JPS61142982A - Dc motor drive controller - Google Patents

Dc motor drive controller

Info

Publication number
JPS61142982A
JPS61142982A JP59264570A JP26457084A JPS61142982A JP S61142982 A JPS61142982 A JP S61142982A JP 59264570 A JP59264570 A JP 59264570A JP 26457084 A JP26457084 A JP 26457084A JP S61142982 A JPS61142982 A JP S61142982A
Authority
JP
Japan
Prior art keywords
signal
motor
switch
damping
motor drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59264570A
Other languages
Japanese (ja)
Inventor
Yuichi Watanabe
雄一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59264570A priority Critical patent/JPS61142982A/en
Priority to US06/791,403 priority patent/US4689528A/en
Publication of JPS61142982A publication Critical patent/JPS61142982A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • G05B19/21Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device
    • G05B19/23Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control
    • G05B19/231Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude
    • G05B19/232Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path using an incremental digital measuring device for point-to-point control the positional error is used to control continuously the servomotor according to its magnitude with speed feedback only

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Stopping Of Electric Motors (AREA)
  • Control Of Direct Current Motors (AREA)

Abstract

PURPOSE:To obtain strong and smooth motor damping characteristic by using a speed signal preceding at approx. 180 deg. with respect to a stopping position ultrafine control signal as a damping control component. CONSTITUTION:An encoder signal phi2 having a phase led by approx. 90 deg. from a stopping position ultrafine control signal phi1 is differentiated by a differentiator 9, and its differentiation signal phi'2 is input to the contact '0' side of a switch 10. The signal phi'2 is inverted by an inverter 11, and the inversion signal phi'21 is input to the contact '1' side of the switch 10. The switch of the switch 10 is controlled by an inversion signal phi11 of the signal phi1. The outputs of the switch 10 and a differentiator 4 are added by an adder 5, and supplied to a DC motor 1 through a switch 6 and a differential amplifier 7.

Description

【発明の詳細な説明】 [技術分野] 本発明は直流モータ駆動制御装置に関し、特に直流モー
タを所定位置で停止させる際のダンピング特性が改善さ
れた直流モータ駆動制御装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to a DC motor drive control device, and more particularly to a DC motor drive control device with improved damping characteristics when stopping a DC motor at a predetermined position.

[従来技術] 第1図〜第3図は従来技術の説明に係り、第1図は従来
より電子タイプライタ等のキャリッジ移動用に採用され
ている直流モータ駆動制御装置を示すブロック構成図、
第2図は第1図の動作を説明するためのタイミングチャ
ート、第3図は第1図の構成でモータをダンピング制御
する際の各部信号波形を示すタイミングチャートである
[Prior Art] Figures 1 to 3 relate to an explanation of the prior art, and Figure 1 is a block diagram showing a DC motor drive control device conventionally employed for moving the carriage of an electronic typewriter, etc.;
FIG. 2 is a timing chart for explaining the operation of FIG. 1, and FIG. 3 is a timing chart showing signal waveforms of various parts when damping the motor with the configuration of FIG. 1.

第1図において、lはキャリッジ駆動用の直流モータ(
M)、2は該モータ軸に直結したロータリースリットエ
ンコーダである。ロータリーエンコーダ2は11例えば
モータlが定速度で右回転しているときは第2図に示す
ような位相差90°の正弦波信号φ1、φ2を出力し、
また定速度で左回転しているときは図のφ里とφ2の位
相が逆転する。信号変換器3はこのφ重とφ2のアナロ
グ信号を夫々φl/とφ2/のデジタル信号に変換出力
し、不図示の回路で、モータlの回転検出、及び回転速
度、回転方向の制御を形−成するのに用いられる。
In Fig. 1, l is a DC motor (
M), 2 is a rotary slit encoder directly connected to the motor shaft. The rotary encoder 2 outputs sine wave signals φ1 and φ2 with a phase difference of 90° as shown in FIG. 2, for example, when the motor l is rotating clockwise at a constant speed.
Also, when rotating counterclockwise at a constant speed, the phases of φri and φ2 in the figure are reversed. The signal converter 3 converts and outputs the analog signals of φ weight and φ2 into digital signals of φl/ and φ2/, respectively, and detects the rotation of the motor l and controls the rotation speed and rotation direction using a circuit (not shown). - used to accomplish.

一方、信号φ1は抵抗r2を介して加算回路5に入力さ
れ、モータ停止の際の微小位置制御成分を形成する。ま
た、微分器4で微分された信号φ1 ′は抵抗rlを介
して加算回路5に入力され、モータ停止の際のダンピン
グ制御成分を形成する。加算回路5は信号φ1に対する
ゲイン(r3/r2)と、微分信号φ1 ′に対するゲ
イン(r3 / r I)を有し、これらの加算信号の
反転信号DI=−(φ1Xr3/r2+φ、′xr3/
r1)を出力する。
On the other hand, the signal φ1 is input to the adder circuit 5 via the resistor r2, and forms a minute position control component when the motor is stopped. Further, the signal φ1' differentiated by the differentiator 4 is input to the adder circuit 5 via the resistor rl, and forms a damping control component when the motor is stopped. The adder circuit 5 has a gain (r3/r2) for the signal φ1 and a gain (r3/r I) for the differential signal φ1', and an inverted signal DI=-(φ1Xr3/r2+φ,'xr3/
r1) is output.

6は接点rOJとrlJ間の接続を切り替えるスイッチ
(SW)であり、モータ駆動時は接点「0」を介してド
ライブ信号DRが接続される。
6 is a switch (SW) for switching the connection between contacts rOJ and rlJ, and a drive signal DR is connected through contact "0" when the motor is driven.

またモータ制動時はスイッチ制御信号(SW C0NT
)のHIGHレベルにより、接点が「0」からrlJ側
に切り替わる。
Also, when braking the motor, the switch control signal (SW C0NT
), the contact switches from "0" to the rlJ side.

第2図にはモータ1の定速度回転によりキャリッジが各
印字位置を通過してゆくタイミングがN−1,N、N+
1の順で示されている。そこで、今仮にキャリッジをタ
イミングNの所定位置で停止しようとするときは、不図
示の回路より信号5TOPが送うレ、該5TOPと信号
φ2/(7)ANDをとったスイッチ制御信号(SW 
CON? )がHIGHレベルになり、接点を「0」か
らrlJ側に切り替える。そしてこの時点より信号Di
はSW6を介して差動増幅器7に入力され、モータ1の
回転を停止すめるための指示電流を形成する。その際、
電流センス抵抗18はモータlに流れる電流の方向と大
きさを差動増幅器7に帰還し、指示電流と同じ電流がモ
ータに流れるように働く。
Figure 2 shows the timings at which the carriage passes through each printing position due to constant speed rotation of motor 1: N-1, N, N+.
They are shown in order of 1. Therefore, if the carriage is to be stopped at a predetermined position at timing N, the signal 5TOP is sent from a circuit not shown, and the switch control signal (SW
CON? ) goes to HIGH level, switching the contact from "0" to rlJ side. From this point on, the signal Di
is input to the differential amplifier 7 via SW6, and forms an instruction current for stopping the rotation of the motor 1. that time,
The current sense resistor 18 feeds back the direction and magnitude of the current flowing through the motor 1 to the differential amplifier 7, and functions so that the same current as the indicated current flows through the motor.

モータ制動時の詳細なタイミングチャートは第3図に示
されている。ここではダンピング時のモータ指示電流の
状態に注目されたい、即ち、スイッチ制御信号SW C
0NTが“O”から“1パレベルに立ち上がった直後で
は、ダンピング制御成分の指示電流■=−(φ+’xr
3/rt)がモータ突入速度に関係なくほぼ“O°゛で
あり、ダンピングのために効果的に働いていないことが
解る。
A detailed timing chart during motor braking is shown in FIG. Here, please pay attention to the state of the motor command current during damping, that is, the switch control signal SW C
Immediately after 0NT rises from “O” to “1pa level, the command current of the damping control component ■=-(φ+'xr
3/rt) is approximately "0°" regardless of the motor entry speed, and it can be seen that it does not work effectively for damping.

その反面、微小位置制御成分の指示電流(j> =−(
φ+Xr3/rz)のみがしばらく有効になるため、回
路は一時的にダンピングでなく駆動回路として働いてし
まう。このため従来の直流モータ駆動方式では、例えば
印字停止位置付近でのモータオーバシュートは避けられ
ず、振動を発生したり、ひいては印字品位の悪化を生む
要因となっていた。
On the other hand, the instruction current of the minute position control component (j> = -(
Since only φ+Xr3/rz) is valid for a while, the circuit temporarily works as a driving circuit instead of a damping circuit. For this reason, in the conventional DC motor drive system, for example, motor overshoot in the vicinity of the printing stop position is unavoidable, which causes vibrations and, in turn, causes deterioration of printing quality.

[目的] 本発明は上述した従来技術の欠点に鑑みて成されたもの
であって、その目的とする所は、モータ停止(7)際の
効果的なダンピング制御の行える直流モータ駆動制御装
置を提供することにある。
[Objective] The present invention has been made in view of the above-mentioned drawbacks of the prior art, and its object is to provide a DC motor drive control device that can perform effective damping control when the motor is stopped (7). It is about providing.

〔貰施例] 第4図〜第6図は本発明の実施例に係り、第4図は一実
施例の直流モータ駆動制御装置を示すブロック構成図、
第5図はFfS4図の動作を説明するためのタイミング
チャート、第6図は第4図の構成でモータをダンピング
制御する際の各部信号波形を示すタイミングチャートで
ある。尚、第1図で述べた構成と同等のものには同一番
号を付して説明を省略する。
[Acquired Example] Figures 4 to 6 relate to embodiments of the present invention, and Figure 4 is a block diagram showing a DC motor drive control device of one embodiment;
FIG. 5 is a timing chart for explaining the operation of the FfS4 diagram, and FIG. 6 is a timing chart showing signal waveforms of various parts when damping the motor with the configuration shown in FIG. 4. Components that are equivalent to those described in FIG. 1 are given the same reference numerals and their explanations will be omitted.

第4図において、φ1よりほぼ90°位相の進んだエン
コーダ信号φ2は第2の微分回路9により微分され、そ
の微分信号Φ2 ′は第2のスイッチ(SWd)10の
接点「0」側に入力されている。φlとほぼ180”位
相の異る速度信号を得るためである。また前記微分信号
φ2 ′は反転器11で反転され、その反転信号φ2′
/はスイッチ(SWd)I Oの接点rlJ側に入力さ
れている。前記速度信号の反転信号を得るためである。
In FIG. 4, the encoder signal φ2, which is approximately 90° in phase ahead of φ1, is differentiated by the second differentiating circuit 9, and the differential signal φ2' is input to the contact "0" side of the second switch (SWd) 10. has been done. This is to obtain a speed signal having a phase approximately 180" different from φl. Furthermore, the differential signal φ2' is inverted by an inverter 11, and the inverted signal φ2'
/ is input to the contact rlJ side of switch (SWd) IO. This is to obtain an inverted signal of the speed signal.

そしてスイッチ(SWd)10のスイッチ制御は信号φ
1/により行う、従って、例えばモータが定速右回転し
ているときのスイッチ(SWd)10の出力波形は第5
図の信号φ2′d(実線)で示すように、信号φl/が
HIGHレベルの半サイクルには接点「1」側から信号
φ2 ′/が得られ、信号φl/がLOWレベルの半サ
イクルには接点「0」側から信号φ2 ′が得られる。
The switch (SWd) 10 is controlled by a signal φ
Therefore, for example, when the motor is rotating clockwise at a constant speed, the output waveform of the switch (SWd) 10 is the fifth one.
As shown by the signal φ2'd (solid line) in the figure, the signal φ2'/ is obtained from the contact "1" side during the half cycle when the signal φl/ is at the HIGH level, and during the half cycle when the signal φl/ is at the LOW level. A signal φ2' is obtained from the contact "0" side.

またモータを左回転させたときは逆の関係(点線)が得
られることは容易に解る。
It is also easy to see that the opposite relationship (dotted line) is obtained when the motor is rotated to the left.

次に第6図のモータが右回転して停止する際の各部ダン
ピング制御波形に注目されたい、この場合に、スイッチ
制御信号SW CON↑が0゛から“1″レベルに立ち
上がった直後は、信号φ1 ′の成分は“O”であるが
、スイッチ(SWd)10の接点は「l」 (φ2′)
側に接続されてシするのでこの区間にも第6図の信号■
=−(φ2 ′×ra/r*)のダンピング成分が効果
的に作用し、モータ突入速度にほぼ比例した減速方向の
電流成分をモータ指示電流に付加するように働く。
Next, please pay attention to the damping control waveforms of various parts when the motor rotates clockwise and stops in Fig. 6. In this case, immediately after the switch control signal SW CON↑ rises from 0゛ to "1" level, the signal The component of φ1′ is “O”, but the contact of switch (SWd) 10 is “L” (φ2′)
Since it is connected to the side, the signal shown in Figure 6 is also used in this section.
The damping component of =-(φ2'×ra/r*) effectively acts to add a current component in the deceleration direction that is approximately proportional to the motor rush speed to the motor command current.

従って第6図の信号φ直に着目すると解るように、第3
図の信号φ1に比較してモータ滑らかに停止する状態と
なる。
Therefore, as can be seen by focusing directly on the signal φ in FIG.
Compared to the signal φ1 in the figure, the motor stops smoothly.

[効果] 以上述べた如く本発明によれば、停止位置微小制御信号
φ1に対し位相がほぼ180度先行する速度信号φ2 
′をダンピング制御成分とするから、従来よりも強力で
かつ滑らかなモータダンピング特性が得られる。従って
、本発明を例えば電子タイプライタのプリントキャリッ
ジ制御に用いれば、キャリッジが印字停止位置に静止す
る迄の時間が短縮されるとともに、ダンピング振動がな
くなることにより印字品質が向上する等の効果を発揮す
る。
[Effect] As described above, according to the present invention, the speed signal φ2 precedes the stop position minute control signal φ1 by approximately 180 degrees in phase.
Since ' is used as a damping control component, stronger and smoother motor damping characteristics than before can be obtained. Therefore, if the present invention is applied to the print carriage control of an electronic typewriter, for example, the time required for the carriage to come to rest at the print stop position will be shortened, and the printing quality will be improved by eliminating damping vibrations. do.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の直流モータ駆動制御装置を示すブロック
構成図、 第2図は81図の動作を説明するためのタイミングチャ
ート、 第3図は第1図の構成でモータをダンピング制御する際
の各部信号波形を示すタイミングチャート、 第4図は本発明の一実施例の直流モータ駆動制御装置を
示すブロック構成図、 第5図は第4図の動作を説明するためのタイミングチャ
ート、 第6図は第4図の構成でモータをダンピング制御する際
の各部信号波形を示すタイミングチーt’ −トである ここで、l・・・直流モータ(M)、2・・・ロータリ
ースリットエンコーダ、3・・・信号変換器、4・・・
微分器、5・・・加算回路、6・・・スイッチ(SW)
、7・・・差動増幅器、8・・・電流センス抵抗、9・
・・微分器、lO・・・スイッチ(SWd)、11・・
・反転器である。 第5rIA t3回転 第6rl!J
Fig. 1 is a block configuration diagram showing a conventional DC motor drive control device, Fig. 2 is a timing chart for explaining the operation of Fig. 4 is a block diagram showing a DC motor drive control device according to an embodiment of the present invention; FIG. 5 is a timing chart for explaining the operation of FIG. 4; FIG. 6 is a timing chart showing signal waveforms of each part; is a timing cheat t'-sheet showing the signal waveforms of various parts when damping the motor with the configuration shown in FIG. ...Signal converter, 4...
Differentiator, 5...addition circuit, 6...switch (SW)
, 7... Differential amplifier, 8... Current sense resistor, 9...
...Differentiator, lO...Switch (SWd), 11...
・It is an inverter. 5th rIA t3 rotation 6th rl! J

Claims (1)

【特許請求の範囲】[Claims] 直流モータの回転微小変位検出正弦波信号φ_1を該モ
ータ停止の際の微小位置制御成分とし、前記信号φ_1
の微分信号φ_1′を前記モータ停止の際のダンピング
制御成分とする直流モータ駆動制御装置において、前記
信号φ_1と同等でかつ位相がφ_1よりほぼ90度進
む正弦波信号φ_2を有し、前記モータの停止制御の初
期において、前記信号φ_2の微分信号φ_2′をダン
ピング制御成分とすることを特徴とする直流モータ駆動
制御装置。
The minute rotational displacement detection sine wave signal φ_1 of the DC motor is used as a minute position control component when the motor is stopped, and the signal φ_1 is
In the DC motor drive control device, the differential signal φ_1' of the motor is used as a damping control component when the motor is stopped. A DC motor drive control device characterized in that, at an initial stage of stop control, a differential signal φ_2' of the signal φ_2 is used as a damping control component.
JP59264570A 1984-10-31 1984-12-17 Dc motor drive controller Pending JPS61142982A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59264570A JPS61142982A (en) 1984-12-17 1984-12-17 Dc motor drive controller
US06/791,403 US4689528A (en) 1984-10-31 1985-10-25 Printer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264570A JPS61142982A (en) 1984-12-17 1984-12-17 Dc motor drive controller

Publications (1)

Publication Number Publication Date
JPS61142982A true JPS61142982A (en) 1986-06-30

Family

ID=17405124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264570A Pending JPS61142982A (en) 1984-10-31 1984-12-17 Dc motor drive controller

Country Status (1)

Country Link
JP (1) JPS61142982A (en)

Similar Documents

Publication Publication Date Title
US4286202A (en) Electronic damping of stepper motor
JPS5916292B2 (en) Spindle control method
JPS602088A (en) Servo motor drive system
EP0791241B1 (en) Method and apparatus to maximize the top speed of brushless dc motors
JPS61142982A (en) Dc motor drive controller
JPH10271869A (en) Method and device for controlling electric current of switch reluctance motor
JPH039874B2 (en)
JPS5865367A (en) Anti-backlash driving device of rotor
JP2666468B2 (en) Motor drive
JPH05236785A (en) Drive circuit for brushless motor
JPS6225893A (en) Controller for synchronous motor
JP2001008480A (en) Speed controller for motor
JPS6158484A (en) Controller for motor
JP2601029Y2 (en) Reaction wheel drive circuit
JP2000228893A (en) Tacho-generator with built-in brushless motor
JPH0431603Y2 (en)
JPH0715358Y2 (en) Stepping motor control circuit
JPS60167691A (en) Speed controller of motor
JPH0538183A (en) Position control system for motor
JPH0340589B2 (en)
JP3148209B2 (en) Control device for cycloconverter
JPH0217801B2 (en)
JPH05199799A (en) Device and method for driving motor
JPS6120108A (en) Positioning control system
JPS6240073A (en) Stopping method for encoder motor