JPS61146301A - Membrane and its preparation - Google Patents

Membrane and its preparation

Info

Publication number
JPS61146301A
JPS61146301A JP26629384A JP26629384A JPS61146301A JP S61146301 A JPS61146301 A JP S61146301A JP 26629384 A JP26629384 A JP 26629384A JP 26629384 A JP26629384 A JP 26629384A JP S61146301 A JPS61146301 A JP S61146301A
Authority
JP
Japan
Prior art keywords
membrane
copolymer
block copolymer
microdomain
graft copolymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26629384A
Other languages
Japanese (ja)
Other versions
JPH0454486B2 (en
Inventor
Takeji Hashimoto
竹治 橋本
Kiyoshi Ishii
清 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP26629384A priority Critical patent/JPS61146301A/en
Publication of JPS61146301A publication Critical patent/JPS61146301A/en
Publication of JPH0454486B2 publication Critical patent/JPH0454486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties

Abstract

PURPOSE:To obtain a membrane having varied characteristics and structure in the parallel direction to the surface of the membrane by constructing a membrane to have a boundary of a microdomain structure crossing orthogonally to the membrane surface and penetrating through from the front surface to the rear surface. CONSTITUTION:An ABA type block copolymer of polystyrene with polyisoprene, etc., is formed previously to a membrane by the conventional process, and the membrane 11 is hung down and allowed to pass through a heated region 12, 12' to bring the copolymer to above a temp. causing transition from regular to random distribution. The membrane which is brought to the random distribution state by being heated in the heating region is then transferred to a cooling region 13, 13' where it is cooled to below a transition temp. from regular distribution to random distribution. As the result, a membrane is obtd. wherein a boundary of a lamellar microdomain 3 comprising a polystyrene microdomain 4 and a polyisoprene microdomain 5 is arranged perpendicularly to the membrane surface and penetrates through the membrane surface.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は主としてブロック共重合体あるいはグラフト共
重合体よりなり表裏を貫通するミクロドメインから実質
的に構成されている膜及びその膜を製造する方法に係り
、例えば逆浸透膜、限外濾過膜、モザイク荷電膜等の分
離膜に使用し得る膜及びその製造方法に係る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to the production of a membrane that is mainly made of a block copolymer or a graft copolymer and is substantially composed of microdomains penetrating the front and back surfaces, and the membrane. The present invention relates to a membrane that can be used as a separation membrane such as a reverse osmosis membrane, an ultrafiltration membrane, a mosaic charged membrane, and a method for manufacturing the same.

[従来技術] ブロックあるいはグラフト共重合体からなる膜の従来の
製造法は大きく分けると溶液製膜法(流延法)と溶融製
膜法とになる。いづれの方法も重合体を流動状態にして
膜を形成するものである。
[Prior Art] Conventional methods for producing membranes made of block or graft copolymers can be roughly divided into solution casting methods (casting methods) and melt casting methods. In either method, a membrane is formed by making the polymer fluid.

流動状態にするのに溶剤の助けをかりる場合、溶液濃度
が充分低い場合には、溶剤により共重合体分子は分子分
散してミクロドメインは消滅するものの溶剤の蒸発過程
に於いて膜面に平行な方向への温度勾配はつくれなかっ
た。熱の力をかりる場合には流動状態における温度が秩
序−無秩序転移温度以下であったためミクロドメインは
消滅しない状態での製膜であった。又、秩序−無秩序転
移Ii度以上で無秩序状態であったとしても製膜過程で
膜面に平行な方向への温度勾配は作れなかった。
When a solvent is used to create a fluidized state, if the solution concentration is low enough, the copolymer molecules are dispersed by the solvent and the microdomains disappear, but in the process of evaporation of the solvent, the copolymer molecules remain parallel to the membrane surface. It was not possible to create a temperature gradient in that direction. When applying heat, the temperature in the fluid state was below the order-disorder transition temperature, so the film was formed without the microdomains disappearing. Further, even if the film was in a disordered state at an order-disorder transition of Ii degree or higher, a temperature gradient in the direction parallel to the film surface could not be created during the film forming process.

従って、従来法では膜表面に関してランダムな配向を有
するミクロドメインが形成されることになる。即ちブロ
ック共重合体をこの様な従来法によって製膜すると、場
合によっては部分的にミクロドメイン構造の界面が表面
に直交あるいは斜めになることもあるが、あくまでも偶
然でありかつ部分的であるため全体としての膜性能はミ
クロドメインがランダムな配向を有するものとしての性
能により支配されることは言うまでもない。
Therefore, in the conventional method, microdomains having random orientation with respect to the membrane surface are formed. In other words, when a block copolymer is formed into a film using such a conventional method, the interface of the microdomain structure may be partially perpendicular or oblique to the surface depending on the case, but this is only a coincidence and only partially. It goes without saying that the performance of the film as a whole is controlled by the performance of the microdomains as having random orientation.

[発明の目的] 従来の製膜法では膜表面に対して垂直の方向に物性、材
質に変化のある膜はできても平行方向に物性及び材質の
変化のある膜は作ることができなかったのを、本発明は
表面に平行な方向で分子レベルの大きさで部分々々の物
性、材質が異なり、それが繰返し連続した膜を作ること
を目的として見いだされたものである。
[Purpose of the invention] Conventional film-forming methods can produce films that change in physical properties and materials in the direction perpendicular to the film surface, but cannot produce films that change in physical properties and materials in the parallel direction. However, the present invention was discovered with the aim of creating a continuous film in which the physical properties and materials of each part are different at the molecular level in the direction parallel to the surface, and these are repeated repeatedly.

即ち、予じめ形成された膜を加熱領域とそれに隣接した
冷却領域を連続的に通過させるか、あるいは加熱領域か
ら冷却領域へ膜に成形しつつ移行させる。加熱領域はブ
ロック共重合体あるいはグラフト共重合体が秩序−無秩
序転移温度以上になるように加熱しておく。このように
加熱された膜は分子が無秩序状態になっていて、次いで
秩序−無秩序転移温度以下に冷却する冷却領域に移動さ
せられる。
That is, a preformed membrane may be passed successively through a heating zone and an adjacent cooling zone, or it may be transferred from a heating zone to a cooling zone while being formed into a membrane. The heating region is heated so that the block copolymer or graft copolymer is heated to a temperature higher than the order-disorder transition temperature. The thus heated film, in which the molecules are in a disordered state, is then transferred to a cooling region where it is cooled below the order-disorder transition temperature.

その結果、形成されたミクロドメイン構造の界面が膜面
に垂直でしかも膜面を貫通したものとなる。これをブロ
ック共重合体あるいはグラフト共重合体で作り得るなら
ば、ブロック共重合体あるいはグラフト共重合体のいづ
れの成分からなるミクロドメインも、実質的にそれらの
界面が膜面に直交し膜の表裏を貫通しているものが得ら
れ、方の成分の性質が他方の成分に制約されることなく
発現され得るばかりでなく、他方の成分が隣接して存在
することによる効果も期待し得る。
As a result, the interface of the formed microdomain structure is perpendicular to the membrane surface and penetrates through the membrane surface. If this could be made from a block copolymer or graft copolymer, the microdomains made of either the block copolymer or graft copolymer would have their interfaces substantially perpendicular to the membrane surface and A material that penetrates the front and back surfaces is obtained, and not only can the properties of one component be expressed without being constrained by the other component, but also the effects of the presence of the other component adjacent to each other can be expected.

[発明の構成] (膜) 本発明は主としてブロック共重合体あるいはグラフト共
重合体よりなり実質的にそれらのミクロドメイン構造の
界面が膜面に直交し、かつ表裏を貫通している膜で、ブ
ロック共重合体は線状又は星形n元mブロック共重合体
(nは成分ポリマー数、mは全ブロック数とする)で特
に限定されない。例えば、線状ブロック共重合体の例を
あげれば、A−8二元ブロック共重合体、A−B−A、
B−A−8,二元トリブロック共重合体、 A−B/l
二元マルチブロック共重合体(二元セグメント化マルチ
ブロック共重合体) 、A−B−C三元トリブロック共
重合体、A−B−A−C−A三元ペンタブロック共重合
体、(但し、A、B、Cは成分ポリマーである)等があ
り、より具体的に例示すれば、ポリスチレンーボリイソ
プレンニ元ブロック共重合体、ポリイソプレン−ポリス
チレン−ポリイソプレン、あるいはポリスブレンーボリ
イソプレンーポリスチレンニ元トリブロック共重合体、
ポリイソプレン−スルホン化したポリスチレン−ポリイ
ソプレン−四級化したポリ−p−ビニルベンジルメチル
アミン−ポリイソプレンの三元ベンタブロック共重合体
等が挙げられる。グラフト共重合体についても同様であ
る。
[Structure of the Invention] (Membrane) The present invention is a membrane mainly composed of a block copolymer or a graft copolymer, in which the interface of the microdomain structure is substantially perpendicular to the membrane surface and penetrates the front and back sides, The block copolymer is not particularly limited and may be a linear or star-shaped n-element m block copolymer (n is the number of component polymers, m is the total number of blocks). For example, examples of linear block copolymers include A-8 diblock copolymer, A-B-A,
B-A-8, binary triblock copolymer, A-B/l
binary multiblock copolymer (binary segmented multiblock copolymer), A-B-C ternary triblock copolymer, A-B-A-C-A ternary pentablock copolymer, ( However, A, B, and C are component polymers), and more specific examples include polystyrene-polyisoprene diblock copolymer, polyisoprene-polystyrene-polyisoprene, or polysbrene-polyisoprene. -Polystyrene triblock copolymer,
Examples include a ternary bentablock copolymer of polyisoprene, sulfonated polystyrene, polyisoprene, and quaternized poly-p-vinylbenzylmethylamine-polyisoprene. The same applies to graft copolymers.

なお、ブロック共重合体あるいはグラフト共重合体の秩
序−無秩序転移温度の高いものの場合は適当に可塑剤、
成型助剤(たとえば重合性モノマーを添加し本発明の処
理後の重合)または他の重合体を混合してあっても良い
。ミクロドメインの形状は第1図に示したラメラ状でも
第2図に示したようなシリンダー状海島構造でもよい。
In addition, if the block copolymer or graft copolymer has a high order-disorder transition temperature, a plasticizer,
Molding aids (for example, polymerizable monomers are added and polymerized after the treatment of the present invention) or other polymers may be mixed. The shape of the microdomain may be a lamella as shown in FIG. 1 or a cylindrical sea-island structure as shown in FIG.

ブロック共重合体あるいはグラフト共重合体の組成比、
重合度比によってミクロドメインの構造が変化する。ラ
メラ状の場合ミクロドメインの膜面方向での大きさは巾
50〜1000 程度にでき、シリンダー状海島構造の
場合のシリンダーの直径は25〜500 程度にできる
。また多元ブロック共重合体を使用すればモザイク荷電
膜になる。
Composition ratio of block copolymer or graft copolymer,
The structure of microdomains changes depending on the polymerization degree ratio. In the case of a lamellar structure, the size of the microdomain in the membrane surface direction can be about 50 to 1000 mm in width, and in the case of a cylindrical sea-island structure, the diameter of the cylinder can be about 25 to 500 mm. Furthermore, if a multi-block copolymer is used, a mosaic charged film can be obtained.

本発明において秩序−無秩序転移温度とは秩序状態即ち
ミクロドメインの存在する状態から無秩序状態即ち、ミ
クロドメイン構造が消滅してブロックあるいはグラフト
共重合体の分子が分子状に混合した状態に転移する温度
である。この転移温度は、マクロモレキューシス1θ8
3年第16巻1093頁に掲載されているX線小角散乱
法により測定できる。
In the present invention, the order-disorder transition temperature refers to the temperature at which the ordered state, that is, the state where microdomains exist, transitions to the disordered state, that is, the state where the microdomain structure disappears and the molecules of the block or graft copolymer are mixed molecularly. It is. This transition temperature is the macromolecule 1θ8
It can be measured by the small-angle X-ray scattering method published in Vol. 16, p. 1093 of 2013.

[製造方法] 本発明の膜を製造するにはブロック共重合体あるいはグ
ラフト共重合体をそれらの秩序−無秩序転移温度以上に
加熱する加熱領域とそれと隣接した秩序−無秩序転移温
度以下に冷却する冷却領域を通過させて製造する。例え
ば、上述のブロック共重合体あるいはグラフト共重合体
を一旦従来の方法で膜状に成形する。この膜は前述の如
く溶液製膜法、溶融製膜法のいづれで作っても、一般に
不規則なミクロドメイン配列をとっていて本発明の如く
膜表面に垂直な界面をもつ構造のものが得られることは
無かった。本発明の製造方法は、このような膜を下記の
ように処理するものである。
[Manufacturing method] To manufacture the membrane of the present invention, there is a heating region in which the block copolymer or graft copolymer is heated above its order-disorder transition temperature, and an adjacent cooling region in which the block copolymer or graft copolymer is cooled to below its order-disorder transition temperature. Manufacture by passing through the area. For example, the above-mentioned block copolymer or graft copolymer is once formed into a membrane by a conventional method. As mentioned above, whether this film is made by solution casting or melt casting, it generally has an irregular microdomain arrangement, and as in the present invention, a structure with interfaces perpendicular to the membrane surface can be obtained. There was nothing to be done. In the manufacturing method of the present invention, such a film is treated as follows.

即ち、予じめ形成された膜を加熱領域とそれに隣接した
冷却領域を連続的に通過させる。加熱領域はブロック共
重合体あるいはグラフト共重合体が秩序−無秩序転移温
度以上になるように加熱しておく。このように加熱され
た膜は分子が無秩序状態になっていて、次いで秩序−無
秩序転移温度以下にある冷却領域に移動させられる。
That is, the preformed membrane is passed successively through a heating zone and an adjacent cooling zone. The heating region is heated so that the block copolymer or graft copolymer is heated to a temperature higher than the order-disorder transition temperature. The heated film, whose molecules are in a disordered state, is then transferred to a cooling region below the order-disorder transition temperature.

又、予め膜に成形しておくのではなく、粉状、粒状のブ
ロック共重合体あるいはグラフト共重合体を本発明所定
温度への加熱を行い膜状に成形しつつ冷却領域に移動さ
せてもよく、あるいは予備加熱溶融領域を設は膜状にし
ながら所定温度の加熱領域にもたらし更に冷却領域へと
移動させても製造出来る。
Alternatively, instead of forming the block copolymer or graft copolymer in the form of a film in advance, the block copolymer or graft copolymer in the form of powder or particles may be heated to a predetermined temperature according to the present invention, and then transferred to the cooling area while being formed into a film. Alternatively, it can be produced by setting a preheated melting region in the form of a film, bringing it to a heating region at a predetermined temperature, and then moving it to a cooling region.

従来の溶融製膜法の場合は、溶融温度が秩序−無秩序転
移温度以下にしか加熱されていない為ミクロドメイン構
造が消滅しておらず、このミクロドメインがその界面を
膜面に垂直に、又、膜面を貫通しうるような充分な再配
列がおこらない。
In the case of the conventional melt film forming method, the microdomain structure does not disappear because the melting temperature is heated only below the order-disorder transition temperature. , sufficient rearrangement does not occur to penetrate the membrane surface.

本発明方法で得られるラメラ状ミクロドメインを有する
膜を模型的に示せば第1図の如くなる。
A schematic diagram of a film having lamellar microdomains obtained by the method of the present invention is shown in FIG.

矢印1は、膜2の製造時の膜の移動方向で矢印1に直角
方向に界面を有するラメラ状ミクロドメイン3の繰返し
によって膜が形成される。ラメラ状ミクロドメイン3は
例えばポリスチレンとポリイソプレンABA型ブロック
共重合体を使用した場合ポリスチレンミクロドメイン4
とポリイソプレンミクロドメイン5とから成り立ってい
る。
Arrow 1 indicates the direction of movement of the membrane during production of membrane 2, and the membrane is formed by repeating lamellar microdomains 3 having interfaces in a direction perpendicular to arrow 1. For example, when a polystyrene and polyisoprene ABA type block copolymer is used, the lamellar microdomains 3 can be formed using polystyrene microdomains 4.
and polyisoprene microdomains 5.

シリンダー状海島槙造ミクロドメインを有する膜を模型
的に示せば第2図のごとくで例えば、ポリイソプレン3
0重量部とポリスチレン70fflff1部とのブロッ
ク共重合体を使用した場合に得られ、海部6はポリスチ
レン部、高部7はポリイソプレン部から成り立っている
。6と7との界面は矢印1に垂直に形成されている。
A schematic diagram of a membrane having cylindrical microdomains is shown in Figure 2. For example, polyisoprene 3
It is obtained when a block copolymer of 0 parts by weight and 70 fflff of polystyrene is used, and the sea part 6 is made up of a polystyrene part and the high part 7 is made of a polyisoprene part. The interface between 6 and 7 is formed perpendicular to arrow 1.

また、例えば陽イオン交換基を持つ高分子と陰イオン交
換Uを持つ高分子とイオン交換基をもたない高分子が直
鎖状に結合した分子構造を持つ三元ブロック共重合物を
使用すれば第3図の如く海部8はイオン交換基を持たな
い高分子よりなり、高部9は陽イオン、高部10は陰イ
オンの交換基を夫々持った高分子より成り立ついわゆる
モザイク荷電膜が得られる。
In addition, for example, a ternary block copolymer having a molecular structure in which a polymer with a cation exchange group, a polymer with an anion exchange U, and a polymer without an ion exchange group are bonded in a linear chain can be used. For example, as shown in Fig. 3, a so-called mosaic charged membrane is obtained in which the sea part 8 is made of a polymer having no ion exchange groups, the high part 9 is made of a polymer having cation exchange groups, and the high part 10 is made of polymers having anion exchange groups. It will be done.

冷却領域の温度は秩序−無秩序転移温度以下であること
は言うまでもないが、加熱領域との温度差は大きい程よ
い。膜の移動速度は1.0am/時間以下の低速にする
のが好ましいが特に限定はされない。
It goes without saying that the temperature of the cooling region is below the order-disorder transition temperature, but the larger the temperature difference from the heating region, the better. The moving speed of the membrane is preferably as low as 1.0 am/hour or less, but is not particularly limited.

使用する装置は第4図に原理的に側面略示図として示し
たが、従来法で作った膜11を垂下し一定速度で加熱領
域12.12′間及びそれに隣接した冷却領域13.1
3′間に移動させる。
The apparatus used, which is shown in principle in a schematic side view in FIG. 4, allows a conventionally produced membrane 11 to be suspended at a constant speed between the heating areas 12, 12' and the adjacent cooling area 13.1.
Move it between 3'.

[発明の効果] 以上の如く本発明の膜は全面にわたってミクロドメイン
構造の界面が実質的に膜面に直交し、かつ表裏を貫通し
ているので、一つの成分を除去して孔を開は分離膜に使
用する場合に有効孔面積が大きく、しかも略々垂直に貫
通しているので通過長が短い利点がある。更に、孔径が
両面間で略々一定になるため目ずまりを起こしがたく、
使用による性能低下が少ないのも利点である。モザイク
荷電膜の場合も同様、有効面積が大きく通過長が短い。
[Effects of the Invention] As described above, in the membrane of the present invention, the interface of the microdomain structure is substantially perpendicular to the membrane surface over the entire surface and penetrates the front and back surfaces, so it is not possible to open pores by removing one component. When used in a separation membrane, it has the advantage of having a large effective pore area and a short passage length since it penetrates almost vertically. Furthermore, since the pore diameter is approximately constant between both sides, it is difficult to cause clogging.
Another advantage is that there is little performance deterioration due to use. Similarly, in the case of a mosaic charged film, the effective area is large and the passage length is short.

実施例1 ポリスチレンとポリイソプレンABA型トリブロック共
重合体で数平均分子ff13.5X10’、ポリスチレ
ンの割合が50重(6)%のものを用い、これに50重
石%のジオクチルフタレートを加えて混練したのち、約
20μ膜厚のフィルムを作成した。このフィルムを第4
図に示したような膜製作装置を用い、加熱領域12.1
2′および冷却領域13.13−のそれぞれの間隙を2
0μとし、加熱領域を秩序−無秩序転移温度である15
0’C以上の180℃とし冷却領域を10℃としてフィ
ルムを1m/hrの速度で通過させた。
Example 1 A polystyrene and polyisoprene ABA type triblock copolymer with a number average molecular weight of ff 13.5 x 10' and a polystyrene ratio of 50% by weight (6) was used, and 50% by weight of dioctyl phthalate was added thereto and kneaded. After that, a film having a thickness of about 20 μm was prepared. This film is the fourth
Using the film manufacturing equipment shown in the figure, heating area 12.1
2' and cooling area 13.13-.
0μ, and the heating region is 15 which is the order-disorder transition temperature.
The temperature was set to 180°C, which was 0'C or higher, and the cooling region was set to 10°C, and the film was passed through the film at a speed of 1 m/hr.

得られたフィルムはオスミウム酸染色法を用いた電子顕
微鏡観察及びX線小角散乱測定の結果、略々全面が第1
図のごときラメラ状構造になっており、各ミクロドメイ
ンの巾は0.01μであって、膜面に直交し両面間を貫
通していた。
As a result of electron microscopy observation using osmic acid staining and small-angle X-ray scattering measurements, almost the entire surface of the obtained film was found to be the first layer.
It had a lamellar structure as shown in the figure, and each microdomain had a width of 0.01μ, was perpendicular to the membrane surface, and penetrated between both surfaces.

実施例2 ポリスチレンとポリイソプレンABA型トリブロック共
重合体で数平均分子ff13.5X104、ポリスチレ
ンの割合が70重量%のものを用い、これに10重量%
のジオクチルフタレートを加えて混練したのち約20μ
の膜厚のフィルムを作成した。このフィルムを第4図に
示したような膜製作装置を用い、加熱領域12.12−
および冷却領域13.13−のそれぞれの間隙が20μ
とし加熱領域(180℃)と冷却領域(10’C)と順
次Ls/hrの速度で通過させた。かくして得られたフ
ィルムは電子顕微鏡観察及びX線小角散乱測定の結果略
々全面が第2図のごとき海島構造を有し、高部7は、ポ
リイソプレンよりなり略々0゜01μの直径を有し、膜
面に直交したミクロドメインを形成し両面間を貫通して
いた。この通過後のフィルムを更にオゾン酸化させるこ
とによりポリイソプレンを分解させた多孔膜を作成した
。この多孔膜を10psigの差圧で純水の透過損を測
定したところ24  /i+1n−7d・K9 / c
iとなった。電顕写真から孔径は0.01μであった。
Example 2 A polystyrene and polyisoprene ABA type triblock copolymer with a number average molecular weight of ff 13.5 x 104 and a polystyrene proportion of 70% by weight was used, and 10% by weight of polystyrene was used.
After adding and kneading dioctyl phthalate, approximately 20μ
A film with a thickness of . This film was heated in the heating area 12.12-
and cooling area 13.13- each gap is 20μ
The sample was then passed sequentially through a heating region (180° C.) and a cooling region (10° C.) at a rate of Ls/hr. As a result of electron microscopy and small-angle X-ray scattering measurements, the film thus obtained had a sea-island structure on almost the entire surface as shown in Figure 2, and the high portion 7 was made of polyisoprene and had a diameter of approximately 0°01μ. However, microdomains were formed perpendicular to the membrane surface and penetrated between both surfaces. After passing through the film, the film was further oxidized with ozone to create a porous film in which the polyisoprene was decomposed. When the permeation loss of pure water was measured through this porous membrane at a differential pressure of 10 psig, it was 24/i+1n-7d・K9/c
It became i. The pore diameter was 0.01μ from electron micrographs.

比較例1 実施例2に用いたのと同様の10重山%のDOPを加え
たポリスチレンとポリイソプレンのブロック共重合体の
膜厚的20μのフィルムを用いた。
Comparative Example 1 A 20 μm thick film of a block copolymer of polystyrene and polyisoprene to which 10% DOP was added, similar to that used in Example 2, was used.

このフィルムを180℃、20分冊熱処理後室温まで徐
冷した。膜厚に変化はなかった。この徐冷フィルムを実
施例2と同一条件でオゾン処理した後、実施例2と同一
条件で純水の透過量を測定したところ1.2  /n+
in −rd・K9/clとなった。
This film was heat treated at 180° C. for 20 volumes and then slowly cooled to room temperature. There was no change in film thickness. After this slowly cooled film was treated with ozone under the same conditions as in Example 2, the amount of pure water permeated was measured under the same conditions as in Example 2, and the result was 1.2/n+
It became in-rd・K9/cl.

比較例2 市販品ニュウクリボア−NOO5(0,05μφ、5μ
It)を用いて実施例2と同一条件で純水の透過量を測
定したところ4.9  /mtn −rrt・K9/a
iであった。
Comparative Example 2 Commercial product Nuclebore-NOO5 (0.05μφ, 5μ
When the amount of permeation of pure water was measured under the same conditions as in Example 2 using It), it was 4.9 /mtn -rrt・K9/a
It was i.

比較例3 実施例2に於いて加熱領域を秩序−無秩序転移温度の1
50℃以下の140℃として作った膜について実施例2
と同一条件で純水の透過量を測定したところ1.6/+
gin−7d・幻/dとなった。
Comparative Example 3 In Example 2, the heating region was set to 1 of the order-disorder transition temperature.
Example 2 about a film made at 140°C below 50°C
The amount of pure water permeated was measured under the same conditions as 1.6/+
It became gin-7d/phantom/d.

実施例3 ポリイソプレンーポリスチレンーボリイソブレンーボリ
P−ビニルベンジルメチルアミン−ポリイソブレン三元
ペンタブロック共重合体のポリーP−ビニルベンジルジ
メチルアミン部分を臭化エチレンで四級化した後、ポリ
スチレン部分を濃硫酸でスルホン化したものに50重量
%ジオクチルフタレートを配合し、実施例1と同様にし
て20μに製膜し、第3図のごとき構造の膜を得た。
Example 3 After quaternizing the poly-P-vinylbenzyldimethylamine part of a polyisoprene-polystyrene-polyisobrene-polyP-vinylbenzylmethylamine-polyisoprene tertiary pentablock copolymer with ethylene bromide, the polystyrene part was sulfonated with concentrated sulfuric acid, and 50% by weight of dioctyl phthalate was added thereto, and a film having a thickness of 20μ was formed in the same manner as in Example 1 to obtain a film having the structure shown in FIG.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜3図は本発明の3つの代表的膜の構造を示す部分
欠切見取図で、第1図および第3図はミクロドメインが
ラメラ状の場合、第2図はシリンダー状海島構造の場合
である。 第4図は本発明の膜の製造に使用する装置の側面概念図
である。 1は膜2の製造時の膜の移動方向である。4゜5.6.
7.8.9.10は夫々の場合のミクロドメイン構造を
示す。 特許出願人 ダイセル化学工業株式会社第1図
Figures 1 to 3 are partially cutaway diagrams showing the structures of three representative membranes of the present invention. Figures 1 and 3 are for cases in which the microdomains are lamellar, and Figure 2 is for the case in which the microdomains are in the form of a cylindrical sea-island structure. It is. FIG. 4 is a conceptual side view of the apparatus used for manufacturing the membrane of the present invention. 1 is the direction in which the membrane 2 moves when it is manufactured. 4゜5.6.
7.8.9.10 shows the microdomain structure in each case. Patent applicant: Daicel Chemical Industries, Ltd. Figure 1

Claims (13)

【特許請求の範囲】[Claims] (1)主としてブロック共重合体あるいはグラフト共重
合体よりなり、実質的にそれらのミクロドメイン構造の
界面が膜面に直交し、かつ表裏を貫通していることを特
徴とする膜
(1) A membrane mainly composed of a block copolymer or a graft copolymer, characterized in that the interface of the microdomain structure is substantially perpendicular to the membrane surface and penetrates the front and back surfaces.
(2)ブロック共重合体あるいはグラフト共重合体がポ
リスチレンとポリイソプレンとのブロック共重合体ある
いはグラフト共重合体である特許請求の範囲第1項記載
の膜
(2) The membrane according to claim 1, wherein the block copolymer or graft copolymer is a block copolymer or graft copolymer of polystyrene and polyisoprene.
(3)ミクロドメインがラメラ状である特許請求の範囲
第1、2項記載の膜
(3) The membrane according to claims 1 and 2, wherein the microdomains are lamellar.
(4)ラメラ状ミクロドメインの巾が50〜1000で
ある特許請求の範囲第1〜3項記載の膜
(4) The membrane according to claims 1 to 3, wherein the width of the lamellar microdomain is 50 to 1000 mm.
(5)ミクロドメインがシリンダー状海島構造である特
許請求の範囲第1、2項記載の膜
(5) The membrane according to claims 1 and 2, wherein the microdomain has a cylindrical sea-island structure.
(6)シリンダー状ミクロドメインの直径が25〜50
0である特許請求の範囲第1、2、5項記載の膜
(6) The diameter of the cylindrical microdomain is 25 to 50
The membrane according to claims 1, 2, and 5, which is
(7)ブロック共重合体あるいはグラフト共重合体が可
塑剤又は他の重合体を含む特許請求の範囲第1〜6項記
載の膜
(7) The membrane according to claims 1 to 6, wherein the block copolymer or graft copolymer contains a plasticizer or other polymer.
(8)ブロック共重合体あるいはグラフト共重合体をそ
れらの秩序−無秩序転移温度以上に加熱する加熱領域と
それと隣接した秩序−無秩序転移温度以下に冷却する冷
却領域を通過させることを特徴とする、主として、ブロ
ック共重合体あるいはグラフト共重合体よりなり実質的
にそれらのミクロドメイン構造の界面が膜面に直交し、
かつ表裏を貫通している膜の製造方法
(8) passing the block copolymer or graft copolymer through a heating region that heats it above its order-disorder transition temperature and an adjacent cooling region that cools it below its order-disorder transition temperature; Mainly made of block copolymers or graft copolymers, the interface of their microdomain structure is substantially perpendicular to the membrane surface,
A method for producing a membrane that penetrates the front and back surfaces.
(9)加熱領域はブロック共重合体あるいはグラフト共
重合体の秩序−無秩序転移温度以上である特許請求の範
囲第8項記載の膜の製造方法
(9) The method for producing a membrane according to claim 8, wherein the heating region is above the order-disorder transition temperature of the block copolymer or graft copolymer.
(10)冷却領域はブロック共重合体あるいはグラフト
共重合体の秩序−無秩序転移温度より低温である特許請
求の範囲第8項記載の膜の製造方法
(10) The method for producing a membrane according to claim 8, wherein the temperature of the cooling region is lower than the order-disorder transition temperature of the block copolymer or graft copolymer.
(11)膜の通過速度が100mm/時間以下である特
許請求の範囲第8項記載の膜の製造方法
(11) The method for producing a membrane according to claim 8, wherein the membrane passing speed is 100 mm/hour or less.
(12)ブロック共重合体あるいはグラフト共重合体が
ポリスチレンとポリイソプレンとのブロック共重合体あ
るいはグラフト共重合体である特許請求の範囲第8項記
載の膜の製造方法
(12) The method for producing a membrane according to claim 8, wherein the block copolymer or graft copolymer is a block copolymer or graft copolymer of polystyrene and polyisoprene.
(13)膜がブロック共重合体あるいはグラフト共重合
体と可塑剤または他の重合体とを含む特許請求の範囲第
8項記載の膜の製造方法
(13) The method for producing a membrane according to claim 8, wherein the membrane contains a block copolymer or a graft copolymer and a plasticizer or other polymer.
JP26629384A 1984-12-19 1984-12-19 Membrane and its preparation Granted JPS61146301A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26629384A JPS61146301A (en) 1984-12-19 1984-12-19 Membrane and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26629384A JPS61146301A (en) 1984-12-19 1984-12-19 Membrane and its preparation

Publications (2)

Publication Number Publication Date
JPS61146301A true JPS61146301A (en) 1986-07-04
JPH0454486B2 JPH0454486B2 (en) 1992-08-31

Family

ID=17428930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26629384A Granted JPS61146301A (en) 1984-12-19 1984-12-19 Membrane and its preparation

Country Status (1)

Country Link
JP (1) JPS61146301A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000058760A1 (en) * 1999-03-31 2000-10-05 Cpfilms Inc. Film composites
US7118784B1 (en) * 2005-06-27 2006-10-10 The Regents Of The University Of California Method and apparatus for controlling nucleation in self-assembled films
JP2006299106A (en) * 2005-04-21 2006-11-02 Kyoto Institute Of Technology Block copolymer membrane having cylinder structure orienting perpendicularly
JP2006334693A (en) * 2005-05-31 2006-12-14 Furukawa Electric Co Ltd:The Nanostructure, porous nanostructure, functional nanostructure, and method of manufacturing same
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
WO2010119858A1 (en) * 2009-04-13 2010-10-21 国立大学法人山口大学 Ion-exchange membrane and method for producing same
JP2010274430A (en) * 2009-05-26 2010-12-09 Systec Co Ltd Method for heat-treating biaxially oriented polyester film
JP2012071288A (en) * 2010-09-29 2012-04-12 Kuraray Co Ltd Method and apparatus for demineralizing organic compound aqueous solution, and charge-mosaic membrane
JP2012071286A (en) * 2010-09-29 2012-04-12 Kuraray Co Ltd Method of manufacturing mosaic charged membrane
WO2013039223A1 (en) * 2011-09-15 2013-03-21 三菱レイヨン株式会社 Method for manufacturing porous hollow fiber film
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
CN110651207A (en) * 2017-05-31 2020-01-03 日本瑞翁株式会社 Retardation film and method for producing same
EP3633425A4 (en) * 2017-05-31 2021-03-03 Zeon Corporation Retardation film and production method
EP3633424A4 (en) * 2017-05-31 2021-03-03 Zeon Corporation Retardation film and production method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4563162B2 (en) * 2004-12-10 2010-10-13 旭化成株式会社 Microphase-separated structure and method for producing microphase-separated body

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311988A (en) * 1976-07-16 1978-02-02 Hoechst Ag Method for drying chlorinated polymer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5311988A (en) * 1976-07-16 1978-02-02 Hoechst Ag Method for drying chlorinated polymer

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6720061B1 (en) 1999-03-31 2004-04-13 Anthony B. Port Film composites
WO2000058760A1 (en) * 1999-03-31 2000-10-05 Cpfilms Inc. Film composites
JP2006299106A (en) * 2005-04-21 2006-11-02 Kyoto Institute Of Technology Block copolymer membrane having cylinder structure orienting perpendicularly
JP2006334693A (en) * 2005-05-31 2006-12-14 Furukawa Electric Co Ltd:The Nanostructure, porous nanostructure, functional nanostructure, and method of manufacturing same
EP1896194A4 (en) * 2005-06-27 2010-12-08 Univ California Method and apparatus for controlling nucleation in self-assembled films
US7118784B1 (en) * 2005-06-27 2006-10-10 The Regents Of The University Of California Method and apparatus for controlling nucleation in self-assembled films
WO2009104423A1 (en) * 2008-02-22 2009-08-27 有限会社サンサーラコーポレーション Polymer composition and molded article produced from the composition
JP2010228455A (en) * 2008-02-22 2010-10-14 Sansaara Corporation:Kk Method of manufacturing molding, and method of manufacturing molding contamination-preventive composite
JP4576479B2 (en) * 2008-02-22 2010-11-10 有限会社サンサーラコーポレーション Polymer composition and molded article comprising the same
JPWO2009104423A1 (en) * 2008-02-22 2011-06-23 有限会社サンサーラコーポレーション Polymer composition and molded article comprising the same
US9644091B2 (en) 2008-02-22 2017-05-09 Sanc Salaam Corporation Polymer composition and molded products formed thereof
US8519033B2 (en) 2008-02-22 2013-08-27 Sanc Salaam Corporation Polymer composition and molded products formed thereof
JP5531267B2 (en) * 2009-04-13 2014-06-25 国立大学法人山口大学 Ion exchange membrane and method for producing the same
WO2010119858A1 (en) * 2009-04-13 2010-10-21 国立大学法人山口大学 Ion-exchange membrane and method for producing same
US9266069B2 (en) 2009-04-13 2016-02-23 Yamaguchi University Ion-exchange membrane and method for producing same
JP2010274430A (en) * 2009-05-26 2010-12-09 Systec Co Ltd Method for heat-treating biaxially oriented polyester film
JP2012071288A (en) * 2010-09-29 2012-04-12 Kuraray Co Ltd Method and apparatus for demineralizing organic compound aqueous solution, and charge-mosaic membrane
JP2012071286A (en) * 2010-09-29 2012-04-12 Kuraray Co Ltd Method of manufacturing mosaic charged membrane
US9539547B2 (en) 2011-08-03 2017-01-10 Mitsubishi Rayon Co., Ltd. Porous film manufacturing method and apparatus
JP5633576B2 (en) * 2011-09-15 2014-12-03 三菱レイヨン株式会社 Method for producing porous hollow fiber membrane
JPWO2013039223A1 (en) * 2011-09-15 2015-03-26 三菱レイヨン株式会社 Method for producing porous hollow fiber membrane
WO2013039223A1 (en) * 2011-09-15 2013-03-21 三菱レイヨン株式会社 Method for manufacturing porous hollow fiber film
CN110651207A (en) * 2017-05-31 2020-01-03 日本瑞翁株式会社 Retardation film and method for producing same
EP3637159A4 (en) * 2017-05-31 2021-03-03 Zeon Corporation Retardation film and production method
EP3633425A4 (en) * 2017-05-31 2021-03-03 Zeon Corporation Retardation film and production method
EP3633424A4 (en) * 2017-05-31 2021-03-03 Zeon Corporation Retardation film and production method

Also Published As

Publication number Publication date
JPH0454486B2 (en) 1992-08-31

Similar Documents

Publication Publication Date Title
JPS61146301A (en) Membrane and its preparation
Abetz Isoporous block copolymer membranes
Nunes Block copolymer membranes for aqueous solution applications
Zou et al. Design strategy of poly (vinylidene fluoride) membranes for water treatment
Shen et al. Fabrication and characterization of amphiphilic PVDF copolymer ultrafiltration membrane with high anti-fouling property
EP0481517B1 (en) Asymmetric polymer membrane and preparation thereof
KR101274957B1 (en) Isoporous membrane and method of production thereof
Hahn et al. Thin isoporous block copolymer membranes: It is all about the process
US9914099B2 (en) Self-assembled block copolymer membrane
EP0144493B1 (en) Method of preparing asymmetric membranes
US20120252912A1 (en) Process for producing microporous polymeric object, and microporous polymeric object and separation membrane
EP0595201A2 (en) Method for making semipermeable polymer membranes
Li et al. Substrate matters: The influences of substrate layers on the performances of thin-film composite reverse osmosis membranes
WO1990001980A1 (en) Making and using polyamide membranes
Wang et al. Bovine serum albumin selective integral asymmetric isoporous membrane
KR101738732B1 (en) Preparation method of the polymer membrane with enhancement of antifouling characteristics
Ohno et al. Development of low-fouling PVDF membranes blended with poly (2-methoxyethyl acrylate) via NIPS process
Bar et al. Development of a high-flux thin-film composite nanofiltration membrane with sub-nanometer selectivity using a pH and temperature-responsive pentablock co-polymer
KR101285718B1 (en) Manufacturing Method of Nano-porous Film, Nano-porous Film thereby, and Nano-filtration Membrane for Water Purification Using the Same
JP2845571B2 (en) Microporous membrane, composition for microporous membrane, and method for producing microporous membrane
Seo et al. Interfacial polymerization of reactive block polymers for the preparation of composite ultrafiltration membranes
DE60012425T2 (en) Membranes of (per) fluorinated amorphous polymers
Zhang et al. Ultrathin nanoporous membrane fabrication based on block copolymer micelles
US5543045A (en) Charge mosaic membrane and production process thereof
WO2021023500A1 (en) Method of producing a polymeric membrane