JPS61144931A - Multiplied sampling circuit - Google Patents

Multiplied sampling circuit

Info

Publication number
JPS61144931A
JPS61144931A JP59267825A JP26782584A JPS61144931A JP S61144931 A JPS61144931 A JP S61144931A JP 59267825 A JP59267825 A JP 59267825A JP 26782584 A JP26782584 A JP 26782584A JP S61144931 A JPS61144931 A JP S61144931A
Authority
JP
Japan
Prior art keywords
circuit
pulse
punching
input data
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59267825A
Other languages
Japanese (ja)
Inventor
Cho Inagaki
稲垣 超
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP59267825A priority Critical patent/JPS61144931A/en
Publication of JPS61144931A publication Critical patent/JPS61144931A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

PURPOSE:To decrease an error in pulse length of an output code by using a D FF circuit as a segmentating means and an exclusive OR circuit as a change point detecting means, inputting an input data to a data input terminal to the D FF circuit and a clock pulse or a segmentation pulse to a clock input terminal. CONSTITUTION:The D FF circuit 41 segmentates an input data at the leading of a clock pulse in a sampling frequency f1 and outputs the result, while the D FF circuit 42 segmentates it at the trailing of the clock pulse and gives an output. Then an exclusive OR circuit 43 outputs a clock pulse corresponding to the circuit 41 or 42 activated earlier by using a clock pulse appearing next to the input data change point. Thus, the output of the exclusive OR circuit 43 is a pulse representing the change point of the output data and the sampling error is decreased from a conventional + or -1/f1 into + or -1/2f1.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は伝送路を介して入力するディジタル符号を標本
化して出力する逓倍テンブリング回路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a multiplier tenbling circuit that samples and outputs digital codes input via a transmission path.

〔従来の技術〕[Conventional technology]

従来、この種の逓倍サンプリング回路は、入力するディ
ジタル符号をこのディジタル符号が標本化された周波数
fo (ディジタル符号の速度)のN(整数)倍の周波
数f、の時計パルスで標本化する。この場合の標本化の
誤差ε1は 一1/f1<t、≦+1/fI の範囲となる。
Conventionally, this type of multiplication sampling circuit samples an input digital code with a clock pulse having a frequency f that is N (integer) times the frequency fo (digital code speed) at which the digital code is sampled. The sampling error ε1 in this case is in the range -1/f1<t, ≦+1/fI.

第3図は従来の逓倍サンプリング回路の一例を示す回路
図、また第3図は第2図の入出力データの一例を示すタ
イムチャートである。
FIG. 3 is a circuit diagram showing an example of a conventional multiplication sampling circuit, and FIG. 3 is a time chart showing an example of the input/output data of FIG. 2.

図において、入力データは標本化周波数ro(例えば2
56kHz)で標本化されたディジタル符号からなる。
In the figure, the input data is at the sampling frequency ro (e.g. 2
It consists of a digital code sampled at 56 kHz).

この入力データを標本化する標本化周波数fx (例え
ば2,048MHz)は周波数f。の整数N(例えば8
)倍を有する。D形7リツプフロツプ回路(以後り形F
F回路)21は入力データを端子りへ、また標本化周波
数f1の時計パルスを端子Cへそれぞれ入力し、出力デ
ータを端子Qから出力する。
The sampling frequency fx (for example, 2,048 MHz) for sampling this input data is the frequency f. an integer N (e.g. 8
) have times. D type 7 lip-flop circuit (hereinafter referred to as type F)
F circuit) 21 inputs input data to a terminal, inputs a clock pulse of sampling frequency f1 to a terminal C, and outputs output data from a terminal Q.

この場合、第3図に示すように入力データAが標本化周
波数f、のパルスaの立上シ時点、すなわち打抜時点直
後にパルスが立上ると、打抜時点となる出力データCの
立上シはパルスaの次のパルスbの立上)時点となる。
In this case, as shown in FIG. 3, when input data A rises at the rising edge of pulse a of sampling frequency f, that is, immediately after the punching point, output data C rises at the punching point. The top point is the rising edge of pulse b following pulse a.

従って、出力データCは立上シ時点が周波数f1のほぼ
1周期分、すなわち1/f、たけ遅れ、出力データの符
号パルスが短縮される。
Therefore, the rising time of the output data C is delayed by approximately one cycle of the frequency f1, that is, 1/f, and the code pulse of the output data is shortened.

一方、入力データBは標本化周波数f、のパルスCの立
上り時点直後に立下るので、打抜時点となる出力データ
の立下シはパルスCの次のパルスdの立上少時点となる
。従って、前述同様周波数f。
On the other hand, since the input data B falls immediately after the rising edge of the pulse C having the sampling frequency f, the falling edge of the output data, which corresponds to the punching point, occurs at the rising edge of the pulse d following the pulse C. Therefore, the frequency f as described above.

のほぼ1周期分、すなわち1/f1 だけ遅れ、出力デ
ータのパルス長は最大±1/f1の誤差を有する。
The pulse length of the output data has a maximum error of ±1/f1.

この誤差は標本化周波数f+ (=N−fo )を大き
く、すなわちNを大きくすれば小さくできる。
This error can be reduced by increasing the sampling frequency f+ (=N-fo), that is, by increasing N.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来の逓倍サンプリング回路は、標本化されて
入力するディジタル符号の速度、すなわち標本化周波数
f0のN倍の標本化周波数f、の時計パルスを、逓倍サ
ンブリング回路を含むシステムから取出して使用するの
で、精度が限定されるという問題点があった。
The above-mentioned conventional multiplication sampling circuit extracts clock pulses at a sampling frequency f that is N times the sampling frequency f0, which is the speed of the input digital code after being sampled, from a system that includes the multiplication sampling circuit and uses it. Therefore, there was a problem that accuracy was limited.

本発明の目的は、上記問題点を解決し簡単な逓倍回路を
付加して出力符号のパルス長の誤差を従来回路の1/2
にし、精度を向上させる逓倍サンプリング回路を提供す
ることにある。
An object of the present invention is to solve the above problems and reduce the error in the pulse length of the output code to 1/2 of that of the conventional circuit by adding a simple multiplier circuit.
The object of the present invention is to provide a multiplication sampling circuit that improves accuracy.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

本発明の逓倍サンプリング回路は、ディジタル符号の入
力データを入力し且つディジタル符号の速度の整数倍の
周波数を有する時計パルスを打抜パルスとしてシステム
から取出して、一方には直接にまた他方にはインバータ
ヤ幸を介し反転させてそれぞれ入力する入力データの第
1、第2の打抜手段と、これら二つの打抜手段の出力パ
ルスがいずれか一方だけのときパルスを出力する変化点
検出手段と、この変化点検出手段の出力を打抜ノくルス
として入力データを打抜き出力データを出力する第3の
打抜手段具とを備える。
The multiplication sampling circuit of the present invention inputs digital code input data and extracts clock pulses having a frequency that is an integer multiple of the speed of the digital code from the system as a punching pulse, and outputs the data directly on one side and on the other side through an inverter. first and second punching means for respectively inverting and inputting the input data through a wire transfer; a change point detecting means for outputting a pulse when only one of the output pulses of these two punching means is output; A third punching means is provided for punching input data and outputting output data using the output of the change point detection means as a punching pulse.

また、一つの具体回路は、第1〜第3の打抜手段として
D形7リツプフロツプ(FF)回路を、また変化点検出
手段として排他的論理和回路を、それぞれ使用し、D形
FF回路ではデータ入力端子に入力データが、またクロ
ック入力端子に時計パルスまたは打抜パルスがそれぞれ
入力し出力端子からデータを出力する。
In addition, one specific circuit uses D-type 7 lip-flop (FF) circuits as the first to third punching means and an exclusive OR circuit as the change point detection means. Input data is input to the data input terminal, a clock pulse or punching pulse is input to the clock input terminal, and data is output from the output terminal.

〔実施例〕〔Example〕

次に本発明の実施例について図面を参照して説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例を示す機能ブロック図、また
第2図は第1図に示す回路の入出力データの一例を示す
タイムチャートである。
FIG. 1 is a functional block diagram showing an embodiment of the present invention, and FIG. 2 is a time chart showing an example of input/output data of the circuit shown in FIG.

図においてMlの打抜手段であるD形FF回路41は、
入力データを端子りへ、標本化周波数(例えば2,04
8MHz ) f、の時計パルスを打抜パルスとして端
子Cへそれぞれ入力する。M2の打抜手段であるD形F
F回路42は入力データを端子りへ、標本化周波数f1
の時計パルスをインバータ(INV)40を介し打抜パ
ルスとして端子Cへ、それぞれ入力する。横比点検出手
段である排他的論理和回路(XOR)43はD形FF回
路41.42両者の端子Qからの出力を入力とする。第
3の打抜手段であるD形FF回路44は入力データを端
子りへ、また排他的論理和回路43の出力を打抜パルス
として端子Cへそれぞれ入力し、端子Qかから出力デー
タを出力する。
In the figure, the D-type FF circuit 41, which is the punching means for Ml, is
input data to terminal, sampling frequency (for example 2,04
A clock pulse of 8 MHz) f is input to terminal C as a punching pulse. D type F which is a punching means for M2
The F circuit 42 inputs input data to a terminal, and outputs the sampling frequency f1.
Clock pulses are input to terminal C via an inverter (INV) 40 as punching pulses. An exclusive OR circuit (XOR) 43, which is a side ratio point detection means, inputs the outputs from the terminals Q of both the D-type FF circuits 41 and 42. The D-type FF circuit 44, which is the third punching means, inputs the input data to the terminal, inputs the output of the exclusive OR circuit 43 as a punching pulse to the terminal C, and outputs the output data from the terminal Q. do.

従って、D形FF回路41は標本化周波数f、の時計パ
ルスの立上シで入力データを打抜いて出力し、一方り形
FF回路42は時計パルスの立下シで打抜いて出力する
ので、排他的論理和回路43は入力データの変化点の次
に現われる時計ノくルスでD形FF回路41または42
の早い方に対応する時計パルスを出力する。たとえば第
5図に示すように、標本化周波数f1の時計パルスeの
途中で入力データAが立上ったとき、時計パルスeの次
の変化点、すなわち立下シ時点が排他的論理和口j!i
!43の出力時点となシD形FF回路44の出力データ
Eが立上るので、出力データEの立上シは最大1/2f
、の遅れとなシ、パルスが短縮される。
Therefore, the D-type FF circuit 41 punches and outputs the input data at the rising edge of the clock pulse of sampling frequency f, while the one-way type FF circuit 42 punches and outputs the input data at the falling edge of the clock pulse. , the exclusive OR circuit 43 converts the D-type FF circuit 41 or 42 at the clock pulse that appears next to the change point of the input data.
Outputs a clock pulse corresponding to the earlier one. For example, as shown in FIG. 5, when input data A rises in the middle of clock pulse e with sampling frequency f1, the next changing point of clock pulse e, that is, the falling point, is the exclusive OR gate. j! i
! Since the output data E of the D-type FF circuit 44 rises at the output point of 43, the rise of the output data E is at most 1/2f.
, the pulse is shortened.

同様に、時計パルスf、の途中で入力パルスBの立下シ
時点があるときは、D形FF回路44の出力データFの
立下シは最大1/2f、の遅れとなシ、パルスは伸長さ
れる。こうして、排他的論理和回路43の出力は出力デ
ータの変化点を現わすパルスとなシ、また標本化の誤差
は従来の±1/f1から±1/2 f、の範囲に縮まる
Similarly, when there is a falling point of the input pulse B in the middle of the clock pulse f, the falling point of the output data F of the D-type FF circuit 44 is delayed by a maximum of 1/2 f, and the pulse is Extended. In this way, the output of the exclusive OR circuit 43 becomes a pulse representing a change point in the output data, and the sampling error is reduced from the conventional range of ±1/f1 to ±1/2 f.

上記実施例ではD形FF回路および排他的論理和回路に
よる構成を図示して説明したが、標本化周波数を有する
時計パルスを直接入力および反転入力した信号それぞれ
により入力データを2倍の周波数で標本化し入力データ
の変化点が現れたときに最初の正常パルスを出力して、
それを出力データ形成用の時計パルスとする回路が従来
の回路(D形FF[g路)に付加されればよい。また本
実雄側ではインバータにより時計の反転パルスを形成し
たが、システムが標本化周波数による反転した時計パル
スを有する場合はインバータは不要である。
In the above embodiment, the configuration using the D-type FF circuit and the exclusive OR circuit was illustrated and explained, but the input data is sampled at twice the frequency by the direct input and the inverted input of the clock pulse having the sampling frequency. outputs the first normal pulse when the input data changes.
A circuit that uses this as a clock pulse for forming output data may be added to the conventional circuit (D-type FF [g path)]. Furthermore, although the inverter was used to generate clock inversion pulses on the Honjitsuo side, if the system has inverted clock pulses based on the sampling frequency, the inverter is not necessary.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、入力する打抜パルスに使
用する時計パルスを一方は直接に、他方は位相を反転さ
せて打抜パルスとし入力データのパルス変化点を時計パ
ルスの180度の位相内に置くことによシ、漱子化をデ
ィジタル回路だけで容易にかつ経済的に実現できる効果
がめる。
As explained above, in the present invention, one of the clock pulses used for the input punching pulse is used as the punching pulse directly, and the other is used as the punching pulse with the phase reversed.The pulse change point of the input data is set to the 180 degree phase of the clock pulse. By placing the digital circuit within the circuit, it is possible to easily and economically realize the system using only digital circuits.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す機能ブロック図、第2図
は第1図の動作を示すタイムチャート、第3図は従来の
逓倍サンプリング回路のプp2り図、第4図は第3図の
動作を示すタイムチャートである。 41、42.44・・・・・・D形7リツプフロ、ブ回
路(打抜手段)、43・・・・・・排他的論理和回路(
変化点検出手段)。 I〜N、 $ 3 図 第 4TI!J
FIG. 1 is a functional block diagram showing an embodiment of the present invention, FIG. 2 is a time chart showing the operation of FIG. 1, FIG. 3 is a diagram of a conventional multiplication sampling circuit, and FIG. 5 is a time chart showing the operation shown in the figure. 41, 42.44...D type 7 lip flow, block circuit (punching means), 43...exclusive OR circuit (
change point detection means). I~N, $3 Figure No. 4TI! J

Claims (2)

【特許請求の範囲】[Claims] (1)ディジタル符号の入力データを入力し且つ前記デ
ィジタル符号の速度の整数倍の周波数を標本化周波数と
して有する時計パルスを打抜パルスとして前記入力デー
タを打抜く第1の打抜手段と、前記入力データを直接入
力し前記時計パルスの位相を反転して入力して前記入力
データを打抜く第2の打抜手段と、第1および第2の打
抜手段の打抜き出力パルスが何れか一方だけのときパル
スを出力する変化点検出手段と、この変化点検出手段の
出力を打抜パルスとして前記入力データを打抜く第3の
打抜手段とを有し、前記第3の打抜手段の出力を出力デ
ータとすることを特徴とする逓倍サンプリング回路。
(1) a first punching means that inputs input data of a digital code and punches the input data using a clock pulse having a sampling frequency that is an integral multiple of the speed of the digital code as a punching pulse; a second punching means for punching the input data by directly inputting the input data and inverting the phase of the clock pulse; and a punching output pulse of only one of the first and second punching means. a change point detection means that outputs a pulse when A multiplication sampling circuit characterized in that output data is .
(2)前記第1、第2および第3の打抜回路がそれぞれ
D形フリップフロップ回路で、前記変換点検出手段が排
他的論理和回路である特許請求の範囲第(1)項記載の
逓倍サンプリング回路。
(2) The multiplier according to claim (1), wherein each of the first, second, and third punching circuits is a D-type flip-flop circuit, and the conversion point detection means is an exclusive OR circuit. sampling circuit.
JP59267825A 1984-12-19 1984-12-19 Multiplied sampling circuit Pending JPS61144931A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59267825A JPS61144931A (en) 1984-12-19 1984-12-19 Multiplied sampling circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59267825A JPS61144931A (en) 1984-12-19 1984-12-19 Multiplied sampling circuit

Publications (1)

Publication Number Publication Date
JPS61144931A true JPS61144931A (en) 1986-07-02

Family

ID=17450130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59267825A Pending JPS61144931A (en) 1984-12-19 1984-12-19 Multiplied sampling circuit

Country Status (1)

Country Link
JP (1) JPS61144931A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171027U (en) * 1987-04-24 1988-11-08
JPH03117208A (en) * 1989-09-29 1991-05-20 Nec Corp Data latch circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451710A (en) * 1977-10-03 1979-04-23 Fujitsu Ltd Bit phase synchronizing circuit
JPS59191927A (en) * 1983-03-26 1984-10-31 Fuji Facom Corp Synchronizing circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451710A (en) * 1977-10-03 1979-04-23 Fujitsu Ltd Bit phase synchronizing circuit
JPS59191927A (en) * 1983-03-26 1984-10-31 Fuji Facom Corp Synchronizing circuit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63171027U (en) * 1987-04-24 1988-11-08
JPH03117208A (en) * 1989-09-29 1991-05-20 Nec Corp Data latch circuit

Similar Documents

Publication Publication Date Title
JP2592810B2 (en) Sample rate conversion circuit
US5923190A (en) Phase detector having a sampling circuit
JPS62245814A (en) Pulse circuit
JPS61144931A (en) Multiplied sampling circuit
KR890011192A (en) Digital FM Demodulator
JPS6231238A (en) Demodulation device
JPS63187366A (en) Arithmetic unit for moving average
SU1550514A1 (en) Wave-type digital integrator
JPS60123931A (en) Arithmetic circuit
SU1272310A1 (en) Linear interpolator
JPH02308616A (en) Edge detection circuit
JPS63204836A (en) Clock crossover circuit
JPS5934188Y2 (en) signal input circuit
SU924839A1 (en) Delayed pulse shaper
JPH0548432A (en) 1/3 frequency divider circuit
JPS62232214A (en) Noise elimination circuit
JPS62233944A (en) Timing extraction circuit
JPH0236631A (en) Bit phase synchronizing circuit
JPH0523632U (en) 1/3 frequency divider
JPS59100817A (en) Processing circuit of pulse from encoder
JPS6395518A (en) Clock exchanging circuit
JPS6416194A (en) Synchronization sampling circuit
JPS63119319A (en) Phase discriminating and processing circuit
JPH04291654A (en) Interruption control circuit
JPH0468737A (en) Demodulator for differential phase modulation communication system