, Figure 2 is a diagram showing the relationship between aeration time and residual H202 amount. FIG. 3 is a process diagram of the conventional wastewater Fenton treatment method.

Claims (1)

【特許請求の範囲】 1、COD含有廃水に酸、過酸化水素および硫酸第1鉄
を加え攪拌してpHを3.5以下にしフェントン処理し
た後、アルカリを加えて pHを10以上とし、得られたpH調製水を曝気槽に移
し曝気し、次いで沈降分離して汚泥と上澄水とに分離す
ることを特徴とするCOD含有廃水の処理方法。 2、曝気量が0.3〜1.5m^3/Hr、m^3曝気
槽で、曝気時間が1〜2時間である特許請求の範囲第1
項記載のCOD含有廃水の処理方法。 3、フェントン処理後の廃水のpHを10.5〜12と
する特許請求の範囲第1項または第2項記載のCOD含
有廃水の処理方法。
[Claims] 1. Add acid, hydrogen peroxide, and ferrous sulfate to COD-containing wastewater and stir to bring the pH to 3.5 or less and perform Fenton treatment, then add alkali to bring the pH to 10 or more, and obtain the A method for treating COD-containing wastewater, which comprises transferring the pH-adjusted water to an aeration tank and aerating it, followed by sedimentation and separation into sludge and supernatant water. 2. Claim 1, in which the aeration amount is 0.3 to 1.5 m^3/Hr, m^3 aeration tank, and the aeration time is 1 to 2 hours.
A method for treating COD-containing wastewater as described in Section 2. 3. The method for treating COD-containing wastewater according to claim 1 or 2, wherein the pH of the wastewater after Fenton treatment is adjusted to 10.5 to 12.
JP26746384A 1984-12-20 1984-12-20 Treatment of waste water containing cod Granted JPS61146392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26746384A JPS61146392A (en) 1984-12-20 1984-12-20 Treatment of waste water containing cod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26746384A JPS61146392A (en) 1984-12-20 1984-12-20 Treatment of waste water containing cod

Publications (2)

Publication Number Publication Date
JPS61146392A true JPS61146392A (en) 1986-07-04
JPH0331120B2 JPH0331120B2 (en) 1991-05-02

Family

ID=17445184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26746384A Granted JPS61146392A (en) 1984-12-20 1984-12-20 Treatment of waste water containing cod

Country Status (1)

Country Link
JP (1) JPS61146392A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375292B1 (en) * 1999-12-09 2003-03-10 주식회사 엔비로 A disposal mathod of wastewater repeating oxidation and neutralization reaction
CN102167461A (en) * 2011-05-06 2011-08-31 中国石油化工集团公司 Method for treating production wastewater of o-chloroaniline
CN107686156A (en) * 2017-10-25 2018-02-13 四川师范大学 A kind of Fenton methods of efficient degradation organic pollutants

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0544924A4 (en) * 1991-06-25 1993-11-03 Nippon Steel Corporation Method and device for treating waste water containing organic chlorine compounds

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100375292B1 (en) * 1999-12-09 2003-03-10 주식회사 엔비로 A disposal mathod of wastewater repeating oxidation and neutralization reaction
CN102167461A (en) * 2011-05-06 2011-08-31 中国石油化工集团公司 Method for treating production wastewater of o-chloroaniline
CN107686156A (en) * 2017-10-25 2018-02-13 四川师范大学 A kind of Fenton methods of efficient degradation organic pollutants
CN107686156B (en) * 2017-10-25 2019-10-11 四川师范大学 A kind of Fenton method of efficient degradation organic pollutants

Also Published As

Publication number Publication date
JPH0331120B2 (en) 1991-05-02

Similar Documents

Publication Publication Date Title
US3617559A (en) Neutralization of ferrous iron-containing acid wastes
US4294703A (en) Hydrogen peroxide treatment of effluent
US5427691A (en) Lime neutralization process for treating acidic waters
US4321143A (en) Treating effluent with peroxide and iron
US3617540A (en) Removal of nitrogen and phosphorus from waste waters
US4422943A (en) Method for precipitation of heavy metal sulfides
US5820966A (en) Removal of arsenic from iron arsenic and sulfur dioxide containing solutions
US3617560A (en) Limestone neutralization of dilute acid waste waters
JP4649911B2 (en) Treatment of organic matter and nitrogen-containing wastewater
JPH07136669A (en) Treatment of waste water containing dissolved heavy metal
JP4570550B2 (en) Nitrogen removal method and apparatus for high concentration organic wastewater
JPS61146392A (en) Treatment of waste water containing cod
JPS6135894A (en) Removal of arsenic in waste water
JPS63278593A (en) Method for removing arsenic from industrial waste liquid or the like
JPH0751684A (en) Treatment of waste water containing dissolved iron
JP4552164B2 (en) Waste liquid treatment method
JPS63236592A (en) Treatment of water containing antimony
JPS5929092A (en) Treatment of sewage containing nitrogen component
JPS6320600B2 (en)
JPS5825519B2 (en) Improved methane fermentation method
JP4382167B2 (en) Thermal power plant wastewater treatment method
KR960002263B1 (en) Treatment method for waste-water including ammonia
JPS59209700A (en) Treatment of conc. waste water containing heavy metal using iron-oxidizing bacteria
CA1257019A (en) Method of cyanide destruction
JPS59173199A (en) Biological treatment of waste water containing dithionic acid and ammonia

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term