JPS61142549A - Production of optical recording medium consisting of chalcogenide oxide - Google Patents

Production of optical recording medium consisting of chalcogenide oxide

Info

Publication number
JPS61142549A
JPS61142549A JP26413184A JP26413184A JPS61142549A JP S61142549 A JPS61142549 A JP S61142549A JP 26413184 A JP26413184 A JP 26413184A JP 26413184 A JP26413184 A JP 26413184A JP S61142549 A JPS61142549 A JP S61142549A
Authority
JP
Japan
Prior art keywords
tellurium
film
substrate
gas
torr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26413184A
Other languages
Japanese (ja)
Other versions
JPH0555939B2 (en
Inventor
Koichi Saito
晃一 斉藤
Hideki Kobayashi
秀樹 小林
Yoichi Murayama
洋一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP26413184A priority Critical patent/JPS61142549A/en
Priority to DE8585309089T priority patent/DE3582149D1/en
Priority to EP85309089A priority patent/EP0188100B1/en
Publication of JPS61142549A publication Critical patent/JPS61142549A/en
Priority to US07/082,909 priority patent/US4786538A/en
Publication of JPH0555939B2 publication Critical patent/JPH0555939B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To improve stability over a long period of time by forming a film while changing the oxygen partial pressure of gas in the stage of forming tellurium or tellurium oxide layer from the metallic tellurium vapor passing through gaseous plasma on a substrate. CONSTITUTION:The inside of a vacuum vessel 3 is evacuated to a high vacuum and thereafter high-purity gaseous oxygen an/or inert gas is introduced into the vessel. A voltage is impressed to a high-frequency excitation coil 4 to generate a high-frequency electric field and after formation of the plasma, electricity is conducted to a heating boat 2 to heat, melt and evaporate the metallic tellurium 1. The partial pressure Po of the gaseous oxygen in the vessel 3 is first maintained in the condition of 1X10<-3>Torr and is then continuously and gradually changed to 1X10<-4>Torr and in succession, the pressure is again changed continuously to 1X10<-3>Torr, by which the continuous change of the film compsn. from X=0 in the intermediate layer and X=2.0 in the layer near the substrate and the extreme surface layer is made possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録媒体、特に光による記録、および消去可
能なカルコゲナイド系酸化物から遅る光記録媒体の製造
方法に関するものであり、特に厚さ方向に膜組成を制御
するための改良された光記録媒体の製造方法に関する。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical recording medium, and in particular to a method for producing an optical recording medium from a chalcogenide-based oxide that is optically recording and erasable. The present invention relates to an improved method for manufacturing optical recording media for controlling film composition in the transverse direction.

〔従来の技術〕[Conventional technology]

光記録媒体には、レーザー光の熱エネルギーによって小
孔あるいは泡を形成する方式のもの及び膜の光学的特性
を変化する方式のものが知られている。前者は記録の際
に、記録膜層に凹凸の形状変化を生ずるため、記録膜や
基板が経時的に変質、腐蝕を受けやすく、通常二枚の記
録媒体をエアサンドインチ構造にして使用されていた。
There are known optical recording media that use the thermal energy of laser light to form small holes or bubbles, and those that change the optical properties of the film. The former causes irregularities in the recording film layer to change shape during recording, so the recording film and substrate are susceptible to deterioration and corrosion over time, and two recording media are usually used in an air sandwich structure. Ta.

しかし後者はこの必要はなく、単に二枚の記録媒体を接
着させて使用できるため製造工程を大巾に簡略化できる
利点があった。後者に使用される材料のうち、感度の高
いもの、即ち一定の入射光強度に対して光学的特性の変
化の大きい材料としてカルコゲナイド系低酸化物、特に
テルル酸化物T eoxが知られており、Xは0<X<
2.0のものが用いられる。
However, the latter does not require this, and has the advantage that the manufacturing process can be greatly simplified because two recording media can be simply glued together. Among the materials used for the latter, chalcogenide-based low oxides, particularly tellurium oxide Teox, are known as materials with high sensitivity, that is, materials with large changes in optical properties with respect to a constant incident light intensity. X is 0<X<
2.0 is used.

テルル酸化物薄膜の製造法としては、TeO2の粉末を
WまたはMOのポート型ヒーターにのせ、ヒーターを通
電加熱してTeO2を一部還元しながら真空蒸着する方
法、Tent粉末と各種の還元金属の混合物を石英るつ
ぼに入れ、これを真空中で加熱蒸着する方法、TeO2
と金属Teとをそれぞれに別の蒸発源として用い、同時
に蒸着する方法等が知られている。
The tellurium oxide thin film can be produced by placing TeO2 powder on a W or MO port-type heater and applying electricity to the heater to vacuum evaporate the TeO2 while partially reducing it. A method of placing a mixture in a quartz crucible and heating it in vacuum to deposit TeO2.
A method is known in which metal Te and metal Te are used as separate evaporation sources and are deposited simultaneously.

〔発明が解決しようとする間倣点〕[The imitation point that the invention attempts to solve]

しかし、これらの方法のうち、前の2者は簡便な方法で
はあるが、蒸着中にポートあるいは還元金域の還元力が
変化するため、蒸着された膜の膜厚方向の組成の不規則
な変化が生じ易いという欠点がある。
However, although the first two methods are simple, the reducing power of the port or the reduced gold region changes during deposition, resulting in irregular compositions in the thickness direction of the deposited film. It has the disadvantage of being susceptible to change.

2つの蒸着源を用いる方法は組成が膜厚方向で変化せず
、均一な膜を得ることができる。この方法によって製作
されたTeOxのXが1未満の膜は、黒化開始温度が低
く、感度が高いという利点を有する。しかるに該膜は黒
化開始温度以下の比較的主として膜の安定性の点から、
感度は劣るもののXが1以上の範囲の’I’eOxが一
般的に使用されている。
In the method using two vapor deposition sources, the composition does not change in the film thickness direction, and a uniform film can be obtained. A TeOx film produced by this method in which X is less than 1 has the advantage of a low blackening initiation temperature and high sensitivity. However, the film is relatively stable below the blackening initiation temperature, mainly from the viewpoint of film stability.
'I'eOx in which X is 1 or more is generally used, although the sensitivity is poor.

又、基板材料としてアクリル板、ポリカーボネート板等
のプラスチックス材料を用いる場合、これらは気体透過
率が比較的大きいため、経時的に水蒸気や酸素等が侵入
し、カルコゲナイド系低酸化物を酸化し感度を低下させ
るという問題があった。
In addition, when using plastic materials such as acrylic plates and polycarbonate plates as substrate materials, these have relatively high gas permeability, so water vapor and oxygen enter over time, oxidizing chalcogenide-based low oxides and reducing sensitivity. There was a problem of lowering the .

このような、カルコゲナイド系記録媒体の長期にわたる
安定性向上に関してはすでに多くの技術が開示されてお
り、例えば耐蝕性の良い金属中に分散させるもの(特開
昭58−164037 )、有機物質でコーティングす
るもの(特開昭56−21892、特開昭58−125
248.特開昭58−203643)、無機物質でコー
ティングするもの(特開昭58−199449)、表面
を強制的に酸化するもの(特開昭56−3442、特開
昭58−94144、特開昭58−189850、特開
昭59−2245 )等を例示することができるが、操
作が繁雑になったり、かならずしも効果が十分ではない
場合が多かった。
Many techniques have already been disclosed for improving the long-term stability of chalcogenide recording media, such as dispersion in metal with good corrosion resistance (Japanese Patent Application Laid-Open No. 164037/1983), and coating with organic substances. (Japanese Patent Application Laid-Open No. 56-21892, Japanese Patent Application Publication No. 58-125
248. JP-A-58-203643), coating with inorganic substances (JP-A-58-199449), and forcibly oxidizing the surface (JP-A-56-3442, JP-A-58-94144, JP-A-58) -189850, JP-A-59-2245), etc., but the operations were complicated and the effects were not necessarily sufficient in many cases.

本発明は長期にわたる安定性が向上した光記録媒体の製
造方法を提供することを目的とする。
An object of the present invention is to provide a method for manufacturing an optical recording medium with improved long-term stability.

〔問題点を解決するための手段〕[Means for solving problems]

かかる本発明の目的は基板上に高周波電力によってプラ
ズマ化された不活性ガス、酸素ガス又はこれらの混合ガ
ス(これらを総称して単にガスということがある)を通
過する金属テルル蒸気からテルル又はテルル酸化物(T
eOx、  0≦X≦2.0)層を形成するに際し、該
ガスの酸素分圧を変化させながら成膜することによって
達成された。本発明に従えば、厚さ方向に膜組成(X)
を自由に制御できるため、例えば基板上にXが1未満の
感度の高い組成からなる薄膜を形成してから、その上に
連続して耐蝕性の高いX〜2なる組成を有する層を設け
ることが容易であり、高感度と安定性を同時に具備した
光記録媒体を製造することが可能となる。
The object of the present invention is to convert tellurium or tellurium from metal tellurium vapor that passes through an inert gas, oxygen gas, or a mixed gas (these may be collectively referred to simply as gas) that is turned into plasma by high-frequency power on a substrate. Oxide (T
This was achieved by forming the eOx (0≦X≦2.0) layer while changing the oxygen partial pressure of the gas. According to the present invention, the film composition (X) in the thickness direction
For example, after forming a thin film with a highly sensitive composition in which X is less than 1 on a substrate, a layer having a composition of X to 2 with high corrosion resistance is continuously provided on top of the thin film. This makes it possible to manufacture an optical recording medium that has high sensitivity and stability at the same time.

以下図面を参照して詳細に説明する0 この発明においては、不活性ガス、酸素ガス又はこれら
の混合ガス雰囲気中で金属テルルがイオンブレーティン
グ法によって基板上に蒸着される。
A detailed description will be given below with reference to the drawings. In the present invention, metallic tellurium is deposited on a substrate by an ion blasting method in an atmosphere of an inert gas, an oxygen gas, or a mixed gas thereof.

すなわち、第2図にその概念図を示すように、裏道装置
は真空槽3内に設けられた金属テルル1をのせた加熱ポ
ート2、これに対向して基板7を保持する基板保持具8
及びこの間に配設された高周波励起コイル4からなる。
That is, as shown in a conceptual diagram in FIG. 2, the back-channel device includes a heating port 2 provided in a vacuum chamber 3 on which a metal tellurium 1 is mounted, and a substrate holder 8 that holds a substrate 7 opposite thereto.
and a high frequency excitation coil 4 disposed between them.

製造に際して、真空槽3内はまず酸素ガス及び/又は不
活性ガスで充填される。この際、密着性のよい安定なテ
ルル又はテルル敵化物膜を得るためには真空槽内をまず
10Torr程度以上の高真空とした後、高純度酸素ガ
ス及び/又は不活性ガスを導入し、槽内の真空yt *
 I X 10 ないし9X10Torr、好ましくは
2x10 ないし5 x l □  Torrに保つの
かよい。なお、不活性ガスとしてアルゴンガス、ヘリク
ムガス、窒素ガス等を例示することが可能である。
During manufacturing, the inside of the vacuum chamber 3 is first filled with oxygen gas and/or inert gas. At this time, in order to obtain a stable tellurium or tellurium enemy film with good adhesion, the inside of the vacuum chamber is first brought to a high vacuum of about 10 Torr or more, and then high-purity oxygen gas and/or inert gas is introduced into the chamber. Vacuum inside yt *
It may be maintained at I x 10 to 9 x 10 Torr, preferably 2 x 10 to 5 x l □ Torr. Note that argon gas, helium gas, nitrogen gas, etc. can be exemplified as the inert gas.

この状態でスパイラルコイル状の高周波励起コイル4に
50〜500ワツトの電圧を印加し、高周波電界をつく
り、ガスを励起してプラズマを生成される。生成される
プラズマは、コイル形状、大きさ、電界の強さ及び真空
度によって制御されるが、その制御は容易であり、高精
度の制御が可能である。
In this state, a voltage of 50 to 500 watts is applied to the spiral coil-shaped high-frequency excitation coil 4 to create a high-frequency electric field to excite the gas and generate plasma. The generated plasma is controlled by the shape and size of the coil, the strength of the electric field, and the degree of vacuum, and the control is easy and can be controlled with high precision.

プラズマ生成後、加熱ボート2に通電し、金属テルル1
を加熱・融解して蒸発させる。加熱温度及び真空槽3内
の圧力によってテルルの蒸気圧が定まり、さらにボート
開口部面積によってテルルの蒸発量が規定される。
After plasma generation, the heating boat 2 is energized and the metal tellurium 1
Heat, melt, and evaporate. The vapor pressure of tellurium is determined by the heating temperature and the pressure within the vacuum chamber 3, and the amount of evaporation of tellurium is determined by the boat opening area.

プラズマが安定して発生するようになったら、酸素ガス
分圧POを初期設定値に調節し、基板と蒸発源の間に設
置したシャッタを開き、基板上に蒸発粒子を沈着させる
。プラズマ内を通過したテルルの蒸発粒子は、第2図中
に模式的に示したように、プラズマ内の酸素イオンやラ
ジカルの衝撃によりその一部が酸化され、酸化されなか
った蒸発粒子と共に基板面上に沈着する。第2図中5.
5′は酸化したテルルの蒸発粒子を、6.6’は酸化さ
れなかった蒸発粒子を示す。ここで基板としてはガラス
又はアクリル板、ポリカーボネート板をはじめとする各
種プラスチックを使用することができる。
When plasma is stably generated, the oxygen gas partial pressure PO is adjusted to an initial setting value, a shutter installed between the substrate and the evaporation source is opened, and evaporated particles are deposited on the substrate. As schematically shown in Figure 2, the tellurium evaporated particles that have passed through the plasma are partially oxidized by the bombardment of oxygen ions and radicals in the plasma, and the evaporated particles that have not been oxidized are deposited on the substrate surface. deposited on top. 5 in Figure 2.
5' indicates oxidized tellurium evaporated particles, and 6.6' indicates unoxidized evaporated particles. Here, various plastics such as glass, acrylic plates, and polycarbonate plates can be used as the substrate.

初めに設定した速さに従ってガス分圧POを変化させな
がら金属テルルの蒸発を続けることにより、基板上に所
定の組成の、所定の厚さの薄膜を積層していくことが可
能である。
By continuing to evaporate the metal tellurium while changing the gas partial pressure PO according to the initially set speed, it is possible to deposit thin films of a predetermined composition and a predetermined thickness on the substrate.

例えば真空槽内の酸素ガス分圧(PO)をlXl0’T
 orrにしてから、徐々にPOを増加していき、最終
的に1xlOTorr程度まで増加しながら成膜するこ
とによって、基板面から膜表面にむかつてX=0からX
=2.0まで連続的に変えることができる0 更に、はじめに” k I X 10  Torrの状
態にしてから徐々にPaを1x10Torrまで連続的
に変えたのち、ひきつづいてlX10Torrまで再度
連続的に変えることによって膜中間層の膜組成Xを0と
し、基板に近い層と最表面層をX=2.0になるように
連続的に変えることができる。
For example, the oxygen gas partial pressure (PO) in the vacuum chamber is lXl0'T
orr, then gradually increase the PO, and finally increase the PO to about 1xlOTorr while forming the film, so that from X=0 to X
= 2.0 can be changed continuously 0 Furthermore, first, after setting the state to k I By setting the film composition X of the film intermediate layer to 0, it is possible to continuously change the film composition of the layer near the substrate and the outermost layer so that X=2.0.

又、本発明においては、スパイラルコイル状の高周波励
起コイル4に印加する電力の大きさ、金属テルルの蒸発
速度によっても形成される膜の組成(X)を変えること
が可能であるため、必要ならば、ガス分圧POを変化さ
せつつ、印加する電力の大きさ、金ハテルルの蒸発速度
を変えながら成膜することも可能である。
Furthermore, in the present invention, it is possible to change the composition (X) of the film formed by changing the magnitude of the electric power applied to the spiral coil-shaped high-frequency excitation coil 4 and the evaporation rate of metal tellurium. For example, it is also possible to form a film while changing the gas partial pressure PO, the magnitude of the applied electric power, and the evaporation rate of gold.

本発明に従えば、同一装置、単一の蒸発源によって連続
的に製造することが可能であるため、製造方法が簡易で
あり、安価に装造、できるだけでなく、感度の高いTe
ndを基板に近いところに或は内部に形成しうるため、
光記録膜自体の厚さも薄くできるという利点がある。
According to the present invention, since it is possible to continuously produce Te with the same device and a single evaporation source, the production method is simple and can be manufactured at low cost, as well as highly sensitive Te.
Since the nd can be formed close to or inside the substrate,
There is an advantage that the thickness of the optical recording film itself can be reduced.

本発明では必要に応じて、透明性の良い高分子膜、無機
質膜等を積層して、さらに安定性を向上させることも可
能である。本発明におけるX(0≦X≦2.0)は、記
録膜の厚さ方向に、連続的に変えることも可能であるし
、又、段階的に変えて使用することも可能である。また
本発明では、必要に応じてテルル酸化物層及び/又はテ
ルル層には上記の効果を損わない範囲で他の物質、例え
ば増感剤や安定剤を含有せしめることができる。
In the present invention, it is also possible to further improve stability by laminating a highly transparent polymer film, inorganic film, etc., if necessary. In the present invention, X (0≦X≦2.0) can be changed continuously in the thickness direction of the recording film, or can be changed stepwise. Further, in the present invention, the tellurium oxide layer and/or the tellurium layer may contain other substances, such as sensitizers and stabilizers, as long as the above-mentioned effects are not impaired, if necessary.

〔実施例〕 次に実施例をもって本発明の詳細な説明する。〔Example〕 Next, the present invention will be explained in detail with reference to examples.

を1.Q x 10 Torrとし、次いで高周波コイ
ルに周波数13.56 MHz、100ワツトの筒周波
電力を印加してプラズマを発生させた。そして純度99
.99男の金属テルルを450〜500℃に保って融解
、蒸発させながら、装置内の真空度を4 X 10  
Torrとしたのち、ガラス製基板又はプラスチック製
基板(例えばPMMA板)と蒸発源の間に設置したシャ
ッタを開いて基板上に膜を形成させた。次に徐々に混合
ガスの導入量を増加していき、最終的な真空度を1.0
xlOTorrとして成膜を行なったのち、シャッタを
閉じて成膜を終了した。成膜速度は全て4A/secで
行なった。
1. Q x 10 Torr, and then cylindrical frequency power of 13.56 MHz and 100 Watts was applied to the high frequency coil to generate plasma. And purity 99
.. While melting and evaporating 99% of tellurium metal at 450 to 500°C, the degree of vacuum in the device was increased to 4 x 10.
After setting the temperature to Torr, a shutter placed between a glass substrate or a plastic substrate (for example, a PMMA plate) and the evaporation source was opened to form a film on the substrate. Next, gradually increase the amount of mixed gas introduced until the final degree of vacuum is 1.0.
After the film was formed at xlOTorr, the shutter was closed to complete the film formation. All films were formed at a rate of 4 A/sec.

オージェ電子分光法により、形成した膜の厚さ方向の組
成を測定したところ、基板面に近い層はX=O1つまり
Teのみからなり、最表面はx=2.0、つまりTeO
2から形成されていた。さらに中間層は基板面に近い層
から徐々にXが増大していることが確認された。又、形
成された薄膜の厚さは0.12μmであった。
When we measured the composition of the formed film in the thickness direction using Auger electron spectroscopy, we found that the layer near the substrate surface was composed only of X=O1, that is, Te, and the outermost layer was composed of
It was formed from 2. Furthermore, it was confirmed that in the intermediate layer, X gradually increases from the layer near the substrate surface. Further, the thickness of the formed thin film was 0.12 μm.

この記録媒体に対して波長830 nmの半導体レーザ
で記録を行なったところ良好な配録、再生特性を示した
。さらに温度40℃、相対湿度90チの恒温恒湿槽に3
0日間入れたのち、同様の試験を行なったところ、記録
、再生特性に差はなく優れた安定性を示した。又、膜面
に鋭い刃物で1m方眼の刻み目を100個つけて、これ
にセロテープを貼シ付けて900引き起こす剥離試験で
は全く剥離が起こらず実用上十分な強さの膜が得られた
When recording was performed on this recording medium using a semiconductor laser with a wavelength of 830 nm, it showed good recording and reproduction characteristics. In addition, 3
After 0 days of use, a similar test was conducted, and it was found that there was no difference in recording and reproducing characteristics, and excellent stability was observed. In addition, in a peeling test in which 100 notches of 1 m grid were made on the membrane surface with a sharp knife and cellophane tape was applied to the membrane at 900°C, no peeling occurred at all, and a membrane with sufficient strength for practical use was obtained.

又、対比のために金属テルルと二酸化テルルを別々の蒸
発源とする装置を用いて、金属テルルと二酸化テルルの
蒸発速度をコントロールさせ実施例と同一の膜構成を形
成すべく真空蒸着を試みたが製造が困難であつlと。
In addition, for comparison, vacuum evaporation was attempted using a device that uses tellurium metal and tellurium dioxide as separate evaporation sources to control the evaporation rates of tellurium metal and tellurium dioxide to form the same film structure as in the example. However, it is difficult to manufacture.

(発明の効果) 本発明によれば、同一の装置内で同一の蒸発源を用い、
ガス分圧を変えるだけで厚さ方間に組成の変化した膜を
有する記録媒体が安価に且つ容易に製造し得る。しかも
該記録媒体は膜内に異物が混入することもなく、膜相互
間の密着性が極めて優れている。
(Effect of the invention) According to the present invention, using the same evaporation source in the same device,
By simply changing the gas partial pressure, a recording medium having a film whose composition changes across the thickness can be manufactured inexpensively and easily. Moreover, the recording medium does not have any foreign matter mixed into the film, and the adhesion between the films is extremely excellent.

更に真空槽内で蒸発したテルル粒子がガスプラズマ内を
通過する過程で活性化されて基板上に沈着するため基板
から剥離しに<<、環境による影響を受は難い、丈夫な
安定した記録媒体を製造することができる。
Furthermore, the tellurium particles evaporated in the vacuum chamber are activated during the process of passing through the gas plasma and are deposited on the substrate, making it a durable and stable recording medium that is less likely to be peeled off from the substrate. can be manufactured.

従って、従来安定性を欠き実用化に不適と思われていた
高感度領域のテルル低酸化物層を含む記録媒体が極めて
経済的に、しかも高い安定性を備えたものとして実現で
きるという顕著な効果を奏する。
Therefore, the remarkable effect is that a recording medium containing a tellurium low oxide layer in the high sensitivity range, which was conventionally thought to lack stability and be unsuitable for practical use, can be realized extremely economically and with high stability. play.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づいて製造された光記録媒体の構成
図の一例、第2図は本発明を実施するイオンブレーティ
ング装置の模式図を示す。 図中1は金属テルル、2は蒸発ボート、3は真空槽、4
は高周波コイル、7は基板、8は基板保持具、9はテル
ル層、10はテルル低・酸化物Ti0x(0<X<2)
層および11は二酸化テルル層である。 第 1 図 9:テルル層 10:テクト1■運良化物層11:二酸
イ乙テルル層 第 2 図
FIG. 1 shows an example of a configuration diagram of an optical recording medium manufactured based on the present invention, and FIG. 2 shows a schematic diagram of an ion blating apparatus implementing the present invention. In the figure, 1 is tellurium metal, 2 is an evaporation boat, 3 is a vacuum tank, and 4
is a high frequency coil, 7 is a substrate, 8 is a substrate holder, 9 is a tellurium layer, 10 is a low tellurium oxide Ti0x (0<X<2)
Layer and 11 are tellurium dioxide layers. 1st Figure 9: Tellurium layer 10: Tect 1■ Lucky compound layer 11: Diacid 2 Tellurium layer Figure 2

Claims (1)

【特許請求の範囲】[Claims] 基板上に、高周波電力によつてプラズマ化された不活性
ガス、酸素ガス又はそれらの混合ガスを通過する金属テ
ルル蒸気からカルコゲナイド系酸化物層を形成せしめる
に際し、該ガスの酸素分圧を変化させながら成膜するこ
とを特徴とする光記録媒体の製造方法
When forming a chalcogenide-based oxide layer on a substrate from metallic tellurium vapor that passes through an inert gas, oxygen gas, or a mixture thereof that is turned into plasma by high-frequency power, the oxygen partial pressure of the gas is changed. A method for producing an optical recording medium characterized by forming a film while
JP26413184A 1984-12-13 1984-12-13 Production of optical recording medium consisting of chalcogenide oxide Granted JPS61142549A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP26413184A JPS61142549A (en) 1984-12-13 1984-12-13 Production of optical recording medium consisting of chalcogenide oxide
DE8585309089T DE3582149D1 (en) 1984-12-13 1985-12-13 OPTICAL RECORDING MEDIUM FORMED FROM CHALCOGENOXIDE AND METHOD FOR THE PRODUCTION THEREOF.
EP85309089A EP0188100B1 (en) 1984-12-13 1985-12-13 Optical recording medium formed of chalcogen oxide and method for producing same
US07/082,909 US4786538A (en) 1984-12-13 1987-08-10 Optical recording medium formed of chalcogenide oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26413184A JPS61142549A (en) 1984-12-13 1984-12-13 Production of optical recording medium consisting of chalcogenide oxide

Publications (2)

Publication Number Publication Date
JPS61142549A true JPS61142549A (en) 1986-06-30
JPH0555939B2 JPH0555939B2 (en) 1993-08-18

Family

ID=17398889

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26413184A Granted JPS61142549A (en) 1984-12-13 1984-12-13 Production of optical recording medium consisting of chalcogenide oxide

Country Status (1)

Country Link
JP (1) JPS61142549A (en)

Also Published As

Publication number Publication date
JPH0555939B2 (en) 1993-08-18

Similar Documents

Publication Publication Date Title
US4786538A (en) Optical recording medium formed of chalcogenide oxide and method for producing the same
RU2117338C1 (en) System of materials for mo storage
JPS634628B2 (en)
JPS61142549A (en) Production of optical recording medium consisting of chalcogenide oxide
JPS61142541A (en) Optical recording medium consisting of chalcogenide oxide
JPS6292248A (en) Optical recording film and making and use thereof
US4645685A (en) Method for producing an optical recording medium by a chalcogenide suboxide
JPH0530195B2 (en)
JPH0555940B2 (en)
JPH01196743A (en) Information recording medium
EP0367030A2 (en) Process for forming thin films of metastable binary compounds
JPH0444814B2 (en)
JPS61141592A (en) Optical recording medium and production thereof
JPS62170047A (en) Production of optical recording medium
JPS61142548A (en) Production of optical recording medium consisting of chalcogenide low oxide
JPH1079145A (en) Manufacture of optical information recording medium and film formation apparatus used for it
JPH0425615B2 (en)
JPH0522590B2 (en)
JPS60112490A (en) Production of optical information recording member
JPH02171290A (en) Information recording medium
JPS62154247A (en) Production of recording material
JPS61115317A (en) Manufacture of thin film material for magnetooptics recording and reproducing
JPS61294714A (en) Formation of transparent conducting metal oxide film
JPH09161340A (en) Magneto-optical recording medium and its production
JPS6138530B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term