JPS61141592A - Optical recording medium and production thereof - Google Patents

Optical recording medium and production thereof

Info

Publication number
JPS61141592A
JPS61141592A JP59264133A JP26413384A JPS61141592A JP S61141592 A JPS61141592 A JP S61141592A JP 59264133 A JP59264133 A JP 59264133A JP 26413384 A JP26413384 A JP 26413384A JP S61141592 A JPS61141592 A JP S61141592A
Authority
JP
Japan
Prior art keywords
plasma
gas
tellurium
substrate
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59264133A
Other languages
Japanese (ja)
Inventor
Koichi Saito
晃一 斉藤
Hideki Kobayashi
秀樹 小林
Junji Nakagawa
中川 順司
Yoichi Murayama
洋一 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP59264133A priority Critical patent/JPS61141592A/en
Priority to DE8585309089T priority patent/DE3582149D1/en
Priority to EP85309089A priority patent/EP0188100B1/en
Publication of JPS61141592A publication Critical patent/JPS61141592A/en
Priority to US07/082,909 priority patent/US4786538A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24302Metals or metalloids
    • G11B2007/24316Metals or metalloids group 16 elements (i.e. chalcogenides, Se, Te)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/243Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials only, e.g. ablative layers
    • G11B2007/24318Non-metallic elements
    • G11B2007/2432Oxygen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Manufacturing Optical Record Carriers (AREA)

Abstract

PURPOSE:To contrive enhancement of adhesion of a recording film to a substrate and long-time stability thereof, by a method wherein a tellurium oxide TeOx (0<x<1.0) is formed from a vapor of metallic Te passed through a plasma of an inert gas, an oxygen gas or a mixed gas thereof, and is oxidized in the plasma. CONSTITUTION:A high vacuum of not lower than 10<-5>Torr is provided in a vacuum tank, and a high-purity O2 gas, an inert gas or a mixed gas thereof is introduced into the tank to maintain a vacuum of 1X10<-4>-9X10<-3>Torr in the tank. Next, a voltage with 50-500W is impressed on a high-frequency exciting coil 4 to generate a high-frequency electric field, thereby exciting the gas to generate a plasma. An electric current is passed to a heating boat 2 to heat, melt and evaporate metallic Te 1, thereby depositing vapor particles onto the substrate. Some of the vapor particles of Te passed through the plasma are oxidized by collision with O ions or radicals in the plasma, and are deposited on the substrate together with unoxidized vapor particles to form a dense recording film.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光記録媒体、特に光による記録、及び消去可能
なテルル系酸化物からなる光記録媒体及びその製造方法
に関するもので69、長期間にわたって光記録特性が安
定に保持され、基板との密着性に優れた光記録媒体に関
する0 〔従来の技術〕 光記録媒体には、レーザー光の熱エネルギーによって小
孔あるいは泡を形成する方式のもの及び膜の光学的特性
を変化する方式のものが知られている。前者は記録の際
に、記録膜層に凹凸の形状変化を生ずるため、記録膜や
基板が経時的に変質、腐蝕を受けやすく、通常二枚の記
録媒体をエアサンドインチ構造にして使用されてい念。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to an optical recording medium, particularly an optical recording medium made of a tellurium-based oxide that can be recorded and erased by light, and a method for manufacturing the same69, and which can be used for a long period of time. Related to an optical recording medium that maintains stable optical recording characteristics over a long period of time and has excellent adhesion to a substrate [Prior technology] Optical recording media include those that form small holes or bubbles using the thermal energy of laser light. Also known are systems that change the optical properties of the film. The former causes irregularities in the recording film layer to change shape during recording, so the recording film and substrate are susceptible to deterioration and corrosion over time, and two recording media are usually used in an air sandwich structure. Just in case.

しかし後者はこの必要は&(、単に二枚の記録媒体を接
着させて使用できるため製造工程が大巾に簡略できる利
点があった。後者に使用される材料のうち、感度の高い
もの、即ち一定の入射光強度に対して光学的特性の変化
の大きい材料としてカルコグナイド系低酸化物、%にテ
ルル酸化物TeOXが知られており、Xは0<X<2.
0のものが用いられる。
However, the latter has the advantage that the manufacturing process can be greatly simplified because it can be used by simply gluing two recording media together.Among the materials used for the latter, highly sensitive materials, i.e. A chalcoglide low oxide, tellurium oxide TeOX, is known as a material whose optical properties change significantly with respect to a constant incident light intensity, where X is 0<X<2.
0 is used.

テルル酸化物薄膜の製造法としては、TeO2の粉末を
WまたはMoのボート型ヒーターにのせ、ヒーターを通
電加熱してTeasを一部還元しながら真空蒸着する方
法、T002粉末と各種の還元金属の混合物を石英るつ
ぼに入れ、これを真空中で加熱蒸着する方法、T・02
と金属T・とをそれぞれに別の蒸発源として用い、同時
に蒸着する方法等が知られている。
The tellurium oxide thin film can be produced by placing TeO2 powder on a W or Mo boat-type heater, applying electricity to the heater, and vacuum evaporating while partially reducing Teas. A method of placing a mixture in a quartz crucible and heating it in vacuum for vapor deposition, T.02
A known method is to use T and metal T as separate evaporation sources and deposit them simultaneously.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、これらの方法のうち、前の2者は簡便な方法で
はあるが、蒸着中にボートあるいは還元金属の還元力が
変化するため、蒸着された膜の膜厚方向の組成の不規則
な変化が生じ易いという欠点がある。
However, although the first two methods are simple, the reducing power of the boat or reducing metal changes during deposition, resulting in irregular changes in the composition of the deposited film in the thickness direction. The disadvantage is that it tends to occur.

2つの蒸着源を用いる方法は組成が膜厚方向で変化せず
、均一な膜を得ることができる。この方法によって製作
されたTe0zのXが1未満の膜は、黒化開始温度が低
く、また感度が高いという利点を有する。しかるに該層
は黒化開始温度以下の比め、主として膜の安定性の点か
ら、感g度は劣るもののXが1以上の範四のTeOXが
一般的に使用されている。
In the method using two vapor deposition sources, the composition does not change in the film thickness direction, and a uniform film can be obtained. A film produced by this method in which X of TeOz is less than 1 has the advantage of a low blackening initiation temperature and high sensitivity. However, for this layer, TeOX having X of 1 or more is generally used, although its sensitivity is inferior, mainly from the viewpoint of film stability, since the temperature is below the blackening initiation temperature.

又、基板材料としてアクリル板、ポリカーボネート板等
のプラスチックス材料を用いる場合、これらは気体透過
率が比較的大きいため、経時的に水蒸気や酸素等が侵入
し、カルコゲナイド系低酸化物を酸化し感f度を低下さ
せるという問題が6つ九。
In addition, when using plastic materials such as acrylic plates and polycarbonate plates as substrate materials, these have relatively high gas permeability, so water vapor, oxygen, etc. enter over time, oxidizing chalcogenide-based low oxides and causing sensitivity. There are 6 and 9 problems with lowering the f degree.

このような、カルコゲナイド系記録媒体の長期にわたる
安定性向上に関してはすでに多くの技術が開示されてお
〕、例えば耐蝕性の良い金属中に分散させるもの(特開
昭58−164037)s有機物質でコーティングする
もの(特開昭56−21892、 。
Many techniques have already been disclosed for improving the long-term stability of chalcogenide-based recording media. Things to be coated (Japanese Patent Application Laid-open No. 56-21892, ).

特開昭58−125248、特開昭58−203643
)、無機物質でコーティングするもの(%開開58−1
99449)、表面を強制的に酸化するもの(%開開5
・6−3442.特開昭58−94144、特開昭58
−189850.特開昭59−2245 )等を例示す
ることができるが、操作が繁雑になっ友シ、かならずし
も効果が十分ではない場合が多かった。
JP 58-125248, JP 58-203643
), those coated with inorganic substances (% opening 58-1
99449), those that forcibly oxidize the surface (% opening 5
・6-3442. JP-A-58-94144, JP-A-58
-189850. For example, Japanese Patent Laid-Open No. 59-2245), etc., however, the operation was complicated and the effect was not necessarily sufficient in many cases.

本発明は、長期にわたる安定性が向上し九光記櫨 録媒体及びその製造方法に提供することを目的とする。The present invention improves long-term stability and improves long-term stability. The purpose is to provide recording media and their manufacturing methods.

そして本発明の他の目的は上記の従来技術では何ら考j
lKれていないところの基板との密着性についても優れ
た効果を発揮する光記録媒体及びその製造方法を提供す
るに6る。
The other object of the present invention is not considered in the above-mentioned prior art.
It is an object of the present invention to provide an optical recording medium that exhibits excellent adhesion to a substrate even in areas where the optical recording medium is not 1K, and a method for manufacturing the same.

〔問題点を解決する九めの手段〕[Ninth way to solve the problem]

本発明は基板と、該基板上に高周波電力によってプラズ
マ化された不活性ガス、酸素ガス又はそれらの混合ガス
中を通過する金属テルル蒸気から形成してなるテルル系
酸化物TeOX (0(X(1,0)層と、該テルル系
酸化物層の表面を酸化してなる酸化膜から構成される光
記録媒体及び基板上に高周波電力によってプラズマ化さ
れた不活性ガス、酸素ガス又はそれらの混合ガス中を通
過する金属テルル蒸気からテルル系酸化物TeOX (
0<X< 1.0 )を形成せしめた後、プラズマ中で
酸化することを特徴とする光記録媒体の製造方法である
The present invention provides a substrate and a tellurium-based oxide TeOX (0(X( 1,0) layer and an oxide film formed by oxidizing the surface of the tellurium-based oxide layer, and an inert gas, oxygen gas, or a mixture thereof that is turned into plasma by high-frequency power on the substrate. Tellurium-based oxide TeOX (
0<X<1.0), and then oxidized in plasma.

以下図面を参照して詳MK説明する。The detailed MK will be explained below with reference to the drawings.

木兄gAにおいては、記録膜は不活性ガス、酸素ガス又
はそれらの混合ガス(以下これらを単にガスということ
がある。)雰囲気中で金属テルルがイオンブレーティン
グ法によって基板上に蒸着される0 すなわち、第1図にその概念図を示すように、製造装置
は真空槽3内に設けられた金属テルル1をのせた加熱ボ
ート2、これに対向して基板7を保持する基板保持具8
及びこの間に配設された高周波励起コイル4からなる。
In Kinei gA, the recording film is made by depositing metallic tellurium on the substrate by ion blating in an atmosphere of inert gas, oxygen gas, or a mixture thereof (hereinafter sometimes referred to simply as gas). That is, as shown in a conceptual diagram in FIG. 1, the manufacturing apparatus includes a heating boat 2 provided in a vacuum chamber 3 on which a metal tellurium 1 is mounted, and a substrate holder 8 opposing the heating boat 2 for holding a substrate 7.
and a high frequency excitation coil 4 disposed between them.

製造に際して、真空槽3内はまずガスで充填される。こ
の際、安定なテルル低酸化物質膜を得るためには真空槽
内をまず10−’ Torr程度以上の高真空とした後
、高純度酸素ガス、不活性ガスまたはそれらの混合ガス
を導入し、槽内の真空度をlXl0−’ないし9 X 
10−’ Torr 、好ましくは2 X 10−’な
いし5X10  Torrに保つのがよい。なお、不活
性ガスとしてアルゴンガス、ヘリウムガス、窒素ガス等
を例示することが可能でるる。
During manufacturing, the inside of the vacuum chamber 3 is first filled with gas. At this time, in order to obtain a stable tellurium low oxide film, the inside of the vacuum chamber is first brought to a high vacuum of about 10-' Torr or more, and then high-purity oxygen gas, inert gas, or a mixture thereof is introduced. The degree of vacuum in the tank is 1X10-' to 9X
It is best to maintain the pressure at 10-' Torr, preferably between 2.times.10-' and 5.times.10-' Torr. Note that argon gas, helium gas, nitrogen gas, etc. can be used as examples of the inert gas.

この状態でスパイラルコイル状の高周波励起コイル4に
50〜500ワツトの電圧を印加し、高周波電界をつく
シ、ガスを励起してプラズマを生成させる。生成される
プラズマは、コイル形状、大きさ、電界の強さ及び真空
度によって制御されるが、その制御は容易で7bes高
精度の制御が可能である。
In this state, a voltage of 50 to 500 watts is applied to the spiral coil-shaped high frequency excitation coil 4 to create a high frequency electric field and excite the gas to generate plasma. The generated plasma is controlled by the shape and size of the coil, the strength of the electric field, and the degree of vacuum, and the control is easy and highly accurate.

プラズマ生成後、加熱ボート2に通電し、金属テルル1
を加熱、融解して蒸発させる0加熱源度及び真空槽3内
の圧力によってテルルの蒸気圧が定まシ、さらにボート
開口部面積によりてテルルの蒸発量が規定される。
After plasma generation, the heating boat 2 is energized and the metal tellurium 1
The vapor pressure of tellurium is determined by the temperature of the heating source used to heat, melt and evaporate the tellurium and the pressure inside the vacuum chamber 3, and the amount of tellurium evaporated is determined by the area of the boat opening.

プラズマが安定して発生するようになつ九ら、高周波電
圧を初期設定値に調節し、基板と蒸発源の間に設置した
シャッタを開き、基板上に蒸発粒子を沈着させる0プラ
ズマ内を通過したテルルの蒸発粒子は、第1図中に模式
的に示したように、プラズマ内の酸素イオンやラジカル
の衝撃によりその一部が酸化され、酸化されなかった蒸
発粒子と共に基板面上に沈着する。第1図中5.5′は
酸化し次テルルの蒸発粒子を、6.6’は酸化されなか
った蒸発粒子を示す。
Once the plasma was generated stably, the high frequency voltage was adjusted to the initial setting value, the shutter installed between the substrate and the evaporation source was opened, and the evaporation particles were deposited on the substrate. As schematically shown in FIG. 1, part of the tellurium evaporated particles is oxidized by the bombardment of oxygen ions and radicals in the plasma, and is deposited on the substrate surface together with the unoxidized evaporated particles. In FIG. 1, 5.5' indicates oxidized tellurium evaporated particles, and 6.6' indicates unoxidized evaporated particles.

本発明に従って形成された記録膜は該従来技術で使用さ
れているような単なる真空蒸着法等に比較して基板への
密着性が優れている。これは明確には説明しがたいが、
蒸発し九金属テルルが本発明の主要な要件であるプラズ
マ中を通過することによシ、ひじように微細化され、基
板上に緻密な膜を形成するためと、プラズマによって基
板表面がエツチングされるととKよって清浄化されるた
めと思われる。
The recording film formed according to the present invention has superior adhesion to the substrate compared to the simple vacuum deposition method used in the prior art. This is difficult to explain clearly, but
By passing the evaporated metal tellurium through plasma, which is the main requirement of the present invention, it is made into elbow-sized particles and forms a dense film on the substrate, and the substrate surface is etched by the plasma. This is thought to be due to the fact that it is cleaned by K.

本発明に従えば上述の記録媒体はさらに安定性を向上し
うる。すなわち、上述の方法に従って製造された記録媒
体を好ましくは高周波電力によってプラズマ化された酸
素ガス雰囲気中で酸化し、表面の一部をTe0zを主体
とする不活性層とすることによってさらに安定化を計る
ことが可能でおる。
According to the present invention, the stability of the above-mentioned recording medium can be further improved. That is, the recording medium manufactured according to the above-mentioned method is preferably oxidized in an oxygen gas atmosphere turned into plasma by high-frequency power, and a part of the surface is made into an inactive layer mainly composed of TeOz, thereby further stabilizing the medium. It is possible to measure it.

他の酸化方法としては空気中若しくは酸素雰囲気中で加
熱処理すること或はオゾン等の酸化剤で表面処理するこ
とが例示される。
Other oxidation methods include heat treatment in air or an oxygen atmosphere, or surface treatment with an oxidizing agent such as ozone.

次にその好ましい製造方法について説明する。Next, a preferred manufacturing method thereof will be explained.

記録膜を形成した装置と同一装置により酸化する場合は
、成膜終了とともに金属テルルの蒸発を止め、I X 
10−4〜9 X 10−” Torrの範囲で選択し
たガス分圧になるように酸素ガスを導入しつつ高周波電
力を印加する。この操作によシ記録膜は表面から徐々に
酸化され、安定化される0又、製造にあたっては記録膜
を形成後、別の製造装置を用いることによっても、同様
の操作によって酸化膜を形成することが可能である。
If the oxidation is performed using the same device that formed the recording film, stop the evaporation of the metallic tellurium at the end of the film formation, and
High-frequency power is applied while introducing oxygen gas to a gas partial pressure selected in the range of 10-4 to 9 X 10-'' Torr. Through this operation, the recording film is gradually oxidized from the surface and becomes stable. Furthermore, in manufacturing, after forming the recording film, it is also possible to form the oxide film by the same operation by using another manufacturing apparatus.

本発明で導入される酸素ガスの分圧はI X 10=〜
9 X 10−3Torrの範囲にあることが%によく
、その理由は、成膜時と同様に、安定したプラズマを発
生させ、膜表面に均一な酸化膜を形成させるためでるる
。又、その際の酸素ガスに不活性ガスを混合することも
可能であシ、不活性ガスとしてアルゴンガス、ヘリウム
ガス、窒素ガス等を例示することが可能である。その混
合割合は特に限定するものではないが、酸化反応を極端
に遅くすることのない程度にとどめるべきでめる0 酸化の際、高周波励起コイルに印加する高周波電力の大
きさとプラズマを発生させる時間は、散 、化される記
録膜の表面層の厚さに関係し、目的に応じて選択される
べきでるるが、高周波電力は6tb大きすぎると、弐面
層の酸化を進める過程で基板を軟化させ、極端な場合表
面にクラックを発生させ、6生できないまでに変形を起
こさせるので好ましくない。又、逆に小さすぎてはプラ
ズマの発生が顕著ではなく、酸化に対する効果が期待で
きない。このため高周波電力は50〜600ワツト(よ
り好ましくは100〜500ワツト)が好ましい範囲と
して使用される。基板としてはガラス及びアクリル板、
ポリカーボネート板をはじめとする各種プラスチックス
を使用することができる。
The partial pressure of oxygen gas introduced in the present invention is I x 10 = ~
It is best to be in the range of 9.times.10.sup.-3 Torr, and the reason for this is to generate stable plasma and form a uniform oxide film on the surface of the film, as in the case of film formation. Further, it is also possible to mix an inert gas with the oxygen gas at that time, and examples of the inert gas include argon gas, helium gas, nitrogen gas, etc. The mixing ratio is not particularly limited, but it should be kept to a level that does not extremely slow down the oxidation reaction.During oxidation, the magnitude of the high-frequency power applied to the high-frequency excitation coil and the time to generate plasma. It is related to the thickness of the surface layer of the recording film to be dispersed and should be selected depending on the purpose, but if the high frequency power is too high by 6 tb, the substrate will be damaged in the process of oxidizing the second surface layer. This is undesirable because it softens the material and, in extreme cases, causes cracks to occur on the surface and causes deformation to the point where it is no longer viable. On the other hand, if it is too small, plasma generation will not be noticeable and no effect on oxidation can be expected. For this reason, the preferred range of high frequency power used is 50 to 600 watts (more preferably 100 to 500 watts). Glass and acrylic plates are used as substrates,
Various plastics can be used, including polycarbonate plates.

また本発明では、必要に応じてテルル低酸化物層及び/
又は二酸化テルル層には上記の効果を損わない範囲で他
の物質、例えば増感剤や安定剤を含有せしめることかで
きる。
In addition, in the present invention, a tellurium low oxide layer and/or a tellurium low oxide layer and/or
Alternatively, the tellurium dioxide layer may contain other substances, such as sensitizers and stabilizers, to the extent that the above-mentioned effects are not impaired.

〔実施例〕〔Example〕

次に実施例をもって本発明の詳細な説明する。 Next, the present invention will be explained in detail with reference to Examples.

第1図に示した装置によシ、初期圧力Pが1×10−6
Torrとなるまで排気し、アルコンガx I Q v
ol。
In the device shown in Figure 1, the initial pressure P is 1 x 10-6.
Exhaust the air until it reaches Torr, and then
ol.

チ、fjR嵩ガス90 vol、チからなる混合ガスを
導入して、装置内の真空度を4. OX 10= To
rrとし、次いで高周波コイルに周波数13.56 M
Hz 、  200ワツトの高周波電力を印加してプラ
ズマを発生させた。
A mixed gas consisting of H, fjR bulk gas 90 vol, and H was introduced to bring the degree of vacuum inside the device to 4. OX10=To
rr, then the high frequency coil with a frequency of 13.56 M
Plasma was generated by applying high frequency power of Hz and 200 Watts.

そして純[99,99%の金属テルルを450〜500
”CK保って融解、蒸発させ、基板上に沈着させ念。
and pure [99,99% metallic tellurium from 450 to 500]
``Keep the CK, melt it, evaporate it, and deposit it on the substrate.''

成膜後、金属テルルの蒸発を停止し、同一装置を用い、
真空槽内が4. OX I O−’ Torr 11C
なるように酸素ガスを導入し、高周波電圧を500ワツ
トとして酸素プラズマを発生させ、先に成膜した記録媒
体を所定時間プラズマ中にさらした。(これを実施例1
.2とする。なお、先の成膜のみを行ない、酸素プラズ
マ中にさらさなかったものを比較例人とする。)又、二
酸化テルル(Tan2)とテルル(Te )を別々の蒸
発源から同時に蒸発させて基板上に同時に沈着し念もの
を比較例Bとし、さらにこの上にTeO2のみの真空蒸
着によI) TeOX層(厚さ25X)を設は念ものを
比較例Cとし、これらについての評価結果を第1表に示
した。
After film formation, the evaporation of metallic tellurium was stopped, and using the same equipment,
The inside of the vacuum chamber is 4. OX I O-' Torr 11C
Oxygen gas was introduced so that the high frequency voltage was set to 500 watts to generate oxygen plasma, and the recording medium on which the film had been previously formed was exposed to the plasma for a predetermined time. (This is Example 1
.. Set it to 2. In addition, a comparative example was one in which only the above-mentioned film formation was performed and the specimen was not exposed to oxygen plasma. ) Also, tellurium dioxide (Tan2) and tellurium (Te) were simultaneously evaporated from separate evaporation sources and deposited on the substrate at the same time as Comparative Example B, and then only TeO2 was vacuum evaporated on top of this (I). Comparative Example C is a sample in which a TeOX layer (thickness: 25X) was provided, and the evaluation results are shown in Table 1.

表中、各物性値は次のようにして求めた。In the table, each physical property value was determined as follows.

密着性;膜面に鋭い刃物で1m方眼の刻み目を100個
つけて、これにセロテープを貼シつけて90゜引き起こ
し、剥離し良数を調べた。
Adhesion: 100 incisions with a 1 m grid were made on the film surface using a sharp knife, and Sellotape was applied to the incisions, rotated 90 degrees, and peeled off to determine the number of good scores.

安定性;温度70℃、相対湿度90チの雰囲気中に3日
間さらし九前後の透過率(それぞれTo、Tsと表わす
。)を測定し、その比(Ts /To )を安定性の目
安とした。この比が1.0より大きくなるにつれて、安
定性が劣ることを示している。
Stability: The transmittance (represented as To and Ts, respectively) was measured after being exposed to an atmosphere at a temperature of 70°C and a relative humidity of 90°C for 3 days, and the ratio (Ts/To) was used as a measure of stability. . As this ratio becomes larger than 1.0, the stability becomes poorer.

第1表に示されるように1単なる真空蒸着法によって成
膜されただけのものは安定性、密着性ともに問題があり
、真空蒸着法により酸化層を設けたものは安定性はかな
り改良されるものの密着性には問題が残る。又、イオン
ブレーティング法によシ成膜されたものは密着性が優れ
ており、これに酸化層を設けることによシ、実用上問題
ないまでに安定性が向上していることがわかる0なお全
ての記録媒体について波長830nmの半導体レーザで
記録を行なつ念ところ、実用可能な程度の記録、再生特
性を示した。
As shown in Table 1, films formed simply by vacuum evaporation have problems with both stability and adhesion, whereas films with an oxide layer formed by vacuum evaporation have considerably improved stability. There remains a problem with the adhesion of objects. In addition, it can be seen that the film formed by the ion-blating method has excellent adhesion, and by adding an oxide layer to this film, the stability has been improved to the point where there is no problem in practical use. All recording media were recorded using a semiconductor laser with a wavelength of 830 nm and exhibited recording and reproducing characteristics at a practical level.

(発明の効果) この発明によれば、真空槽内で蒸発したテルル粒子が、
酸素ガスプラズマ内を通過する過程で活性化され、一部
は酸化されて基板上に沈着する。
(Effect of the invention) According to the invention, the tellurium particles evaporated in the vacuum chamber are
It is activated during the process of passing through the oxygen gas plasma, and some of it is oxidized and deposited on the substrate.

このため、はく離しにくい、環境による影響を受は難い
丈夫な安定し九テルル低酸化物層が形成出来る。
Therefore, a strong and stable low tellurium oxide layer that is difficult to peel off and hardly affected by the environment can be formed.

そして本発明によれば該テルル低酸化物層の表面には安
定な酸化膜が形成されているので該テルル低酸化物層の
安定性は一層向上される。
According to the present invention, since a stable oxide film is formed on the surface of the tellurium low oxide layer, the stability of the tellurium low oxide layer is further improved.

更に本発明に従えばテルル低酸化物層及び酸化膜が一体
構造となっているのでその界面に異物が混入せず、従っ
て、膜相互間の密着性が極めて優れている。
Further, according to the present invention, since the tellurium low oxide layer and the oxide film have an integral structure, foreign matter does not enter the interface thereof, and therefore, the adhesion between the films is extremely excellent.

従って、従来安定性を欠き実用化に不適と思われていた
高感度領域のテルル低酸化物層を含む記録媒体が極めて
経済的に、Lかも高い安定性を備えたものとして実現出
来るという顕著な効果を奏する。
Therefore, it is remarkable that a recording medium containing a tellurium low oxide layer in the high sensitivity range, which was conventionally thought to lack stability and be unsuitable for practical use, can be realized extremely economically and with high stability. be effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するイオンブレーティング装置の
模式図を示す。 図中1は金属テルル、2は蒸発ボート、3は真空槽、4
は高周波コイル、7は基板、8は基板保持具で・ある。 特許出願人 株式会社 り ラ  し 村山洋− 代珊人弁理士本多 堅
FIG. 1 shows a schematic diagram of an ion blating apparatus implementing the present invention. In the figure, 1 is tellurium metal, 2 is an evaporation boat, 3 is a vacuum tank, and 4
is a high frequency coil, 7 is a substrate, and 8 is a substrate holder. Patent applicant Hiroshi Murayama, RiRa Co., Ltd. - Ken Honda, Daikanjin patent attorney

Claims (3)

【特許請求の範囲】[Claims] (1)基板と、該基板上に高周波電力によつてプラズマ
化された不活性ガス、酸素ガス又はそれらの混合ガス中
を通過する金属テルル蒸気から形成してなるテルル系酸
化物TeO_X(0<X<1.0)層と、該テルル系酸
化物層の表面を酸化してなる酸化膜から構成される光記
録媒体。
(1) Tellurium-based oxide TeO_X (0< An optical recording medium comprising an oxide film formed by oxidizing the surface of the tellurium-based oxide layer.
(2)基板上に高周波電力によつてプラズマ化された不
活性ガス、酸素ガス又はそれらの混合ガス中を通過する
金属テルル蒸気からテルル系酸化物TeO_X(0<X
<1.0)を形成せしめた後、プラズマ中で酸化するこ
とを特徴とする光記録媒体の製造方法
(2) Tellurium-based oxide TeO_X (0<X
<1.0), and then oxidized in plasma.
(3)プラズマ中で酸化するに際し、酸素ガス分圧が1
×10^−^4〜9×10^−^3Torrの範囲にあ
ることを特徴とする特許請求の範囲第2項記載の光記録
媒体の製造方法
(3) When oxidizing in plasma, the oxygen gas partial pressure is 1
The method for manufacturing an optical recording medium according to claim 2, characterized in that the torr is in the range of ×10^-^4 to 9 ×10^-^3 Torr.
JP59264133A 1984-12-13 1984-12-13 Optical recording medium and production thereof Pending JPS61141592A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP59264133A JPS61141592A (en) 1984-12-13 1984-12-13 Optical recording medium and production thereof
DE8585309089T DE3582149D1 (en) 1984-12-13 1985-12-13 OPTICAL RECORDING MEDIUM FORMED FROM CHALCOGENOXIDE AND METHOD FOR THE PRODUCTION THEREOF.
EP85309089A EP0188100B1 (en) 1984-12-13 1985-12-13 Optical recording medium formed of chalcogen oxide and method for producing same
US07/082,909 US4786538A (en) 1984-12-13 1987-08-10 Optical recording medium formed of chalcogenide oxide and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59264133A JPS61141592A (en) 1984-12-13 1984-12-13 Optical recording medium and production thereof

Publications (1)

Publication Number Publication Date
JPS61141592A true JPS61141592A (en) 1986-06-28

Family

ID=17398916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59264133A Pending JPS61141592A (en) 1984-12-13 1984-12-13 Optical recording medium and production thereof

Country Status (1)

Country Link
JP (1) JPS61141592A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894144A (en) * 1981-11-30 1983-06-04 Fujitsu Ltd Recording medium
JPS592245A (en) * 1982-06-25 1984-01-07 Matsushita Electric Ind Co Ltd Production of optical recording disk

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5894144A (en) * 1981-11-30 1983-06-04 Fujitsu Ltd Recording medium
JPS592245A (en) * 1982-06-25 1984-01-07 Matsushita Electric Ind Co Ltd Production of optical recording disk

Similar Documents

Publication Publication Date Title
US4096026A (en) Method of manufacturing a chromium oxide film
US4786538A (en) Optical recording medium formed of chalcogenide oxide and method for producing the same
US4640860A (en) Optical recording coating
JP2006503977A (en) Controlling the stoichiometry and morphology of silver selenide films in sputter deposition.
JPS61141592A (en) Optical recording medium and production thereof
JPH0444812B2 (en)
JPH01196743A (en) Information recording medium
US4164604A (en) Leader or trailer tape for a magnetic recording medium
EP0158479B1 (en) Method for producing an optical recording medium by a chalcogenide suboxide
JPS61141591A (en) Optical recording medium comprising chalcogenide type oxide
Zhao et al. TiO2 films prepared using plasma ion assisted deposition for photocatalytic application
JPH0444814B2 (en)
JPS61142549A (en) Production of optical recording medium consisting of chalcogenide oxide
JPH0555940B2 (en)
JPS6211685A (en) Optical recording medium
JPS61142548A (en) Production of optical recording medium consisting of chalcogenide low oxide
JPS60124290A (en) Production of optical recording medium
JPS60125949A (en) Optical information recording medium and its production
JP2653237B2 (en) Manufacturing method of magnetic thin film
JP4625906B2 (en) Optical hydrogen detection material using ion irradiation and manufacturing method thereof
JPH0522590B2 (en)
JPH02171290A (en) Information recording medium
JPH02171289A (en) Information recording medium
JPS6198595A (en) Recording material and its manufacture
JPH10183332A (en) Production of optical thin film and device therefor