JPS61142056A - Cutting tool abnormality detecting means in machine tool - Google Patents

Cutting tool abnormality detecting means in machine tool

Info

Publication number
JPS61142056A
JPS61142056A JP26713585A JP26713585A JPS61142056A JP S61142056 A JPS61142056 A JP S61142056A JP 26713585 A JP26713585 A JP 26713585A JP 26713585 A JP26713585 A JP 26713585A JP S61142056 A JPS61142056 A JP S61142056A
Authority
JP
Japan
Prior art keywords
cutting tool
workpiece
tool
cutting
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26713585A
Other languages
Japanese (ja)
Other versions
JPS6238107B2 (en
Inventor
Koji Nakazawa
中沢 宏治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP26713585A priority Critical patent/JPS61142056A/en
Publication of JPS61142056A publication Critical patent/JPS61142056A/en
Publication of JPS6238107B2 publication Critical patent/JPS6238107B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0985Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Abstract

PURPOSE:To detect the abnormality of a cutting tool with high sensitivity and without impairing its cutting rigidity by detecting a thermoelectromotive between said cutting tool and a workpiece, measuring variation in its amplitude with respect to a feeding speed, and judging the abnormality of said cutting tool. CONSTITUTION:The detected value of thermoelectromotive between a cutting tool and a workpiece is frequency analyzed by a detected output processing part 15, and the relation of resonance frequency amplitude / feed speed is outputted to a comparator 17 and a monitor indicating device 18 as a detected output 15', by means of the result of the analysis and a feeding signal from a feed commanding part 14. On the other hand, a threshold value of the detected output 15' at each feed speed is previously set in a reference data memory 16, and a threshold value corresponding to a feed speed is outputted and compared by the comparator 17 and, if the detected output 15' is greater than the threshold value, a warning output 19 is outputted as the wear of the cutting tool is great. Since it is not necessary to outwardly insulate the cutting tool and the workpiece by means of an insulating material, the cutting rigidity is not impaired.

Description

【発明の詳細な説明】 本発明は工作機械におけるバイトの異常検出方法に関す
るものであり、更に詳しく言えば、旋盤等において主軸
の軸受絶縁効果を利用したバイト〜ワーク通電法により
バイトの摩耗、欠損、切粉からまり等の異常を検出する
バイトの異常検出方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for detecting an abnormality in a cutting tool in a machine tool. More specifically, the present invention relates to a method for detecting abnormality in a cutting tool in a machine tool. The present invention relates to a method for detecting an abnormality in a cutting tool, which detects abnormalities such as entanglement of chips.

従来より、旋盤等におけるバイトの摩耗、欠損、切粉か
らまり等の異常を検出する色々な方法が考えられ、一部
では実用化されている。この種の検出方法として、一般
的には、切削力検出器を用いるものや、モータ電力の測
定によるものが知られている。
BACKGROUND ART Conventionally, various methods have been devised to detect abnormalities such as wear, breakage, and entanglement of chips in cutting tools in lathes, etc., and some of them have been put into practical use. As this type of detection method, methods using a cutting force detector and methods based on measuring motor power are generally known.

前者の切削力検出器を用いる方法は、バイトと刃物台の
間に切削力検出器を配置し、正常なバイトで切削すると
きに比べ、切削力が大きくなったことを検出することに
よりバイトの摩耗を検出するものである。然し乍ら、こ
の方法では切削力検出器を取り付けているためバイトに
よる切削剛性を損なうという欠点があるばかりでなく、
切削力検出器自体の費用も高価であるという欠点がある
The former method using a cutting force detector places a cutting force detector between the cutting tool and the tool rest, and detects that the cutting force has increased compared to when cutting with a normal cutting tool. It detects wear. However, since this method is equipped with a cutting force detector, it not only has the disadvantage of impairing the cutting rigidity of the cutting tool, but also
A drawback is that the cutting force detector itself is expensive.

後者の旋盤のモータ電力を測定することによりバイ1−
の異常を検出する方法は、簡単な方法ではあるが、検出
感度が悪く、しかもモータからの動力伝達部分の損失、
変動が大きいためにバイトの異常を検出するには好まし
くない。
Bi1- by measuring the motor power of the latter lathe
Although the method for detecting abnormalities is simple, the detection sensitivity is poor and there is a loss of power transmission from the motor.
Since the fluctuation is large, it is not preferable for detecting abnormalities in bites.

従って、本発明の目的は、叙」二の如き従来技術の欠点
を除去し、切削剛性を損なうことなく、バイト異常を高
感度で検出することができる工作機械におけるバイトの
異常検出方法を提供することにある。
Therefore, an object of the present invention is to provide a method for detecting abnormality in a cutting tool in a machine tool, which eliminates the drawbacks of the prior art as described above and can detect abnormality in a cutting tool with high sensitivity without impairing cutting rigidity. There is a particular thing.

而して、本発明は、旋盤等の工作機械の主軸の所定部に
電気的接点を設け、この電気的接点とバイトとの間に電
源と抵抗の直列接続回路を挿入し、この抵抗両端より電
圧を検出出方として得ようとするものであり、前記抵抗
両端より得られる電圧により、バイ1−〜ツー9間に発
生した熱起電力を検出し、バイトの送り速度の低速領域
において、この熱起電力レベルが変化する割合を、予め
定められた基準の値と比較することにより得る様にした
ものである。この様に、本発明はバイト〜ワーク間の熱
起電力を電気的に検出し、この熱起電力振幅の送り速度
に対する変化を測定することによりバイトの摩耗異常を
検出することを特徴とする。
Therefore, the present invention provides an electrical contact at a predetermined part of the main shaft of a machine tool such as a lathe, inserts a series connection circuit of a power supply and a resistor between the electrical contact and the cutting tool, and connects the resistor from both ends. The purpose is to obtain voltage as a detection output.The voltage obtained from both ends of the resistor is used to detect the thermoelectromotive force generated between By 1 and To 9. The rate at which the thermoelectromotive force level changes is obtained by comparing it with a predetermined reference value. As described above, the present invention is characterized by electrically detecting the thermoelectromotive force between the cutting tool and the workpiece, and detecting abnormal wear of the tooling tool by measuring the change in the amplitude of this thermoelectromotive force with respect to the feed speed.

以下、図面を参照して本発明の一実施例について詳細に
説明する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to the drawings.

第1図は旋盤におけるバイトの異常検出装置の主要部を
示す概略構成図である。この図において、旋盤の主軸3
は旋盤の本体1に軸受2を介して支持されている。この
主軸3の一端には被加工物としてワーク5が取り付けら
れる。また、主軸3の他端には電気的接点4が接触可能
に設けられる。この電気的接点4には測定抵抗9が直列
に接続され、測定抵抗9の他端はスイッチ10に接続さ
れている。
FIG. 1 is a schematic configuration diagram showing the main parts of an abnormality detection device for a cutting tool in a lathe. In this figure, the main shaft 3 of the lathe
is supported by a main body 1 of the lathe via a bearing 2. A workpiece 5 is attached to one end of the main shaft 3 as a workpiece. Further, an electrical contact 4 is provided at the other end of the main shaft 3 so that it can be contacted. A measuring resistor 9 is connected in series to this electrical contact 4, and the other end of the measuring resistor 9 is connected to a switch 10.

一方、バイト6は刃物台7に固定され、この刃物台7は
主軸3と平行な方向及び主軸3の中心線方向に移動可能
とされる。バイト6と刃物台7は電気的に導通可能とさ
れ、刃物台7の所定部には外部電源8及び電気的接点す
が接続される。外部電源8の一端は電気的接点aに接続
される。そして、電気的接点aには例えば10mVの電
圧が印加され、電気的接点すは熱起電力測定用に供され
、これは前述したスイッチ1.0を切り替えることによ
り行なわれる。基本的には、この様に構成された装置の
前述した測定抵抗9の両端より測定される電圧を検出出
力11として得るわけである。
On the other hand, the cutting tool 6 is fixed to a tool rest 7, and this tool rest 7 is movable in a direction parallel to the main shaft 3 and in the direction of the center line of the main shaft 3. The cutting tool 6 and the tool rest 7 are electrically connected to each other, and an external power source 8 and an electrical contact point are connected to a predetermined portion of the tool rest 7. One end of the external power source 8 is connected to the electrical contact a. A voltage of 10 mV, for example, is applied to the electrical contact a, and the electrical contact a is used for measuring thermoelectromotive force, which is performed by switching the switch 1.0 described above. Basically, the voltage measured across the aforementioned measuring resistor 9 of the device configured in this way is obtained as the detection output 11.

次に動作について説明する。よく知られている様に、モ
ータ(図示せず)に電力を印加すると、このモータによ
り旋盤の主軸3は高速回転し、同時にワーク5も回転す
る。そしてバイト6をワーク5に近接し、適宜移動させ
ることにより、ワーク5は旋削される。この様な旋盤に
おいて、スイッチ10を接点すに接続すると、外部電源
8は印加されなくなり、測定抵抗9の両端には検出出力
11とし°Cバイト〜ワーク間に生ずる熱起電力が検出
される。また、スイッチ]0を接点aに接続すると、外
部電源8がバイ1−〜ツー9間、主軸3、電気的接点4
、測定抵抗9の閉回路に印加されるので、検出出力11
としては、バイト〜ワーク間の通電電流と熱起電力が重
畳されたものが検出される。
Next, the operation will be explained. As is well known, when electric power is applied to a motor (not shown), the main shaft 3 of the lathe is rotated at high speed by this motor, and the workpiece 5 is also rotated at the same time. Then, the workpiece 5 is turned by bringing the cutting tool 6 close to the workpiece 5 and moving it appropriately. In such a lathe, when the switch 10 is connected to the contact point, the external power source 8 is no longer applied, and the thermoelectromotive force generated between the C tool and the workpiece is detected as a detection output 11 at both ends of the measuring resistor 9. In addition, when switch ] 0 is connected to contact a, the external power supply 8 is connected between BY 1 and TO 9, main shaft 3, and electrical contact 4.
, is applied to the closed circuit of the measuring resistor 9, so the detection output 11
As a result, a superimposition of the current flowing between the cutting tool and the workpiece and the thermoelectromotive force is detected.

この様に、主軸3、電気的接点4、測定抵抗9、スイッ
チ10、外部電源8又は接点b、バイ1−〜ツー9間に
より電気的閉回路を構成することにより、バイ1へ〜ツ
ー9間の通電電流又は熱起電力を検出することができる
。勿論、主軸回転時に生ずる軸受2の絶縁効果により、
主軸3は本体1より電気的に絶縁されているので、バイ
ト6又はワーク5をその周囲から絶縁物により絶縁する
必要がないので、切削剛性を損なうことはない。
In this way, by configuring an electrical closed circuit between the main shaft 3, the electrical contact 4, the measuring resistor 9, the switch 10, the external power supply 8 or the contact b, and between the bi1 and the two 9, from the bi1 to the two nine. It is possible to detect the current flowing between the two or the thermoelectromotive force. Of course, due to the insulation effect of the bearing 2 that occurs when the main shaft rotates,
Since the spindle 3 is electrically insulated from the main body 1, there is no need to insulate the cutting tool 6 or the workpiece 5 from the surroundings with an insulating material, so cutting rigidity is not impaired.

第11図に示した実施例において、外部電源8の電圧を
例えば数10mV、測定抵抗9の値を1゜0Ω以下にし
て、スイッチ1oを接点aに接続した状態で旋削時の検
出出力11を得、これを周波数分析した結果を示すと、
第2図に示す様になる6即ち、バイ1−〜ツー9間の共
振周波数成分が明瞭に検出できることが理解される。
In the embodiment shown in FIG. 11, the voltage of the external power supply 8 is set to several tens of mV, the value of the measuring resistor 9 is set to 1°0Ω or less, and the detection output 11 during turning is set with the switch 1o connected to the contact a. The result of frequency analysis is shown as follows.
It is understood that the resonance frequency component between 6, ie, by 1- to 2 9, as shown in FIG. 2, can be clearly detected.

この共編周波数成分をバンドパスフィルタにて検出出力
1]より抽出し、その振幅を送り速度0.05〜0.5
nwn/revで変化させて測定すると、第3図に示す
様になる。第3図は、バイト6の刃が(1)新月、(2
)中摩耗刃、(3)摩耗刃の場合について測定したもの
である。この測定結果から理解される様に、加工中にお
いて、新月の場合はバイト〜ワーク間の共振はほとんど
認められないが、中摩耗、摩耗と刃の摩耗が進むにつれ
て、共振状態となる。また、摩耗が進行するに従って、
より低い速度でも共振周波数が検出される。一方、加工
後の送り一時停止(dνe]1)状態においては、新月
の場合は共振周波数が検出されるが、摩耗刃ではそれが
検出されない。
This co-edited frequency component is extracted from the detection output 1] using a bandpass filter, and its amplitude is measured at a feed rate of 0.05 to 0.5.
When measured by varying nwn/rev, the results are as shown in FIG. 3. Figure 3 shows that the blade of bite 6 is (1) new moon, (2
) A medium-worn blade; (3) A worn blade. As can be understood from this measurement result, during machining, in the case of Shingetsu, there is almost no resonance between the cutting tool and the workpiece, but as medium wear and wear and wear of the blade progresses, a resonance state occurs. Also, as wear progresses,
Resonant frequencies are detected even at lower speeds. On the other hand, in the post-processing feed pause (dve]1) state, the resonance frequency is detected in the case of a new moon, but it is not detected in the case of a worn blade.

この理由としては、摩耗刃では、削り残し量があるため
にdwel、]時にはバイ1−が所定の力でワークに押
し付けられており、ワークが1回転する間パイトルワー
クはほとんど完全な電気的導通状態にあり、共振周波数
域の高周波成分を有しないからである。これに対し、新
月では削り残し量がほとんどないため、dwel1時に
バイ]−はワークに軽く接触しており、ワークが1回転
する間にバイト〜ワークは断続的な電気的導通状態とな
り、そこで種々の周波数成分が含まれて共振周波数の高
周波成分も検出されるからである。
The reason for this is that with a worn blade, there is an amount of uncut material, so sometimes the bi1- is pressed against the workpiece with a predetermined force, and the pittle workpiece is almost completely electrically conductive during one rotation of the workpiece. This is because it does not have high frequency components in the resonant frequency range. On the other hand, in Shingetsu, there is almost no uncut material, so the bit is in light contact with the workpiece at dwell 1, and while the workpiece rotates once, the bit and workpiece are in an intermittent electrical conduction state. This is because various frequency components are included and high frequency components of the resonant frequency are also detected.

この様に、加工中或いはdwel、1時の共振周波数を
検出することにより、バイ1〜の摩耗度を検出すること
ができる。
In this manner, by detecting the resonance frequency during machining or dwell 1, it is possible to detect the wear degree of by 1.

第4図は、通電法によるバイトの異常検出装置を示すブ
ロック図である。これは、上述したバイ1へ〜ツー9間
の共振周波数振幅/送り速度の関係によりバイトの摩耗
度を自動的に判定するものである。図において、送り指
令部14は旋盤13を動作させるための制御手段であり
、送り指令部14の出力は旋盤]3に与えられる他、モ
ニタ表示装置18に与えられる。旋盤13はバイトの異
常検出装置を備えた第1図の如き構成を成しており、送
り指令によりモータ(図示せず)が回転され、主軸3及
びワーク5が回転されると共に、バイト6を載せた刃物
台7が動作可能とされる。モニタ表示装置18は例えば
CRTディスプレイ等で構成され、送り指令部14から
の信号により表示可能状態となる。
FIG. 4 is a block diagram showing an abnormality detection device for a cutting tool using the energization method. This is to automatically determine the degree of wear of the cutting tool based on the relationship between resonance frequency amplitude/feeding speed between the above-mentioned bye 1 to toe 9. In the figure, a feed command section 14 is a control means for operating the lathe 13, and the output of the feed command section 14 is given to the lathe 3 as well as to a monitor display device 18. The lathe 13 has a structure as shown in FIG. 1, which is equipped with a tool abnormality detection device, and a motor (not shown) is rotated in response to a feed command to rotate the main shaft 3 and the workpiece 5, and at the same time, the tool 6 is rotated. The mounted tool rest 7 is made operable. The monitor display device 18 is constituted by, for example, a CRT display or the like, and is enabled for display by a signal from the feed command unit 14.

第1図に示した測定抵抗9の両端の電圧は、検出出力]
1として第3図の検出出力処理部15に与えられる。ま
た、旋盤13の送り速度は基準データメモリ16に与え
らかる。この処理部15は検出出力11より周波数分析
を行ない、共振周波数振幅/送り速度の関係を検出出力
15′として比較器17及びモニタ表示装置18に出力
する。即ち、モニタ表示装置18には、第3図に示した
様な共振周波数振幅/送り速度の関係が表示される。
The voltage across the measuring resistor 9 shown in FIG. 1 is the detection output]
1 to the detection output processing section 15 in FIG. Further, the feed rate of the lathe 13 is given to the reference data memory 16. This processing section 15 performs frequency analysis on the detection output 11, and outputs the relationship between resonance frequency amplitude/feed speed as a detection output 15' to a comparator 17 and a monitor display device 18. That is, the monitor display device 18 displays the relationship between resonance frequency amplitude/feed rate as shown in FIG.

一方、基準データメモリ16には、第3図に示した各送
り速度における検出出力15′のしきい値が予め設定さ
れて記憶さ熟ている。従って、基準データメモリ16の
アドレスとしである送り速度が与えられるとそれに対応
した共振周波数振幅のあるしきい値が出力される。比較
器17はメモリ16から出力されるしきい値と、実際の
検出出力15′を比較する。つまり、送り速度が順次変
化すれば、この比較器]7により各送り速度におけるし
きい値と検出出力15′とが比較されることになる。こ
の比較の結果、例えば実際の検出出力15′がしきい値
より大であれば、バイトの摩耗大として警報出カニ9を
出力する。この様に、モニタ表示装置18の表示状態或
いは警報出力19により、共振周波数振幅/送り速度に
基づいてバイトの摩耗異常を検出することができる。
On the other hand, in the reference data memory 16, threshold values for the detection output 15' at each feed speed shown in FIG. 3 are preset and stored. Therefore, when a certain feed rate is given as an address in the reference data memory 16, a certain threshold value of the resonance frequency amplitude corresponding thereto is output. Comparator 17 compares the threshold value output from memory 16 with the actual detection output 15'. In other words, if the feed speed changes sequentially, the comparator 7 compares the threshold value at each feed speed with the detection output 15'. As a result of this comparison, for example, if the actual detection output 15' is larger than the threshold value, a warning signal 9 is output indicating that the wear of the cutting tool is large. In this way, it is possible to detect abnormal wear of the cutting tool based on the resonance frequency amplitude/feed rate based on the display state of the monitor display device 18 or the alarm output 19.

次に第5図乃至第7図を参照して本発明の他の実施例に
ついて説明する。
Next, other embodiments of the present invention will be described with reference to FIGS. 5 to 7.

本実施例は熱起電力/送り速度に基づいてバイトの異常
を検出するものである。
This embodiment detects abnormalities in the cutting tool based on thermoelectromotive force/feeding speed.

第5図及び第6図は、バイト〜ワーク間に発生する熱起
電力の大きさを測定し、送り速度との関係において示し
た図である。これは前述した第1図のスイッチ10を接
点すに接続し、第4図の送り指令部J−4より旋盤上3
に送り指令を与えることによって行なわれる。図示した
測定結果は断力、中摩耗刃、摩耗刃の各々について、送
り速度を0.01nn+/revから0.5+nm/r
evまで変化させた場合の熱起電力の値を示すものであ
る。これによれば、摩耗刃の場合は、バイト〜ワーク間
のすべり摩耗抵抗が大きくなり、特に送り速度が小さい
ときにはこの傾向が大きくなる。従って、送り速度が0
.01mm/rev近傍では摩耗刃の場合熱起電力が大
きくなることがわかる。第6図は特に切削回数との関連
において測定した熱起電力/送り速度を示す図であり、
この図においても送り速度が0.1++m/rev以下
では摩耗刃の熱起電力が増大していることがわかる。
FIGS. 5 and 6 are diagrams showing the magnitude of the thermoelectromotive force generated between the cutting tool and the workpiece measured and shown in relation to the feed rate. This is done by connecting the switch 10 shown in Fig. 1 mentioned above to the contact point, and from the feed command section J-4 shown in Fig. 4 on the lathe.
This is done by giving a sending command to the The measurement results shown are for each of the shear force, medium worn blade, and worn blade, and the feed rate is from 0.01 nn+/rev to 0.5+ nm/r.
It shows the value of thermoelectromotive force when changed to ev. According to this, in the case of a worn blade, the sliding wear resistance between the cutting tool and the workpiece becomes large, and this tendency becomes particularly large when the feed rate is low. Therefore, the feed rate is 0
.. It can be seen that in the vicinity of 0.01 mm/rev, the thermoelectromotive force becomes large in the case of a worn blade. FIG. 6 is a diagram showing the thermoelectromotive force/feed rate measured in particular in relation to the number of cuts;
This figure also shows that the thermoelectromotive force of the worn blade increases when the feed rate is 0.1++ m/rev or less.

第7図は、バイトの刃先が欠損した場合における熱起電
力/送り速度の測定結果を示した図である。この場合、
すべての送り速度において熱起電力が著しく増大してい
ることが理解される。
FIG. 7 is a diagram showing the measurement results of thermoelectromotive force/feed rate when the cutting edge of the cutting tool is damaged. in this case,
It can be seen that the thermoelectromotive force increases significantly at all feed speeds.

この様に、本実施例によればバイト〜ワーク間の熱起電
力を測定することにより熱起電力/送り速度に基づいて
バイトの摩耗、欠損等の異常を検出することができる。
In this way, according to this embodiment, by measuring the thermoelectromotive force between the cutting tool and the workpiece, it is possible to detect abnormalities such as wear and chipping of the cutting tool based on the thermoelectromotive force/feed rate.

これは、第4図に示したブロック図において、基準デー
タメモリ16に送り速度に対応して予め定められた熱起
電力のしきい値を記憶させておくと共に、検出出力処理
部15から得られる検出出力15′として実際に検出さ
れた熱起電力を出力させ、比較器17において、これら
両者を比較することにより検出され得る。勿論、この場
合モニタ表示装置18には、第5図乃至第7図の熱起電
力/送り速度の関係が表示される。
In the block diagram shown in FIG. 4, this is achieved by storing a predetermined threshold value of thermoelectromotive force corresponding to the feed speed in the reference data memory 16, and also obtaining the threshold value from the detection output processing section 15. Detection can be made by outputting the actually detected thermoelectromotive force as the detection output 15' and comparing the two in the comparator 17. Of course, in this case, the relationship between thermoelectromotive force/feeding speed shown in FIGS. 5 to 7 is displayed on the monitor display device 18.

以上、バイト〜ワーク通電法により共振周波数振幅/送
り速度、或いは熱起電力/送り速度を求めてバイトの摩
耗、欠損等の異常を検出する実施例が開示された。
As described above, an embodiment has been disclosed in which abnormalities such as wear and chipping of the cutting tool are detected by determining resonance frequency amplitude/feeding speed or thermoelectromotive force/feeding speed using the cutting tool to workpiece energization method.

次に1本発明の更に他の実施例として、バイト〜ワーク
通電法によりバイト〜ワーク間の切粉からまり、バイト
摩耗に伴うワーク加工外径の太りを検出する実施例につ
いて説明する。
Next, as still another embodiment of the present invention, an embodiment will be described in which an increase in the outside diameter of the workpiece due to the wear of the cutting tool due to the entanglement of chips between the cutting tool and the workpiece is detected by the tooling tool-workpiece energization method.

第8図は、バイト〜ワーク間に切粉がからまった場合の
熱起電力の測定結果を示す図である。
FIG. 8 is a diagram showing the measurement results of thermoelectromotive force when chips are entangled between the cutting tool and the workpiece.

図において、横軸は時間又はワーク加工位置を示す。ま
た実線は正常な場合、破線はバイトに切粉がからまった
場合を示し、A位置において切粉からまりが検出されて
いる。即ち、時間(又はワーク加工位置)に対する熱起
電力の変化をみると、正常な加工の場合に比べて、切粉
がからまった場合には、バイト〜ワーク間の熱起電力は
著しく減少する。これは切粉によってバイト〜ワーク間
が短絡されるために熱起電力振幅が減少することによる
In the figure, the horizontal axis indicates time or workpiece processing position. Further, the solid line indicates a normal state, and the broken line indicates a case where chips are entangled in the cutting tool, and entanglement with chips is detected at position A. In other words, when looking at the change in thermoelectromotive force over time (or workpiece machining position), the thermoelectromotive force between the cutting tool and the workpiece decreases significantly when chips become entangled, compared to when machining normally occurs. . This is because the amplitude of the thermoelectromotive force decreases due to a short circuit between the cutting tool and the work due to chips.

再度、第4図を参照するに、このバイト〜ワーク間に切
粉がからまることに伴う異常を検出するには、基準デー
タメモリ16に正常な加工時の熱起電力のデータを時間
(又はワーク加工位置)に対応させて記憶しておき、旋
盤13から与えられる時間(又はワーク加工位置)をア
ドレスとしてメモリ16より対応する熱起電力のデータ
を読み出すと共に、実際に検出された熱起電力とを比較
器17において比較することにより、検出することがで
きる。勿論、警報出力19によるばかりでなく、モニタ
素子装置18に第8図に示した測定結果を表示させてお
くことにより切粉からまりは容易に検出することができ
る。
Referring again to FIG. 4, in order to detect an abnormality caused by chips getting entangled between the cutting tool and the workpiece, data on thermoelectromotive force during normal machining is stored in the reference data memory 16 over time (or on the workpiece). The corresponding thermoelectromotive force data is read out from the memory 16 using the time (or workpiece processing position) given by the lathe 13 as an address, and the data is stored in correspondence with the actually detected thermoelectromotive force. can be detected by comparing them in the comparator 17. Of course, the entanglement of chips can be easily detected not only by the alarm output 19 but also by displaying the measurement results shown in FIG. 8 on the monitor element device 18.

ワーク5に切粉がからまった場合、これを検出するため
の更に他の実施例について第9図を参照して説明する。
Another embodiment for detecting when chips are entangled in the workpiece 5 will be described with reference to FIG. 9.

即ち、ワーク加工後にバイト6を所定量B(例えば1〜
2mm)だけワーク5より後退させ、この状態で工具経
路Cに沿ってバイト6を移動させる様にしたものである
That is, after machining the workpiece, the tool 6 is fixed by a predetermined amount B (for example, 1~
2 mm) from the workpiece 5, and in this state, the cutting tool 6 is moved along the tool path C.

而して、ワーク5に切粉からまり12があると、バイト
6はこの切粉からまりに接触し、ワーク−バイト間で電
気的通電状態が生ずる。従って、検出出力としては(b
)に示す様な通電電流波形が得られる。この様にして加
工後に、ワーク5にからまった切粉を検出することがで
きる。尚、この場合、ワーク5の切削は行なわれていな
いので、ワーク−バイト間には熱起電力はほとんど生じ
ない。
If the workpiece 5 is tangled in chips 12, the cutting tool 6 comes into contact with the tangled chips, and electrical current is generated between the workpiece and the cutting tool. Therefore, the detection output is (b
) is obtained. In this way, chips entangled in the workpiece 5 can be detected after machining. In this case, since the workpiece 5 is not being cut, almost no thermoelectromotive force is generated between the workpiece and the cutting tool.

第10図は本発明の更に他の実施例を説明するための図
である。この実施例はバイト摩耗に伴うワーク加工外径
の太りを検出する例について述べるものである。つまり
、摩耗のない正常のバイト61ではワーク5の外径はり
。に仕上がるが、摩耗したバイト62ではD□に仕上が
る。これは、正常のバイト61では原点位置0からワー
ク5方向にX。だけ進んだ位置で旋削が行なわれるのに
対し、同じ送り指令を与えても摩耗したバイト62では
その刃先が(Xa−B)の位置までしか送られず、この
位置で旋削が行なわれるためである。
FIG. 10 is a diagram for explaining still another embodiment of the present invention. This embodiment describes an example of detecting an increase in the outer diameter of a workpiece due to tool wear. In other words, in a normal cutting tool 61 without wear, the outer diameter of the workpiece 5 is large. However, with the worn bit 62, the finish is D□. This is X in the workpiece 5 direction from the origin position 0 in a normal cutting tool 61. This is because turning is performed at a position advanced by Xa-B, whereas even if the same feed command is given, the worn cutting tool 62 can only send its cutting edge to the position (Xa-B), and turning is performed at this position. be.

この様な摩耗バイトによる旋削から生ずるワーク加工外
径の太りを検出するために、例えば第11図に示す如く
、刃物台7に旋削用バイト6と通電検査用バイト6′を
取り付け、バイト6による旋削後、刃物台7を90°回
転させて、バイト6′にてワーク5の外径を通電チェッ
クする。この場合、バイト6′は原点位置0からXoた
け前進したときに正常のバイトで加工したワーク外径り
、にかろうじて接触しない程度に、その位置を調整して
おく、すると、摩耗バイト62で旋削したワーク外径り
にバイト6′の先端が接触し、バイト〜ワーク間は通電
状態となる。この通電状態を検出することにより、バイ
トの摩耗度が検出できる。尚、本実施例の変形例として
は、通電検査用バイI−6’の代わりに接触針を用いて
もよい。
In order to detect the increase in the outer diameter of the workpiece resulting from turning with such a worn cutting tool, for example, as shown in FIG. After turning, the tool rest 7 is rotated by 90 degrees, and the outer diameter of the workpiece 5 is checked for energization using the cutting tool 6'. In this case, adjust the position of the cutting tool 6' so that when it moves forward Xo distances from the origin position 0, it barely touches the outer diameter of the workpiece machined with the normal cutting tool. The tip of the cutting tool 6' comes into contact with the outer diameter of the workpiece, and the connection between the cutting tool and the workpiece becomes energized. By detecting this energization state, the degree of wear of the cutting tool can be detected. In addition, as a modification of this embodiment, a contact needle may be used instead of the current testing bi I-6'.

以上、本発明のいくつかの実施例について説明したが、
本発明は上述した実施例に限定されることなく、種々変
形して実施し得ることは言うまでもない。例えばバイト
の摩耗等の異常を検出するために、バイト〜ワーク通電
法による共振周波数振幅/送り速度、熱起電力/送り速
度の2つの手法を併用する様にしてもよい。
Several embodiments of the present invention have been described above, but
It goes without saying that the present invention is not limited to the embodiments described above, and can be implemented with various modifications. For example, in order to detect an abnormality such as wear of the cutting tool, two methods of resonant frequency amplitude/feeding speed and thermoelectromotive force/feeding speed using the cutting tool-work energization method may be used together.

この様に本発明によれば、バイト又はワークを絶縁部材
によって絶縁することなくバイト〜ワーク間の通電を可
能にし、旋削剛性を損なうことなく、バイトの異常を高
感度で検出することができる。また、バイト〜ワーク通
電法により熱起電力/送り速度を検出し、バイトの摩耗
等の異常を検出することができる。
As described above, according to the present invention, it is possible to conduct electricity between the cutting tool and the workpiece without insulating the cutting tool or the workpiece with an insulating member, and abnormalities in the cutting tool can be detected with high sensitivity without impairing turning rigidity. Further, thermoelectromotive force/feed rate can be detected by the tool-to-work energization method, and abnormalities such as tool wear can be detected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による旋盤におけるバイトの
異常検出装置の主要部を示す概略構成図、第2図はバイ
ト〜ワーク通電法による検出出力の周波数分析結果を示
す図、第3図は通電電流によるバイト共振周波数振幅と
送り速度の関係を示す図、第4図は通電法によるバイト
の異常検出装置を示すブロック図、第5図、第6図は通
電法によるパイトルワーク熱起電力と送り速度の関係を
示す図、第7図は通電法によるパイトルワーク熱起電力
と送り速度の関係を示す図で、特に欠損刃の場合の比較
を説明するための図、第8図は加工中における切粉から
まり時の熱起電力を正常時と比べた比較例を示す図、第
9図は通電法により切粉からまりを検出する実施例を説
明するための図、第10図はバイト摩耗に伴うワーク加
工外径の太りを検出する実施例について説明するための
図、第11図は通電チェック用のバイトを取付けた刃物
台の一例を示す図である。 1−・・・旋盤本体、2・・・軸受、3・・・主軸、4
・・・電気的接点、5・・・ワーク、6・・・バイト、
7・・・刃物台、8・・・外部電源、9・・・測定抵抗
、10・・・切替スイッチ、16・・・基準データメモ
リ。
Fig. 1 is a schematic configuration diagram showing the main parts of an abnormality detection device for a cutting tool in a lathe according to an embodiment of the present invention, Fig. 2 is a diagram showing a frequency analysis result of the detection output by the cutting tool to workpiece energization method, and Fig. 3 is a diagram showing the relationship between the resonant frequency amplitude of the cutting tool and the feed rate due to the energizing current, Figure 4 is a block diagram showing the abnormality detection device of the cutting tool using the energizing method, and Figures 5 and 6 are the graph showing the thermoelectromotive force of the pittle work using the energizing method. Figure 7 is a diagram showing the relationship between the feed rate and the thermoelectromotive force of the pittle work by the energization method, and is especially a diagram to explain the comparison in the case of a chipped blade. A diagram showing a comparative example of thermal electromotive force when chips are entangled with normal conditions, Figure 9 is a diagram to explain an example of detecting chips entangled by the energization method, and Figure 10 is a diagram showing tool wear. FIG. 11 is a diagram illustrating an example of detecting an increase in the outer diameter of a workpiece due to processing, and FIG. 11 is a diagram showing an example of a tool rest to which a cutting tool for checking energization is attached. 1-... Lathe body, 2... Bearing, 3... Main shaft, 4
...electrical contact, 5...work, 6...bite,
7...Turret post, 8...External power source, 9...Measuring resistor, 10...Selector switch, 16...Reference data memory.

Claims (1)

【特許請求の範囲】[Claims] 主軸の回転に同期して回転するワークにバイトにて加工
を施す工作機械において、該主軸の所定部に接触する電
気的接点と、該電気的接点とバイト間に挿入された抵抗
を備え、該抵抗の両端より検出される電圧に基づいてバ
イト〜ワーク間に発生した熱起電力を検出すると共に、
ある送り速度で得られた該熱起電力と該送り速度に対応
して予め定められた熱起電力とを比較することによりバ
イトの異常を検出することを特徴とする工作機械におけ
るバイトの異常検出方法。
A machine tool that uses a cutting tool to process a workpiece that rotates in synchronization with the rotation of a spindle, is equipped with an electrical contact that contacts a predetermined part of the spindle, and a resistor inserted between the electrical contact and the cutting tool. The thermoelectromotive force generated between the cutting tool and the workpiece is detected based on the voltage detected from both ends of the resistor, and
Abnormality detection of a cutting tool in a machine tool, characterized in that abnormality of the cutting tool is detected by comparing the thermoelectromotive force obtained at a certain feed rate with a thermoelectromotive force predetermined corresponding to the feeding speed. Method.
JP26713585A 1985-11-29 1985-11-29 Cutting tool abnormality detecting means in machine tool Granted JPS61142056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26713585A JPS61142056A (en) 1985-11-29 1985-11-29 Cutting tool abnormality detecting means in machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26713585A JPS61142056A (en) 1985-11-29 1985-11-29 Cutting tool abnormality detecting means in machine tool

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP12112680A Division JPS5748450A (en) 1980-09-03 1980-09-03 Detecting method of abnormality of tool in machine tool

Publications (2)

Publication Number Publication Date
JPS61142056A true JPS61142056A (en) 1986-06-28
JPS6238107B2 JPS6238107B2 (en) 1987-08-15

Family

ID=17440561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26713585A Granted JPS61142056A (en) 1985-11-29 1985-11-29 Cutting tool abnormality detecting means in machine tool

Country Status (1)

Country Link
JP (1) JPS61142056A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267949A (en) * 1998-03-20 1999-10-05 Kawasaki Heavy Ind Ltd Device and method for detecting wear of tool
EP1688215A1 (en) * 2005-02-08 2006-08-09 Mikron Comp-Tec AG Device checking method for machine tool
JP2017166887A (en) * 2016-03-15 2017-09-21 日本特殊陶業株式会社 Device and method for recording data associated with processing
CN110153799A (en) * 2019-05-14 2019-08-23 华中科技大学 A kind of milling cutter damage testing method, apparatus and application based on permanent magnetism disturbance probe
JP2020124807A (en) * 2020-05-27 2020-08-20 国立大学法人東海国立大学機構 Vibration processing device and vibration processing method
WO2022049719A1 (en) * 2020-09-04 2022-03-10 国立大学法人東海国立大学機構 Cutting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6456501A (en) * 1987-05-26 1989-03-03 Noda Corp Vermin repellent-treated flitch and manufacture thereof

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11267949A (en) * 1998-03-20 1999-10-05 Kawasaki Heavy Ind Ltd Device and method for detecting wear of tool
EP1688215A1 (en) * 2005-02-08 2006-08-09 Mikron Comp-Tec AG Device checking method for machine tool
JP2017166887A (en) * 2016-03-15 2017-09-21 日本特殊陶業株式会社 Device and method for recording data associated with processing
CN110153799A (en) * 2019-05-14 2019-08-23 华中科技大学 A kind of milling cutter damage testing method, apparatus and application based on permanent magnetism disturbance probe
JP2020124807A (en) * 2020-05-27 2020-08-20 国立大学法人東海国立大学機構 Vibration processing device and vibration processing method
WO2022049719A1 (en) * 2020-09-04 2022-03-10 国立大学法人東海国立大学機構 Cutting device

Also Published As

Publication number Publication date
JPS6238107B2 (en) 1987-08-15

Similar Documents

Publication Publication Date Title
JP5536611B2 (en) Method and apparatus for monitoring machine tool, machine tool
US7056072B2 (en) Method and apparatus for controlling movement of cutting blade and workpiece
AU545733B2 (en) Rotating tool wear monitoring apparatus
CN106255572B (en) Device and method for measuring and monitoring cutter
JPS61142056A (en) Cutting tool abnormality detecting means in machine tool
US4329771A (en) Contact detecting apparatus
JP4719345B2 (en) Tool position control method and apparatus for machine tools
JPS6137058B2 (en)
JP2008087092A (en) Abnormality detecting device for tool
JP2748889B2 (en) Tool wear compensation device
JPS61142055A (en) Cutting tool abnormality detecting means in machine tool
JPS6116580B2 (en)
JP2002120129A (en) Cutting tool with electrically conductive film and its use
KR102555548B1 (en) Grinding and/or eroding machines and their measuring and datuming methods
JP4271272B2 (en) Work machining method on lathe
JPS6059108B2 (en) Machine tool abnormality monitoring device
JPS6161939B2 (en)
JPS6158263B2 (en)
JPS6322938B2 (en)
JPH0215954A (en) Tool abnormality monitoring method
JPS5820743B2 (en) Tool abnormality detection method for machine tools
JPS57184655A (en) Detector for broken tool edge
JPH074733B2 (en) Processing monitoring device
JPH047882Y2 (en)
JPS5914130Y2 (en) cutting equipment