JPS61140778A - Method of refining he - Google Patents

Method of refining he

Info

Publication number
JPS61140778A
JPS61140778A JP59262573A JP26257384A JPS61140778A JP S61140778 A JPS61140778 A JP S61140778A JP 59262573 A JP59262573 A JP 59262573A JP 26257384 A JP26257384 A JP 26257384A JP S61140778 A JPS61140778 A JP S61140778A
Authority
JP
Japan
Prior art keywords
heat exchange
impurities
impure
flow path
exchange tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59262573A
Other languages
Japanese (ja)
Inventor
浅原 一彦
哲也 大谷
佃 淳二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP59262573A priority Critical patent/JPS61140778A/en
Publication of JPS61140778A publication Critical patent/JPS61140778A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/0007Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0005Light or noble gases
    • F25J1/001Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0017Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0062Light or noble gases, mixtures thereof
    • F25J1/0065Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/08Separating gaseous impurities from gases or gaseous mixtures or from liquefied gases or liquefied gaseous mixtures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/20Processes or apparatus using other separation and/or other processing means using solidification of components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/24Processes or apparatus using other separation and/or other processing means using regenerators, cold accumulators or reversible heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2215/00Processes characterised by the type or other details of the product stream
    • F25J2215/30Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/02Separating impurities in general from the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/30Compression of the feed stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2260/00Coupling of processes or apparatus to other units; Integrated schemes
    • F25J2260/20Integration in an installation for liquefying or solidifying a fluid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop
    • F25J2270/06Internal refrigeration with work-producing gas expansion loop with multiple gas expansion loops

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、不純He中の不純物を凝縮乃至凝固させるこ
とによってHeを精製する方法に関し、詳細には長期に
亘り安定的にHe精製を行なうことができ、且つ不純H
e(以下原料Heと言うこともある)に純度の変動があ
っても安定した精製性能を発揮するHe精製方法に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for purifying He by condensing or solidifying impurities in impure He, and in particular, a method for stably refining He over a long period of time. and impure H
The present invention relates to a He purification method that exhibits stable purification performance even if there are fluctuations in purity of He (hereinafter also referred to as raw material He).

〔従来の技術〕[Conventional technology]

不純He中から水、二酸化炭素、空気等の不純物を除去
し精製Heを得る方法を大別すると、吸着法と凝固法に
分けられる。このうち凝固法は設備をコンパクト化でき
且つ操作性が良好である等の長所がある為、吸着法に比
べて広く実用化されている。この様な凝固法によるHe
精製方法の代表例としては例えば特公昭52−4517
号を挙げることができる。
Methods for obtaining purified He by removing impurities such as water, carbon dioxide, and air from impure He can be roughly divided into adsorption methods and coagulation methods. Among these, the coagulation method has advantages such as compact equipment and good operability, and is therefore more widely put into practical use than the adsorption method. He by this type of coagulation method
A representative example of a purification method is, for example, Japanese Patent Publication No. 52-4517.
I can list the numbers.

即ち該He精製方法は、第1He流路と第28 e流路
の間で熱交換を行なう様に構成した浄化熱交換器を用い
る方法であり、不純Heを精製するに当たっては第1H
e流路に不純Heを流す一方、第2He流路に精製済み
の低温He(例えばHe液化・冷凍装置の低圧He管路
から抜き出されたHe  )を導入して不純物を冷却・
凝固させ、第1He流路の壁面等に析出・付着させる。
That is, the He purification method uses a purification heat exchanger configured to exchange heat between the first He channel and the 28th e channel.
While impure He flows through the e channel, purified low-temperature He (for example, He extracted from the low-pressure He pipe of a He liquefaction/refrigeration device) is introduced into the second He channel to cool and remove impurities.
It is solidified and deposited and adhered to the wall surface of the first He channel.

こうして得た高純度Heを需要部(例えば前出のHeの
液化・冷凍装置における高圧側He管路)へ供給する。
The high-purity He obtained in this way is supplied to a demand section (for example, the high-pressure side He conduit in the aforementioned He liquefaction/refrigeration system).

そして上記精製運転によって第11(e流路内の不純物
凝固蓄積量が増大すると、不純Heに対する流通抵抗が
大きくなるのでこれを第1Heの流路内の圧力変化によ
って検知し精製工程を停止する。そして凝固不純物の排
出工程に移るが、このときは第1及び第214e流路へ
のHe供給を中断し、特に第2He流路については高温
Heの導入に切換えて第IHe流路内を昇温させ該流路
内の凝固不純物を昇温・融解させ系外へ排出する。
When the amount of solidified impurities accumulated in the 11th (e) flow path increases during the purification operation, the flow resistance to impure He increases, so this is detected by the pressure change in the 1st He flow path and the purification process is stopped. Then, the process moves to the discharge process of solidified impurities, but at this time, the supply of He to the first and 214e channels is interrupted, and especially for the second He channel, the temperature is increased by switching to the introduction of high-temperature He. The solidified impurities in the flow path are heated and melted and discharged out of the system.

しかるに上記公告発明方法を含めて従来の汎用凝固法で
は除去し得る限りの不純物を全て凝固させて取り除くと
いう考え方に立っているから凝固の完結の為には相当多
くの寒冷を与える必要が生じ、また不純物は全て不純H
e流路(第1He流路)で凝固するので不純物が多いと
きには凝固不純物書こよって該流路が短時間のうちに閉
塞してしまう。即ち液化工程が短時間の運転で破過に至
り、すぐに第1Heの流路の再生即ち疑固不純物の融解
・排出工程に切換えなければならないのでHe精製効率
の低迷を余儀なくされている。しかもこの工程では凝固
不純物を取り出す為にこれを液化又は気化するまで昇温
させる必要があり、これには相当の熱量及び時間が費さ
れる。そして前述の全量凝固に使う寒冷コストの増大の
みならず浄化−再生のサイクルを繰返す毎に冷却と昇温
を繰返すことになり熱経済的に見ても極めてロスが大き
い。
However, conventional general-purpose coagulation methods, including the method disclosed above, are based on the concept of coagulating and removing all impurities that can be removed, so it is necessary to apply a considerable amount of cooling to complete coagulation. Also, all impurities are impurity H
Since it solidifies in the e channel (first He channel), if there are a lot of impurities, the solidified impurities will clog the channel in a short time. That is, the liquefaction process reaches a breakthrough after a short period of operation, and it is necessary to immediately switch to the regeneration of the first He flow path, that is, the process of melting and discharging pseudo-solid impurities, resulting in a decline in He purification efficiency. Moreover, in this step, in order to remove solidified impurities, it is necessary to raise the temperature until they liquefy or vaporize, which requires a considerable amount of heat and time. Not only does the above-mentioned refrigeration cost for the total solidification increase, but also cooling and heating are repeated each time the purification-regeneration cycle is repeated, resulting in an extremely large loss from a thermoeconomic perspective.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者等はこうした事態を解消すべく柚々検討を重ね
た。その結果He精製効率の低迷並びに熱エネルギーの
無駄等の生ずる原因が不純物の全てを凝固状態とした上
で原料Heから分離していたという点にあることに気が
付いた。
The inventors of the present invention have made extensive studies to resolve this situation. As a result, it was discovered that the cause of the low He purification efficiency and waste of thermal energy was that all impurities were solidified before being separated from the raw material He.

即ち除去すべき不純物は原料He中において気体状態で
存在するが、これを141He流路内で冷却していくと
成るもの(CO□等)は−気に#固するが、成るもの(
H2Oや空気等)は−亘凝縮して液状となった後さらに
冷却されて凝固する。
In other words, the impurities to be removed exist in a gaseous state in the raw material He, but when they are cooled in the 141He flow path, the impurities (CO□, etc.) become solid, but the impurities formed (
H2O, air, etc.) are condensed over the air to become liquid, and then further cooled and solidified.

従って気体Heとの分離だけを考えるならば後者の82
0 や空気、特番こH20は凝縮した時点で既に気体H
eと分離可能な状態にあるのであるが、従来の手段では
液状のまま第1H6流路から取出すという考えがなかっ
たし、元々極低温としなければ捕捉し切れない空気等を
含め全不純物を一括して捕捉しようという考え方に支配
されていた為、これら液状成分を史にわざわざ極低温ま
で冷却して凝固させていたと考えられる。
Therefore, if we consider only the separation from gaseous He, the latter 82
0, air, and special program H20 are already gaseous H20 at the time of condensation.
However, with conventional means, there was no thought to extract it from the first H6 flow path in liquid form, and all impurities, including air, which could not be captured unless the temperature was reduced to an extremely low temperature, were collected at once. It is thought that in history these liquid components were purposely cooled to extremely low temperatures and solidified because they were dominated by the idea of capturing them.

本発明者等はこうした第1He流路内における不純物の
凝縮・縮開挙動に注目し、不純物のうち液状での抜出し
が可能なものについては更に必要以上の冷却を付加する
ことなく凝縮温度までの冷却を加えた段階で抜出すとい
う手段に想到した。
The present inventors focused on the condensation/condensation behavior of impurities in the first He flow path, and found that impurities that can be extracted in liquid form can be extracted up to the condensation temperature without additional cooling beyond the necessary level. We came up with a method of extracting the material after it has been cooled.

もしこの様な手段が可能となれば冷熱エネルギーの消費
が少なくなりHe精製効率を向上させることができるで
あろうという期待が持たれる。
If such means become possible, it is expected that the consumption of cold energy will be reduced and the efficiency of He purification will be improved.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記推論を更に進めて研究を重ねた結果完成さ
れたものであって、その要旨は、媒体流路と不純He流
路を夫々内包する熱交換塔を用いてHeの精製を行なう
に当たり、不純Heの浄化に際しては媒体流路に冷媒を
導入することによって不純He中の不純物を冷却してH
eから分離し該熱交換塔の再生に際しては媒体流路に熱
媒を導入することにより前記分離不純物を除去する工程
を含むHe精製方法において、浄化工程中不純He流路
内で凝縮乃至凝固した不純物のうち液状物は該浄化工程
中に液状のまま熱交換塔外へ抜出し、他方熱交換塔再生
に際しては熱交換塔の前後で不純He流路を遮断し且つ
該遮断された不純He流路内を減圧することによって固
形不純物を気化して抜出す点に存在する。
The present invention was completed as a result of further research based on the above reasoning, and the gist of the invention is to purify He using a heat exchange column that includes a medium flow path and an impure He flow path, respectively. When purifying impure He, the impurities in the impure He are cooled down by introducing a refrigerant into the medium flow path.
In a He purification method that includes a step of separating impurities from e and removing the separated impurities by introducing a heat medium into a medium flow path during regeneration of the heat exchange tower, impure He condensed or solidified in the flow path during the purification step. Among the impurities, liquid substances are extracted out of the heat exchange tower in a liquid state during the purification process, and on the other hand, when regenerating the heat exchange tower, the impure He flow path is blocked before and after the heat exchange tower, and the impure He flow path that has been blocked is It exists at the point where solid impurities are vaporized and extracted by reducing the pressure inside.

〔作用」 不純He中に含まれる不純物のうち代表成分をとりあげ
、それらの1気圧下における凝縮点、凝固点、昇華点を
比較すると下記第1表の通りとなる。
[Function] Taking representative components among the impurities contained in impure He, and comparing their condensation points, freezing points, and sublimation points under 1 atm, the results are as shown in Table 1 below.

第   1   表 即ち0℃までの温度で大部分の水分を凝縮させることが
でき、又−209,86℃ までの温度であれば酸素及
び窒素を凝縮させることができる。従ってとりあえず水
分を液状段階で抜出そうとするならば、例えば前記の様
に構成された熱交換塔内における0℃までの冷却温度区
域に水分抜出ラインを接続し、該ラインにトラップ等の
気液分離機構を介設すればよい。又熱交換塔における2
09.86℃までの冷却温度区域に液分抜出ラインを接
続し、該ラインに気液分離機構を介設すれば液体酸素及
び液体窒素を一括して抜出すことができると考えられる
。そして液体酸素や液体窒素の一部及びC02等の非凝
縮成分についてはその量が著しく減少しているので従来
通り熱交換塔内に凝固付着させることによってHeと分
離し、熱交換塔の再生時に凝固不純物を昇温・気化させ
て抜出せばよい。
Table 1: Most water can be condensed at temperatures up to 0°C, and oxygen and nitrogen can be condensed at temperatures up to -209.86°C. Therefore, if you are trying to remove moisture in the liquid stage, for example, connect a moisture extraction line to the cooling temperature area down to 0°C in the heat exchange tower configured as described above, and connect a trap or the like to the line. A gas-liquid separation mechanism may be provided. Also, 2 in the heat exchange tower
It is thought that if a liquid extraction line is connected to the cooling temperature zone up to 09.86°C and a gas-liquid separation mechanism is interposed in the line, liquid oxygen and liquid nitrogen can be extracted all at once. Since the amount of non-condensable components such as part of liquid oxygen and liquid nitrogen and C02 has decreased significantly, they are separated from He by being solidified and deposited in the heat exchange tower as before, and when the heat exchange tower is regenerated. The solidified impurities can be extracted by raising the temperature and vaporizing them.

〔実施例〕〔Example〕

以下本発明を下記実施態様に基づき詳述する。 Hereinafter, the present invention will be explained in detail based on the following embodiments.

第1図は本発明の好ましい実施態様を示すフロー説明図
で、熱交換部Aは1a〜1dの4つの熱交換塔から構成
され該熱交換部Aに対する冷媒供給源であって精製He
の需要部ともなるHe液化冷凍装置Bかこれに組み合わ
されることによりHe精製装置Sが構成されている。尚
図示したHe液化・冷凍装置B自体は特異なものではな
く一般的手法に従って運転される。即ち冷凍運転に当た
っては圧縮機20により加圧して得た高圧Heを熱交換
器21a〜21f(高圧側ライン)内へ順次通すが、そ
の間低温低圧Heが熱交換器21f〜21a(低圧側ラ
イン)の順序で返送されているので両者間で熱交換が行
なわれる。父型に高圧Heの一部を膨張機22a、22
bにおいて断熱膨張させて得た寒冷も熱交換に供されこ
れらを経て冷却された高圧Heはさらにジュールトムソ
ン(JT)弁23によって冷却・液化する。こうして得
た液体Heを含むHeは極低温環境部24へ供給される
。一方極低温環境部24を冷却し自らは気化した低圧H
eは前記の通り熱交換器21f〜21@(低圧側ライン
)を1+1次通過する間に高圧Heと熱交換して昇温し
圧縮機20の吸入側に返送される。
FIG. 1 is a flow explanatory diagram showing a preferred embodiment of the present invention, in which a heat exchange section A is composed of four heat exchange towers 1a to 1d, and is a refrigerant supply source for the heat exchange section A.
The He purification device S is configured by combining the He liquefaction refrigeration device B, which also serves as a demand section, with this. The illustrated He liquefaction/refrigeration apparatus B itself is not unique and is operated according to a general method. That is, during refrigeration operation, high-pressure He pressurized by the compressor 20 is sequentially passed into the heat exchangers 21a to 21f (high-pressure side line), but during that time, low-temperature, low-pressure He is passed through the heat exchangers 21f to 21a (low-pressure side line). Since they are returned in this order, heat exchange takes place between them. A portion of the high pressure He is transferred to the expanders 22a and 22.
The cold obtained by adiabatic expansion in b is also subjected to heat exchange, and the cooled high-pressure He is further cooled and liquefied by a Joule-Thomson (JT) valve 23. The thus obtained He containing liquid He is supplied to the cryogenic environment section 24. On the other hand, the low-pressure H that cools the cryogenic environment part 24 and vaporizes itself
As described above, while passing through the heat exchangers 21f to 21@ (low pressure side line) 1+1, e is heated by exchanging heat with high pressure He, and is returned to the suction side of the compressor 20.

上記He精製装置Sを用いてHeの精製を行なうに当た
っては、バルブ14,16.18を開放しくバルブ10
は閉鎖、バルブ19は開放しておく)、He液化冷凍装
置Bの低圧側ラインから抜き出された低温低圧Heを媒
体流路3d〜3aへ順次導入し、さらにバルブ16を経
由して圧縮機20の吸入側へ戻す。一方不純He 5に
ついては圧縮機4で加圧した後、バルブ19.18を経
由して熱交換塔1a〜1dへ順次通人し不純物を凝縮、
凝固して除去する。ところでHe液化・冷凍装置Bから
供給される低温冷媒は熱交換塔1d〜1aにおいて夫々
不純11eと熱交換してこれを冷却し、自らは昇温する
ものであるから熱交換塔内の不純He温度は冷媒温度が
低い熱交換塔1dで最も低く熱交換塔1aへ行く程高く
なっている。
When purifying He using the He purifier S, the valves 14, 16, and 18 are opened and the valve 10 is opened.
is closed, and valve 19 is left open), low-temperature, low-pressure He extracted from the low-pressure side line of He liquefaction refrigeration system B is sequentially introduced into the medium flow paths 3d to 3a, and further passed through valve 16 to the compressor. Return to the suction side of 20. On the other hand, impure He 5 is pressurized by the compressor 4 and then sequentially passed through the heat exchange towers 1a to 1d via valves 19.18 to condense impurities.
Solidify and remove. By the way, the low-temperature refrigerant supplied from the He liquefaction/refrigeration device B cools down the impurities 11e by exchanging heat with the impurities 11e in the heat exchange towers 1d to 1a. The temperature is lowest in the heat exchange tower 1d, where the refrigerant temperature is low, and increases as it goes to the heat exchange tower 1a.

そして本実施態様においては熱交換塔1aにおける不純
He温度を約θ℃、熱交換塔1b、Ic。
In this embodiment, the temperature of impure He in the heat exchange tower 1a is about θ°C, and the temperature of the impure He in the heat exchange towers 1b and Ic is about θ°C.

1dにおける不純He温度を夫々的−100℃。The temperature of impure He in 1d is -100°C.

約−205℃、約−240℃となる様に設計する。It is designed to have a temperature of about -205°C and about -240°C.

これにより熱交換塔1aにおいては水分を凝縮させてト
ラップ5aに貯留し、熱交換塔1bにおいては残りの水
分及び二酸化炭素を凝固させて熱交換塔lb内に付着さ
せ、吸着塔ICにおいては酸素や窒素等を凝縮させてト
ラップ5bに貯留し、ざらに吸着塔1dにおいては残り
の不純ガスを凝固させて吸着塔ld内に付着させる。尚
トラップ5a、5bに貯留した液状物は適宜抜出す。こ
の様に不純ガスを除去して得た精製Heはパルプ14を
経由してHe液化・冷凍装置Bの高圧側ラインへ導入さ
れる。尚25は潤度制御装置を示し、精製運転中に精製
He導入ライン26の温度が設定値より高くなると圧縮
機4出口部の電磁パルプ19を閉鎖し、冷媒によって専
ら熱交換部A内を冷却し、上記温度が設定値より低下す
ると電磁パルプ19を開放してHe精製を再開する機能
を発揮する。これによって所定温度(30°K)以下に
冷却された精製HeはHe液化・冷凍装置Bへ導入され
る。
As a result, moisture is condensed in the heat exchange tower 1a and stored in the trap 5a, remaining moisture and carbon dioxide are solidified and deposited in the heat exchange tower lb in the heat exchange tower 1b, and oxygen is stored in the adsorption tower IC. , nitrogen, etc. are condensed and stored in the trap 5b, and in the adsorption tower 1d, the remaining impure gas is solidified and deposited in the adsorption tower ld. Note that the liquid material stored in the traps 5a and 5b is extracted as appropriate. The purified He obtained by removing impurity gas in this manner is introduced into the high-pressure side line of the He liquefaction/refrigeration apparatus B via the pulp 14. Reference numeral 25 indicates a humidity control device, which closes the electromagnetic pulp 19 at the outlet of the compressor 4 when the temperature of the purified He introduction line 26 becomes higher than the set value during refining operation, and cools the inside of the heat exchange section A exclusively with the refrigerant. However, when the temperature falls below the set value, the electromagnetic pulp 19 is opened to resume He refining. The purified He cooled to a predetermined temperature (30°K) or lower is introduced into the He liquefaction/refrigeration device B.

次に熱交換部A殊に熱交換塔1b又はld内の不純He
流路に凝固不純物が蓄積して流路抵抗が大きくなると、
パルプ18,14.16を閉鎖し且つパルプ10.17
を開放し、さらに真空ポンプ15を稼動する。こうする
ことにより圧縮機20によって加圧された常温高圧He
の一部(熱媒)はパルプ17を経由して熱交換部Aに至
り、媒体流路3a〜3dを順次通過してHe液化冷凍装
置Bの低圧Heラインに導入される。一方熱交換部A内
の不純He流路は真空ポンプ15により吸引されかなり
の低圧状態にあり、不純He流路内に付着したり固不純
物は熱媒による加温と圧力低下によって一気に気化(昇
華)し真空ポンプ15を通して系外へ排出される。
Next, the impure He in the heat exchange section A, especially the heat exchange tower 1b or ld, is
When solidified impurities accumulate in the flow path and flow path resistance increases,
Close pulp 18, 14.16 and pulp 10.17
is opened, and the vacuum pump 15 is operated. By doing this, the normal temperature and high pressure He pressurized by the compressor 20
A part of the heat medium (heat medium) reaches the heat exchange section A via the pulp 17, passes sequentially through the medium flow paths 3a to 3d, and is introduced into the low-pressure He line of the He liquefaction refrigeration apparatus B. On the other hand, the impure He flow path in the heat exchange section A is sucked by the vacuum pump 15 and is in a considerably low pressure state, and solid impurities that adhere to the impure He flow path are vaporized (sublimated) due to the heating and pressure reduction by the heating medium. ) and is discharged to the outside of the system through the vacuum pump 15.

本発明の好ましい実施態様は上記の様に構成され、不純
物を夫々に適した温度で凝縮又は凝固させ、しかも凝縮
した不純物は液状で抜出す為不純He流路内への不純物
の繰向付着が少なくて済み閉塞するまでの間長時間に亘
り安定してHe精製を行なうことができる。一方凝固不
純物を除去して熱交換部Aを再生するに当たっては凝固
不純物や減圧条件下におくことになるので気化(昇華)
が急速に進行し、短時間で再生を完了することができる
A preferred embodiment of the present invention is configured as described above, and the impurities are condensed or solidified at a temperature suitable for each, and the condensed impurities are extracted in liquid form, so that the re-adhesion of the impurities into the impure He channel is prevented. He purification can be performed stably over a long period of time until blockage occurs. On the other hand, in order to remove solidified impurities and regenerate heat exchange section A, the solidified impurities will be placed under reduced pressure conditions, so vaporization (sublimation) will occur.
progresses rapidly and can be completed in a short period of time.

第2〜5図は他の実施態様を示すフロー図で、第2図に
おいては、熱交換塔13〜1cの温度コントロールと熱
交換塔1dの温度コントロールを夫々独立させているの
でHe液化冷凍fiBの低圧ラインのうち上流側の点E
から取り出した低温低圧He(冷媒)を媒体流路3dに
導入し、不純Heを冷却した後の冷媒は上記低圧ライン
の下流側の点Fへ戻す一方、上記低圧ラインの下流側の
点Gから取り出した冷媒を媒体流路3Cへ導入し3b。
2 to 5 are flowcharts showing other embodiments. In FIG. 2, the temperature control of the heat exchange towers 13 to 1c and the temperature control of the heat exchange tower 1d are made independent, so that He liquefaction refrigeration fiB Point E on the upstream side of the low pressure line of
Low-temperature, low-pressure He (refrigerant) taken out from is introduced into the medium flow path 3d, and the refrigerant after cooling the impure He is returned to point F on the downstream side of the low-pressure line, while The extracted refrigerant is introduced into the medium flow path 3C and 3b.

3λへと順次流している。本方法においては温度コント
ロールが独立しているので、各熱交換器を容易にコント
ロールすることができ、安定した操作が可能となる。
3λ in sequence. In this method, since temperature control is independent, each heat exchanger can be easily controlled and stable operation is possible.

第3図は熱交換塔13〜ICの温度コントロールの為別
途導入した液体窒素を熱交換塔IC→1b→1aの順序
で流下する様にした例でこれによって温度制御機能を強
化したものである。尚熱交換塔再生時には液体窒素の導
入を停止する。
Figure 3 shows an example in which liquid nitrogen, which was separately introduced to control the temperature of heat exchange towers 13 to IC, is made to flow down in the order of heat exchange towers IC → 1b → 1a, which strengthens the temperature control function. . In addition, the introduction of liquid nitrogen is stopped when regenerating the heat exchange tower.

第4図は凝縮用熱交換塔と凝固付着用熱交換塔を一体化
した例で、圧縮機(図示せず)から管6′を経て送給さ
れてきた気液分離器5C経由で熱交換塔ICへ導入し、
次いで熱交換塔1eを出た不純Heを気液分離器5d経
由で熱交換塔1fへ導入し更に精製HeをHe液化・冷
凍装置等の需要部へ送給するものである。熱交換塔1e
、1fにおいて凝縮した液体は夫々気液分離器5c、5
dにおいて回収し適宜系外へ排出する。又熱交換塔1e
においては二酸化炭素等の非凝縮性不純物を凝固回収し
、熱交換塔1fの図面上の上部においては熱交換塔から
抜出されずに残存する酸素や窒素等が凝固する。即ち本
実施態様においては凝縮用熱交換塔と凝固用熱交換塔を
1基の熱交換塔にまとめているので装置構造が簡素にな
る。
Figure 4 shows an example in which a condensing heat exchange tower and a coagulation/deposition heat exchange tower are integrated, and heat exchange is performed via a gas-liquid separator 5C fed from a compressor (not shown) through a pipe 6'. Introduced to tower IC,
Next, the impure He coming out of the heat exchange tower 1e is introduced into the heat exchange tower 1f via the gas-liquid separator 5d, and the purified He is further sent to demand parts such as He liquefaction and refrigeration equipment. Heat exchange tower 1e
, 1f are condensed in gas-liquid separators 5c and 5, respectively.
d, and discharged appropriately to the outside of the system. Also heat exchange tower 1e
In the heat exchange tower 1f, non-condensable impurities such as carbon dioxide are solidified and recovered, and in the upper part of the heat exchange tower 1f, oxygen, nitrogen, etc. that remain without being extracted from the heat exchange tower are solidified. That is, in this embodiment, the condensing heat exchange tower and the solidification heat exchange tower are combined into one heat exchange tower, which simplifies the device structure.

化 第5図は第4図例を更に簡素したHe精製装置△ の−例を示すフロー図で、凝縮用熱交換塔と凝固用熱交
換塔を一体化した熱交換塔1を1基だけ設けて構成され
ている。本実施態様においては凝縮抜出し可能な成分の
うちH20だけを第4図例と同様に気液分離器5に回収
して系外へ抜出す。二酸化炭素及び空気成分については
熱交換塔1内に凝固付着させてHeと分離する。本実施
例においては熱交換塔が1基で済む為装置構造か一層簡
素であり、相当の効果を得ることができる。
Fig. 5 is a flow diagram showing an example of a He purification apparatus △ which is a simpler version of the example shown in Fig. 4, in which only one heat exchange tower 1, which integrates a condensing heat exchange tower and a solidification heat exchange tower, is provided. It is composed of In this embodiment, among the components that can be condensed and extracted, only H20 is collected in the gas-liquid separator 5 and extracted out of the system as in the example shown in FIG. Carbon dioxide and air components are coagulated and deposited in the heat exchange tower 1 and separated from He. In this embodiment, since only one heat exchange tower is required, the apparatus structure is simpler and considerable effects can be obtained.

向上記説明においては熱交換塔再生に当たり媒体流路3
に熱媒を流したが、熱媒を流さず真空ボンプによる紘圧
を行なうだけでも再生は可能である。又本発明方法はH
eの精製だけでなく水素、酸素、窒素等の精製にも適用
することができる。
In the explanation above, the medium flow path 3 is used for heat exchange tower regeneration.
Although a heating medium was flowed through the pipe, regeneration is also possible by simply applying pressure using a vacuum pump without flowing a heating medium. Also, the method of the present invention
It can be applied not only to the purification of e, but also to the purification of hydrogen, oxygen, nitrogen, etc.

実施例1 第1図に示される方法において、水分1%、空気成分2
0%の不純Heを精製したところ、純度99.999%
以上の精製Heを効率良く得ることができた(回収率:
98%)。
Example 1 In the method shown in FIG.
When 0% impure He was purified, the purity was 99.999%.
The above purified He could be obtained efficiently (recovery rate:
98%).

実施例2 実施例1と同様にして、水分0.1%、空気成分2%の
不純[(eを精製したところ、純度99.999%以上
の精製Heを効率良く得ることができた(回収率=99
%)。
Example 2 In the same manner as in Example 1, impure [(e) containing 0.1% water and 2% air was purified, and purified He with a purity of 99.999% or higher was efficiently obtained (recovered Rate=99
%).

上記実施例1.2に示される様に本発明においては原料
となる不純物の純度にかかわらず高純度Heを効率良く
回収することができる。
As shown in Example 1.2 above, in the present invention, high-purity He can be efficiently recovered regardless of the purity of impurities serving as raw materials.

〔発明の効果〕〔Effect of the invention〕

本発明は以上の様に構成されており下記の効果を得るこ
とができる。
The present invention is configured as described above and can obtain the following effects.

+1)不純He中から不純物を除去するに当たり、凝縮
及び凝固の手法を併用し凝縮液を抜出す構成を採用して
いるので不純He流路内における凝固不純物の蓄積速度
が遅く、長期に亘り連続してHe精製を行なうことがで
きる。
+1) When removing impurities from impure He, we adopt a configuration in which the condensate is extracted using both condensation and coagulation methods, so the accumulation rate of coagulated impurities in the impure He channel is slow and continuous for a long period of time. He purification can be carried out in this way.

(2)不純Heの流路内に蓄積した凝固不純物を取り除
くに当たっては不純He流路を減圧状態にして凝固不純
物を気化させ、更に吸引して系外へ排出するので舜固不
純物を速やかに除去することができる。
(2) To remove the solidified impurities accumulated in the impure He flow path, the impure He flow path is reduced in pressure to vaporize the solidified impurities, which are then sucked and discharged out of the system, so the solidified impurities are quickly removed. can do.

(3)凝縮及び凝固による個別排出方式であるから原料
となる不純Heの純度が変動してもHe精製効率に対す
る影響が少なく、原料ガスの適用範囲が広くなる。又高
純度Heを高回収率で得ることができる。
(3) Since the method is an individual discharge method using condensation and coagulation, even if the purity of impure He used as a raw material fluctuates, the He purification efficiency is less affected, and the range of application of the raw material gas is widened. Furthermore, high purity He can be obtained with a high recovery rate.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜5図は本発明方法の実施態様を説明する為のフロ
ー図である。 1.11〜1d・・・吸着塔 3.3a〜3d・・・熱媒流路 4・・・圧縮機     5・・・気液分離機15・・
・真空ポンプ  A・・・吸着部B・・・lIe液化・
冷凍装置
1 to 5 are flowcharts for explaining embodiments of the method of the present invention. 1.11-1d... Adsorption tower 3.3a-3d... Heat medium flow path 4... Compressor 5... Gas-liquid separator 15...
・Vacuum pump A...Adsorption part B...lIe liquefaction・
Refrigeration equipment

Claims (1)

【特許請求の範囲】[Claims] 媒体流路と不純He流路を夫々内包する熱交換塔を用い
てHeの精製を行なうに当たり、不純Heの浄化に際し
ては媒体流路に冷媒を導入することによつて不純He中
の不純物を冷却してHeから分離し、該熱交換塔の再生
に際しては媒体流路に熱媒を導入することにより前記分
離不純物を除去する工程を含むHe精製方法において、
浄化工程中不純He流路内で凝縮乃至凝固した不純物の
うち液状物は該浄化工程中に液状のまま熱交換塔外へ抜
出し、他方熱交換塔再生に際しては熱交換塔の前後で不
純He流路を遮断し且つ該遮断された不純He流路内を
減圧することによつて固形不純物を気化して系外へ抜出
すことを特徴とするHe精製方法。
When purifying He using a heat exchange tower that includes a medium flow path and an impure He flow path, impurities in the impure He are cooled by introducing a refrigerant into the medium flow path. A He purification method comprising the step of separating He from He and removing the separated impurities by introducing a heating medium into a medium flow path during regeneration of the heat exchange tower,
Among the impurities condensed or solidified in the impure He flow path during the purification process, liquid substances are extracted to the outside of the heat exchange tower in a liquid state during the purification process, and on the other hand, when the heat exchange tower is regenerated, the impure He stream is removed before and after the heat exchange tower. A He purification method characterized in that solid impurities are vaporized and extracted out of the system by blocking the impure He flow path and reducing the pressure inside the blocked impure He flow path.
JP59262573A 1984-12-12 1984-12-12 Method of refining he Pending JPS61140778A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59262573A JPS61140778A (en) 1984-12-12 1984-12-12 Method of refining he

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59262573A JPS61140778A (en) 1984-12-12 1984-12-12 Method of refining he

Publications (1)

Publication Number Publication Date
JPS61140778A true JPS61140778A (en) 1986-06-27

Family

ID=17377679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59262573A Pending JPS61140778A (en) 1984-12-12 1984-12-12 Method of refining he

Country Status (1)

Country Link
JP (1) JPS61140778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159285A (en) * 2011-01-31 2012-08-23 Linde Ag Plant for liquefying gas or gas mixture by cryogenic technique, and refining method belonging thereto
WO2021204422A1 (en) * 2020-04-07 2021-10-14 Linde Kryotechnik Ag Method and device for separating undesired components from a helium flow

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012398A (en) * 1973-06-08 1975-02-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5012398A (en) * 1973-06-08 1975-02-07

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012159285A (en) * 2011-01-31 2012-08-23 Linde Ag Plant for liquefying gas or gas mixture by cryogenic technique, and refining method belonging thereto
WO2021204422A1 (en) * 2020-04-07 2021-10-14 Linde Kryotechnik Ag Method and device for separating undesired components from a helium flow

Similar Documents

Publication Publication Date Title
JPS5843130B2 (en) Suijiyouki Tankasuisooyobikuuukiyorinaru Kongougasuo Bunrisuru Hohou
JP3842526B2 (en) PFC recovery using condensation
JP4276520B2 (en) Operation method of air separation device
EP3671087A1 (en) A method and apparatus for eliminating heat bumps following regeneration of adsorbers in an air separation unit
JP2013533108A (en) Process and apparatus for drying and compressing a CO2-rich stream
JP2000088455A (en) Method and apparatus for recovering and refining argon
JPS5916195B2 (en) Method of producing oxygen by air separation
KR19990014225A (en) Separation method of air by cryogenic rectification
JP2007147113A (en) Nitrogen manufacturing method and device
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPS61140778A (en) Method of refining he
CN1904531B (en) Process and apparatus for the separation of air by cryogenic distillation
US3097940A (en) Process for purifying gases
JPS61272576A (en) Method of refining he
JP2004205076A (en) Air liquefying and separating device and its method
JPH0566515B2 (en)
JP2773858B2 (en) Method and apparatus for separating air
JPS61272578A (en) Method of refining he
JP2019178816A (en) Air liquefaction separation device and shutdown method for air liquefaction separation device
JPS5844190B2 (en) Kuukino Ekikabunrihouhou
JP2001033155A (en) Air separator
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
US3119676A (en) Process and apparatus for purifying and separating compressed gas mixtures
JP2005090915A (en) Air separator and air separating method
JPS638395B2 (en)