JPS61139604A - Manufacture of medium or high carbon metallic powder - Google Patents

Manufacture of medium or high carbon metallic powder

Info

Publication number
JPS61139604A
JPS61139604A JP59261458A JP26145884A JPS61139604A JP S61139604 A JPS61139604 A JP S61139604A JP 59261458 A JP59261458 A JP 59261458A JP 26145884 A JP26145884 A JP 26145884A JP S61139604 A JPS61139604 A JP S61139604A
Authority
JP
Japan
Prior art keywords
atmosphere
decarburization
powder
medium
high carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59261458A
Other languages
Japanese (ja)
Other versions
JPH0346524B2 (en
Inventor
Toshihiko Kubo
敏彦 久保
Minoru Ichidate
一伊達 稔
Kazutaka Asabe
和孝 阿佐部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP59261458A priority Critical patent/JPS61139604A/en
Publication of JPS61139604A publication Critical patent/JPS61139604A/en
Publication of JPH0346524B2 publication Critical patent/JPH0346524B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain medium or high carbon metallic powder having a desired carbon content by manufacturing atomized metallic powder with a soln. contg. a carbonaceous component as an atomizing medium and by decarburizing the powder while inhibiting oxidation. CONSTITUTION:Metallic powder contg. >=0.1% C and <=0.2% O2 is manufactured by an atomizing method with a soln. contg. a carbonaceous component having carburizing power such as mineral oil as an atomizing medium. The C content in the atomized metallic powder is then regulated to 0.1-0.6% by decarburizing the powder in a decarburizing atmosphere of H2 or CO-O2 while inhibiting oxidation. By this method, metallic powder of medium or high carbon steel suitable for sintering and forging, hot extrusion or other process is obtd. The decarburization is preferably carried out at 650-1,250 deg.C in an atmosphere of H2 or at 630-1,250 deg.C in an atmosphere of CO-O having >=0.05 Pco.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、噴霧媒として浸炭能力ある炭素分含有溶液を
用いたアトマイズ法による金属粉末の製造方法、特に油
アトマイズ法により得たアトマイズ金属粉を脱炭処理す
ることにより炭素O11〜0゜6%程度の中高炭素金属
粉末の製造方法に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing metal powder by an atomization method using a carbon-containing solution with carburizing ability as a spray medium, and in particular to atomized metal powder obtained by an oil atomization method. The present invention relates to a method for producing a medium-high carbon metal powder having a carbon O content of about 11 to 0.6% by decarburizing the powder.

(従来の技術) 粉末のI!!!造技術造水術成形技術の進歩にともない
、粉末冶金の特徴が着目され、今日、粉末冶金法が物品
の成形手段として広く使用卒れるようになっできた。
(Prior art) Powder I! ! ! BACKGROUND OF THE INVENTION With the advancement of hydroforming technology, the characteristics of powder metallurgy have attracted attention, and today powder metallurgy has come to be widely used as a means of forming articles.

粉末冶金法の原IIである粉末の製造法にもかかる用途
の拡大に応じて多くの改善がなされつつあるが、そのう
ちいわゆるアトマイズ法としては現在それを分類すると
ガス7トマイズ法、水アトマイズ法、油アトマイズ法が
ある。
Many improvements are being made to the powder manufacturing method, which is the original method of powder metallurgy, in response to the expansion of its uses, and among these, the so-called atomization methods are currently classified into the gas 7 atomization method, water atomization method, There is an oil atomization method.

ガスアトマイズ法: 噴霧媒としてN2、Ar等の不活性ガスを使用して鋼粉
を製造する方法である。不活性ガスを使用するため酸化
のような汚染が少ないが、ガス冷却のため冷却速度が遅
く、得られた製品の粒子形状が球状となり冷間成・形が
困難であり、ダハ間成形が必要である。しかし、熱間成
形は多くの制約を受はコスト高となる。さらに本方法で
はガスアトマイズ時において多量のガスを使用するため
アトマイズにおけるコストは著しく高く、後述する油ア
トマイズの場合と比較して10倍辺上となる。したがっ
て、本方法は特殊な目的には実用化されてはいるが、粉
末冶金として最も需要の多い焼結、焼結鍛造用鋼粉とし
ては殆ど使用されていない。
Gas atomization method: A method of producing steel powder using an inert gas such as N2 or Ar as a spray medium. Since inert gas is used, there is less contamination such as oxidation, but the cooling rate is slow due to gas cooling, and the resulting product has a spherical particle shape, making cold forming and shaping difficult, requiring roof forming. It is. However, hot forming is subject to many restrictions and is expensive. Furthermore, since this method uses a large amount of gas during gas atomization, the cost of atomization is extremely high, and is ten times more expensive than the case of oil atomization, which will be described later. Therefore, although this method has been put to practical use for special purposes, it is hardly used for sintering or sintering and forging steel powder, which is most in demand in powder metallurgy.

水アトマイズ法: 噴霧媒体として水を使用する方法である。Water atomization method: This method uses water as the spray medium.

生成粉末がアトマイズ媒体である水によって酸化汚染さ
れるため、その酸化量は大であり成分設計上、大きな制
約がある。特にCrs Mn、■、Wb、 B、 Si
等の易酸化性元素を含む鋼粉は酸化されやすく、得られ
たアトマイズ鋼粉を還元工程で必要な量まで酸素量を下
げることは困難である。
Since the produced powder is oxidized and contaminated by water, which is the atomization medium, the amount of oxidation is large, and there are major restrictions on component design. Especially Crs Mn, ■, Wb, B, Si
Steel powder containing easily oxidizable elements such as atomized steel powder is easily oxidized, and it is difficult to reduce the amount of oxygen in the obtained atomized steel powder to the required amount in a reduction process.

一方、アトマイズ条件および雰囲気に特別な考慮をして
0.5%程度の酸素含有量に抑えても、1150℃辺」
二の高温で長時間処理しないと目的の鋼粉を得ることが
できない。さらにたとえ得られても高温で長時間処理す
るため粒子同志が固着する傾向にあり、かなり強力な解
砕工程が必要となるうえ、解砕時に粒子形状、粒度分布
も変わるため圧縮性、成型性、焼結性といった品質面で
問題がある。
On the other hand, even if special consideration is given to the atomization conditions and atmosphere and the oxygen content is kept to around 0.5%, it will still be around 1150 degrees Celsius.
The desired steel powder cannot be obtained unless it is treated at a high temperature for a long time. Furthermore, even if obtained, the particles tend to stick together due to long-term processing at high temperatures, requiring a fairly powerful crushing process, and the particle shape and size distribution change during crushing, making it difficult to compress and form. There are problems with quality such as sinterability.

これらの問題を解決する方法として、真空中で高温加熱
することによりc + o−coの反応で酸素を除去す
るという方法が、提案されているが、酸素を下げるため
にはやはり1100℃以上の高温を必要とし、前述の方
法と同様な問題点がある。さらに、本方法特有の問題は
、酸素を下げるため、最終成品鋼粉中の炭素量が同一に
減少してしまい、炭素量のコントロールが困りWである
ことである。
As a method to solve these problems, a method has been proposed in which oxygen is removed by a c + o-co reaction by heating at high temperature in vacuum, but in order to lower the oxygen content, heating at 1100°C or higher is still necessary. It requires high temperatures and has the same problems as the previous method. Furthermore, a problem specific to this method is that since the oxygen content is lowered, the amount of carbon in the final product steel powder is equally reduced, making it difficult to control the amount of carbon.

油アトマイズ法: 油アトマイズ法は油を噴霧媒として鋼粉を製造する方法
であって、水アトマイズ法に比べて得られた鋼粉に酸化
が生じていないという点においてすぐれているが、アト
マイズ時に噴霧媒である油から浸炭するため、脱炭処理
を施さなければならない。
Oil atomization method: The oil atomization method is a method for producing steel powder using oil as an atomizing medium, and is superior to the water atomization method in that the obtained steel powder is not oxidized. Since carburization is performed using oil as a spray medium, decarburization treatment must be performed.

(発明が解決すべき問題点) 上述の従来のアトマイズ法のうち、油アトマイズ法につ
いて本件出願仄は特公昭56−51203号としてずで
に開示して′いるが、そこにおいて開示されたのは低炭
素の低杏金鋼粉の製造法であり、また脱炭方法もN2−
1120雰囲気を使用した方法で風9た。
(Problems to be Solved by the Invention) Among the conventional atomization methods mentioned above, the oil atomization method has already been disclosed in Japanese Patent Publication No. 51203/1983, but what was disclosed therein is This is a method for producing low carbon and low apricot steel powder, and the decarburization method is also N2-
The method using 1120 atmosphere produced 9 winds.

ここに、本発明者らは、今日、焼結鍛造用あるいは熱間
押出用の金属粉末として中高炭素鋼粉が求められている
ことから、油アトマイズ法でそれらの鋼粉の製造を試み
たところ脱炭処理に困難があった。
The inventors of the present invention have attempted to produce such steel powder using an oil atomization method, since medium-high carbon steel powder is currently in demand as a metal powder for sintering and forging or hot extrusion. There were difficulties in the decarburization process.

すなわち、第1図に油アトマイズ鋼粉のN2−I420
脱炭特性を示すが、N2−N20雰囲気下では、第1図
に示す如く、脱炭速度が早いので、できる限り炭素を低
くすることを目的とした低炭素鋼粉の製造には通してい
るが、脱炭を途中で止める必要がある中高炭素鋼粉の製
造には、コントロール性の点から適していないのである
That is, Fig. 1 shows oil atomized steel powder N2-I420.
It exhibits decarburization properties, but in an N2-N20 atmosphere, as shown in Figure 1, the decarburization rate is fast, so it is used in the production of low-carbon steel powder, which aims to reduce the carbon content as much as possible. However, from the viewpoint of controllability, it is not suitable for producing medium-high carbon steel powder, which requires stopping decarburization midway through.

例えば、C:0,4%の鋼粉を得る場合、Po、。=0
゜04.800℃の条件下で脱炭処理すると、炭素含有
量が0.4%にまで低下するための所要時間は約1.5
分であり、これでは実際問題として処理することはでき
ない。このように処理時間は長すぎても短すぎても実操
業の観点からは炭素含有量のコントロールは不可能とな
る。
For example, when obtaining steel powder with C: 0.4%, Po. =0
゜04. When decarburizing under conditions of 800℃, the time required to reduce the carbon content to 0.4% is approximately 1.5%.
This cannot be treated as a practical problem. In this way, if the treatment time is too long or too short, it becomes impossible to control the carbon content from the viewpoint of actual operation.

(問題点を解決するための手段) よって、本発明の目的は、例えば炭素含有量0゜1〜0
.6%のいわゆる中高炭素金属粉末を製造する方法、特
に油アトマイズ法と脱炭処理を組合せた方法による中高
炭素鋼粉末の製造方法を提供することである。
(Means for solving the problem) Therefore, an object of the present invention is to reduce the carbon content from 0°1 to 0.
.. The object of the present invention is to provide a method for producing so-called medium-high carbon metal powder of 6%, particularly a method for producing medium-high carbon steel powder by a method combining oil atomization and decarburization.

ここに、本発明の要旨とするところは、アトマイズ法に
よる粉末製造法において噴霧媒として、浸炭能力を持つ
炭素分含有溶液を用いて金属溶湯を粉化して、炭素含有
量0.1%以上、酸素含有量0.2%以下のアトマイズ
金属粉を製造した後、H2雰囲気およびco−CO2雰
囲気から選んだ脱炭性雰囲気において酸化を抑制しなが
ら脱炭処理を行って、前記アトマイズ金属粉の炭素含有
量を調整すること特徴とする中高炭素金属粉末製造方法
である。
Here, the gist of the present invention is to powder a molten metal using a carbon-containing solution having carburizing ability as a spray medium in a powder manufacturing method using an atomization method, and to powder a molten metal with a carbon content of 0.1% or more. After producing atomized metal powder with an oxygen content of 0.2% or less, decarburization treatment is performed while suppressing oxidation in a decarburizing atmosphere selected from an H2 atmosphere and a co-CO2 atmosphere to remove carbon from the atomized metal powder. This is a method for producing medium-high carbon metal powder, which is characterized by adjusting the content.

上記脱炭性雰囲気としてI(2雰囲気の場合、好ましく
は650〜1250℃の温度範囲で、CO−CO2雰囲
気の場合、好ましくは630−1250℃の温度範囲で
脱炭処理を行い、後者の場合さらに好ましくは40 (
10Pco −5) 2+25 (T150 19) 
236 (10Pco −5)  (T/50−19)
≦676、望ましくは、52 (10Pco −5) 
2+73 (T/50−18) 272 (10Pco
 −5)  (T/50−18)≦625で囲まれる温
度、Pco範囲にてCO−002脱炭を行う。但し、式
中Tは温度(℃)、Pcoは00分圧である。
In the case of I (2 atmosphere), the decarburization treatment is preferably performed in the temperature range of 650 to 1250°C, and in the case of CO-CO2 atmosphere, the decarburization treatment is preferably performed in the temperature range of 630 to 1250°C. More preferably 40 (
10Pco -5) 2+25 (T150 19)
236 (10Pco -5) (T/50-19)
≦676, preferably 52 (10Pco -5)
2+73 (T/50-18) 272 (10Pco
-5) CO-002 decarburization is performed at a temperature surrounded by (T/50-18)≦625 and in a Pco range. However, in the formula, T is temperature (°C) and Pco is 00 partial pressure.

なお、浸炭能力を持つ炭素含有溶液は例えば鉱物油等の
いわゆる油であるが、その種類および操作条件等につい
てはすでに当業界において油アトマイズ法として公知で
あるから、これ以上の言及はさける。
The carbon-containing solution having carburizing ability is, for example, so-called oil such as mineral oil, but since its type and operating conditions are already known in the art as an oil atomization method, no further mention will be made.

(作用) まず、本発明にあっては油アトマイズ法により炭素含有
量0.1%以上、酸素含有量0.2%以下のアトマイズ
金属粉を得るが、本発明における油アトマイズ法は、例
えば先に述べた特公昭56−51203 J8+に開示
されているものと同一であってもよく、油アトマイズ法
それ自体は公知であって、それによって本発明が制限さ
れるものではない。また、油アトマイズ金属粉を本発明
にあっては炭素含有量0.1%以上、酸素含有量0.2
%以下、好ましくは0.15%以下に制限するが、これ
は通常の油アトマイズ法によって得られる程度のもので
ある。
(Function) First, in the present invention, atomized metal powder having a carbon content of 0.1% or more and an oxygen content of 0.2% or less is obtained by an oil atomization method. The oil atomization method itself may be the same as that disclosed in Japanese Patent Publication No. 56-51203 J8+ mentioned in 1988, and the oil atomization method itself is known, and the present invention is not limited thereby. In addition, in the present invention, the oil atomized metal powder has a carbon content of 0.1% or more and an oxygen content of 0.2%.
% or less, preferably 0.15% or less, which is about the same as that obtained by ordinary oil atomization methods.

本発明に係る方法である油アトマイズ−H2脱炭法、油
アトマイズ−(CO−CO2)脱炭法における脱炭操作
について以下に更に説明する。
The decarburization operations in the oil atomization-H2 decarburization method and the oil atomization-(CO-CO2) decarburization method, which are the methods according to the present invention, will be further explained below.

(i)油アトマイズ−H2脱炭法: 第2図に本発明に係る方法によって得られた油アトマイ
ズ鋼粉のH22脱炭線を示す。これは、鋼種はATSI
 51’40でアトマイズ時の炭素含有量が0.58%
のものについての脱炭曲線である。
(i) Oil atomization-H2 decarburization method: FIG. 2 shows the H22 decarburization line of the oil atomized steel powder obtained by the method according to the present invention. This steel type is ATSI
51'40 and carbon content when atomized is 0.58%
This is the decarburization curve for

H2脱炭の場合、第2図に示す如<、0.4%の中炭素
鋼粉を得るためには、900℃で約90分または100
0℃で50分であり、炭素含有量のti&量コントロー
ルが可能である。
In the case of H2 decarburization, as shown in Figure 2, in order to obtain medium carbon steel powder of <0.4%, it is necessary to heat the powder at 900°C for about 90 minutes or 100 minutes.
It takes 50 minutes at 0°C, and the carbon content can be controlled.

ところで、第2図に示すごと(CO0℃未満では、また
一般には650℃未満では、殆ど脱炭反応は発生ぜず、
一方、1250℃超では粉末同志の相互固着が急速に強
固になり、それに応じた脱炭処理後の粉砕が困難となり
、実用上得策でない。
By the way, as shown in Figure 2 (at CO below 0°C, and generally below 650°C, almost no decarburization reaction occurs;
On the other hand, if it exceeds 1250°C, the mutual adhesion of the powders will rapidly become strong, making it difficult to crush them after decarburization, which is not a practical idea.

よって、油アトマイズ−H2雰囲気脱炭の場合、温度:
CO0℃以上、好ましくは650℃以上、1250℃以
下に限定する。
Therefore, in the case of oil atomization-H2 atmosphere decarburization, the temperature:
The CO temperature is limited to 0°C or higher, preferably 650°C or higher and 1250°C or lower.

(ii)油アトマイズ−(CO−CO2)脱炭法:第3
図はPcoおよびPco 2を変えたときの温度に対す
る脱炭特性をグラフに示したもので、出発粉末の種類、
炭素含有量は第2図の場合に同じである。
(ii) Oil atomization-(CO-CO2) decarburization method: 3rd
The figure is a graph showing the decarburization characteristics with respect to temperature when Pco and Pco 2 are changed, and the type of starting powder,
The carbon content is the same as in FIG.

CO−002脱炭の適正域は第3図に示すごとく温度、
Pcoによって決定され、Pco−0,05以上、温度
630〜1250℃に適正領域がある。この適正領域は
、図中、斜線領域で示す。最適範囲は、図中、破線で示
す。
The appropriate range for CO-002 decarburization is shown in Figure 3, depending on the temperature,
It is determined by Pco, and the appropriate range is Pco-0.05 or higher and a temperature of 630 to 1250°C. This appropriate area is indicated by a shaded area in the figure. The optimal range is indicated by a broken line in the figure.

しかしながら、これよりCQ分圧が高く、温度が低いと
脱炭反応が発生せず、逆に00分圧が低く、温度が高い
と脱炭速度が早くなりすぎる。
However, if the CQ partial pressure is higher and the temperature is lower than this, the decarburization reaction will not occur, and conversely, if the 00 partial pressure is low and the temperature is high, the decarburization rate will be too fast.

第4図はCO−002雰囲気下での脱炭曲線を示す。FIG. 4 shows a decarburization curve under a CO-002 atmosphere.

参考までにH2−H20雰囲気下でのそれも併せて示す
。なお、鋼種はATSI 5140 、出発粉末の炭素
含有量は0.56%であった。
For reference, the results under H2-H20 atmosphere are also shown. The steel type was ATSI 5140, and the carbon content of the starting powder was 0.56%.

このように、第4図に示すごと(Pco=0.7、Pc
o2−0.3の条件で脱炭処理を行う場合、炭素含有量
0.4%の中炭素鋼粉を得ようとすると、750℃で1
0分間とコントロール可能な時間で脱炭することができ
ることが分かる。H2−)(26雰囲気の場合、800
℃で0.4%まで脱炭するのに1.5分しかかからない
ため、実際上コントロールは困難である。
In this way, as shown in Fig. 4 (Pco=0.7, Pc
When decarburizing under the conditions of o2-0.3 and trying to obtain medium carbon steel powder with a carbon content of 0.4%,
It can be seen that decarburization can be achieved in a controllable time of 0 minutes. H2-) (800 in case of 26 atmosphere)
Since it takes only 1.5 minutes to decarburize to 0.4% at ℃, control is difficult in practice.

ここに、第3図の結果を数値化して示すと、本発明にお
ける脱炭条件として好ましくは温度範囲が630〜12
50℃、co分圧が0.05〜1.0であり、より厳密
には、図中、斜線を引いた領域で表わされ、これは、酸
素含有量0.2%以下であって:40 (10Pco 
−5) 2+25 (T/50−19) ” −36(
1’0Pco −5)  (T/50−19)≦676
但し、T:温度(℃)、Pco ’: CO分圧であり
、最適条件としては温度範囲が720〜1080℃、0
0分圧が0.07〜0.93であり、より厳密には、図
中、破線で示すwI域として表わされ、酸素含有量0.
15%以下であって、これは:   。
Here, when the results of FIG. 3 are expressed numerically, the decarburization conditions in the present invention are preferably in the temperature range of 630 to 12
At 50°C, the co partial pressure is 0.05 to 1.0, and more precisely, it is represented by the shaded area in the figure, which has an oxygen content of 0.2% or less: 40 (10Pco
-5) 2+25 (T/50-19) ” -36(
1'0Pco -5) (T/50-19)≦676
However, T: temperature (℃), Pco': CO partial pressure, and the optimum conditions are a temperature range of 720 to 1080℃, 0
The zero partial pressure is 0.07 to 0.93, and more precisely, it is expressed as the wI region shown by the broken line in the figure, and the oxygen content is 0.07 to 0.93.
15% or less, which is:

52、(10Pco −5) 2+73 (4)50−
18) 2−72(]0Pco −5>  (T/50
−18)≦625但し、T;温度(’C) 、Pco 
: 00分圧である。
52, (10Pco -5) 2+73 (4) 50-
18) 2-72(]0Pco -5> (T/50
-18)≦625 However, T; Temperature ('C), Pco
: 00 partial pressure.

次に、実施例により本発明をさらに説明する。Next, the present invention will be further explained by examples.

てノこ2b令11りIll 本例は、焼結粉鍛造用の耐摩耗鋼粉の!!!造例であっ
て、脱炭性雰囲気としてはH2雰囲気を使った。
Lever 2b order 11ri Ill This example uses wear-resistant steel powder for sintered powder forging! ! ! In this example, H2 atmosphere was used as the decarburizing atmosphere.

本発明の方法を用いて0.4%炭素を含有するSCM4
40相当の低合金鋼粉を得たが、これは先ず炭素含有量
0.02%の母材を溶解後、噴霧蝉として鉱物油を用い
て、アトマイズ処理し第1表に示す炭素含有量0.58
%の低合金鋼粉を製造後、第2表に示す条件においてH
2脱炭後第3表および第4表にその鋼組成、粒度分布お
よび粉末特性を示すSCM440相当の低合金鋼粉を製
造した。
SCM4 containing 0.4% carbon using the method of the invention
40 was obtained, which was first melted into a base material with a carbon content of 0.02%, and then atomized using mineral oil as a spray cicada, resulting in a carbon content of 0 as shown in Table 1. .58
% of low-alloy steel powder, H under the conditions shown in Table 2.
2 After decarburization, a low alloy steel powder equivalent to SCM440 was produced, the steel composition, particle size distribution and powder properties of which are shown in Tables 3 and 4.

第2表 脱炭条件 第4表 粒度分布および粉末性状 第3表、第4表に示す如く、本発明方法によれば炭素含
量、粒径公吏、見掛密度、流動度とも適正なSCM 4
40鋼粉を得ることができた。
Table 2 Decarburization conditions Table 4 Particle size distribution and powder properties As shown in Tables 3 and 4, according to the method of the present invention, carbon content, particle size official, apparent density, and fluidity are all suitable for SCM 4.
40 steel powder could be obtained.

であって、脱炭性雰囲気としてはco−co2雰囲気を
使った。
A co-co2 atmosphere was used as the decarburizing atmosphere.

本発明の方法を用いて、0.27%の炭素を含有するS
CI+ 16相当の耐熱耐摩耗鋼粉を得た。炭素含有量
0.02%の母材を熔解後、噴霧蝶として鉱物油を用い
て、アトマイズを行い、第5表に示す炭素含有量0.6
2%の合金鋼粉を製造後、第6表に示す条件においてc
o−co2雰囲気下で脱炭処理後第7表に示すSCH1
6相当の耐熱耐摩耗鋼粉を得た。
Using the method of the present invention, S containing 0.27% carbon
Heat-resistant and wear-resistant steel powder equivalent to CI+16 was obtained. After melting the base material with a carbon content of 0.02%, atomization was performed using mineral oil as a spray butter, resulting in a carbon content of 0.6 as shown in Table 5.
After producing 2% alloy steel powder, c under the conditions shown in Table 6.
SCH1 shown in Table 7 after decarburization treatment under o-co2 atmosphere
A heat-resistant and wear-resistant steel powder equivalent to No. 6 was obtained.

第6表 脱炭条件 第8表 粒度分布および粉末性状 第7表、第8表に示す如く、本発明方法によれば鋼組成
、粒径分布、見掛密度、流動度とも旧P成形用に適した
SC816相当品を得ることができた。
Table 6 Decarburization conditions Table 8 Particle size distribution and powder properties As shown in Tables 7 and 8, according to the method of the present invention, the steel composition, particle size distribution, apparent density, and fluidity are all similar to those for old P forming. A suitable product equivalent to SC816 could be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、油アトマイズ鋼粉のH2−H20脱炭曲線; 第2図は、油アトマイズ鋼粉のH2脱炭曲線;および 第34図および第4図は、油アトマイズ鋼粉のCO−C
O2説炭曲線である。 出願人  住友金属工業株式会社 代理人  弁理士 広 瀬 章 −(他1名)16  
 ゛ (ンこンO°り (スフク
Figure 1 shows the H2-H20 decarburization curve of oil atomized steel powder; Figure 2 shows the H2 decarburization curve of oil atomized steel powder; and Figures 34 and 4 show the CO-C of oil atomized steel powder.
This is the O2 theory coal curve. Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent Attorney Akira Hirose - (1 other person) 16
゛(Nkon O°ri(Sufuku)

Claims (5)

【特許請求の範囲】[Claims] (1)アトマイズ法による粉末製造法において噴霧媒と
して、浸炭能力を持つ炭素分含有溶液を用いて金属溶湯
を粉化して、炭素含有量0.1%以上、酸素含有量0.
2%以下のアトマイズ金属粉を製造した後、H_2雰囲
気およびCO−CO_2雰囲気から選んだ脱炭性雰囲気
において酸化を抑制しながら脱炭処理を行って、前記ア
トマイズ金属粉の炭素含有量を0.1〜0.6%に調整
することを特徴とする中高炭素金属粉末製造方法。
(1) In the powder manufacturing method using the atomization method, a molten metal is powdered using a carbon-containing solution with carburizing ability as a spray medium, and the carbon content is 0.1% or more and the oxygen content is 0.1% or more.
After producing atomized metal powder of 2% or less, decarburization treatment is performed while suppressing oxidation in a decarburizing atmosphere selected from H_2 atmosphere and CO-CO_2 atmosphere to reduce the carbon content of the atomized metal powder to 0. A method for producing medium-high carbon metal powder, characterized by adjusting the content to 1 to 0.6%.
(2)650℃以上、1250℃以下の温度範囲にて、
脱炭性雰囲気としてH_2雰囲気下で脱炭を行うことを
特徴とする特許請求の範囲第1項記載の中高炭素金属粉
末製造方法。
(2) In the temperature range of 650℃ or higher and 1250℃ or lower,
2. The method for producing medium-high carbon metal powder according to claim 1, wherein decarburization is carried out in an H_2 atmosphere as a decarburizing atmosphere.
(3)630℃以上、1250℃以下の温度範囲にて脱
炭性雰囲気としてPco=0.05以上のCO−CO_
2雰囲気下で脱炭を行うことを特徴とする特許請求の範
囲第1項記載の中高炭素金属粉末製造方法。
(3) CO-CO_ with Pco=0.05 or more as a decarburizing atmosphere in the temperature range of 630℃ or higher and 1250℃ or lower
2. The method for producing medium-high carbon metal powder according to claim 1, wherein the decarburization is carried out under two atmospheres.
(4)40(10Pco−5)^2+25(T/50−
19)^2−36(10Pco−5)(T/50−19
)≦676で囲まれる温度、Pco範囲にてCO−CO
_2雰囲気下で脱炭を行うことを特徴とする特許請求の
範囲第1項記載の中高炭素金属粉末製造方法。但し、式
中Tは温度(℃)、PcoはCO分圧。
(4) 40(10Pco-5)^2+25(T/50-
19) ^2-36 (10Pco-5) (T/50-19
)≦676, CO-CO in the Pco range
_2 The method for producing medium-high carbon metal powder according to claim 1, characterized in that decarburization is carried out under an atmosphere. However, in the formula, T is temperature (°C) and Pco is CO partial pressure.
(5)52(10Pco−5)^2+73(T/50−
18)^2−72(10Pco−5)(T/50−18
)≦625で囲まれる温度、Pco範囲にてCO−CO
_2雰囲気下で脱炭を行うことを特徴とする特許請求の
範囲第1項記載の中高炭素金属粉末製造方法。但し、式
中Tは温度(℃)、PcoはCO分圧。
(5) 52 (10Pco-5)^2+73 (T/50-
18)^2-72 (10Pco-5) (T/50-18
)≦625, CO-CO in the Pco range
_2 The method for producing medium-high carbon metal powder according to claim 1, characterized in that decarburization is carried out under an atmosphere. However, in the formula, T is temperature (°C) and Pco is CO partial pressure.
JP59261458A 1984-12-11 1984-12-11 Manufacture of medium or high carbon metallic powder Granted JPS61139604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59261458A JPS61139604A (en) 1984-12-11 1984-12-11 Manufacture of medium or high carbon metallic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59261458A JPS61139604A (en) 1984-12-11 1984-12-11 Manufacture of medium or high carbon metallic powder

Publications (2)

Publication Number Publication Date
JPS61139604A true JPS61139604A (en) 1986-06-26
JPH0346524B2 JPH0346524B2 (en) 1991-07-16

Family

ID=17362172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59261458A Granted JPS61139604A (en) 1984-12-11 1984-12-11 Manufacture of medium or high carbon metallic powder

Country Status (1)

Country Link
JP (1) JPS61139604A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528419A (en) * 1998-08-27 2003-09-24 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2516717Y2 (en) * 1992-08-12 1996-11-13 共和コンクリート工業株式会社 Concrete cap installation device for steel sheet pile

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745443A (en) * 1980-09-01 1982-03-15 Hitachi Ltd Electromagnetic ultrasonic flaw detector
JPS586902A (en) * 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd Treatment of metallic powder
JPS5819401A (en) * 1981-07-24 1983-02-04 Sumitomo Metal Ind Ltd Method and device for treatment of metallic powder
JPS5819402A (en) * 1981-07-24 1983-02-04 Sumitomo Metal Ind Ltd Method and device for treatment of metallic powder
JPS58120701A (en) * 1982-01-12 1983-07-18 Kawasaki Steel Corp Production of atomized steel powder for powder metallurgy having excellent moldability

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745443A (en) * 1980-09-01 1982-03-15 Hitachi Ltd Electromagnetic ultrasonic flaw detector
JPS586902A (en) * 1981-07-03 1983-01-14 Sumitomo Metal Ind Ltd Treatment of metallic powder
JPS5819401A (en) * 1981-07-24 1983-02-04 Sumitomo Metal Ind Ltd Method and device for treatment of metallic powder
JPS5819402A (en) * 1981-07-24 1983-02-04 Sumitomo Metal Ind Ltd Method and device for treatment of metallic powder
JPS58120701A (en) * 1982-01-12 1983-07-18 Kawasaki Steel Corp Production of atomized steel powder for powder metallurgy having excellent moldability

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003528419A (en) * 1998-08-27 2003-09-24 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder
JP4704563B2 (en) * 1998-08-27 2011-06-15 キャボット コーポレイション Metal-carbon composite powder, method for producing the powder, and apparatus produced from the powder

Also Published As

Publication number Publication date
JPH0346524B2 (en) 1991-07-16

Similar Documents

Publication Publication Date Title
US3901661A (en) Prealloyed steel powder for formation of structural parts by powder forging and powder forged article for structural parts
US4063940A (en) Making of articles from metallic powder
CN100581684C (en) Method for control oxygen content in power
US3966454A (en) Method for producing iron or iron alloy powders having a low oxygen content
MXPA00007460A (en) Iron-graphite composite powders and sintered articles produced therefrom.
US20120156084A1 (en) Method of manufacturing sintered ferromolybdenum alloy from mixed powder of mill scale and molybdenum oxide powder by solid gas reaction
US2342799A (en) Process of manufacturing shaped bodies from iron powders
US4614638A (en) Process for producing sintered ferrous alloys
US6019937A (en) Press and sinter process for high density components
US2489839A (en) Process for carburizing compacted iron articles
JPS61139604A (en) Manufacture of medium or high carbon metallic powder
US4018632A (en) Machinable powder metal parts
EP0105138B1 (en) High efficiency reduction carburization and sintering method
GB1590953A (en) Making articles from metallic powder
JPH07113121B2 (en) Method for producing low alloy steel powder for powder metallurgy with low C and low O
US4270951A (en) Sintering of coated briquette
US3142894A (en) Sintered metal article and method of making same
US5162099A (en) Process for producing a sintered compact from steel powder
CN1021302C (en) Technology for casting double-layer metallic material (steel body with copper liner)
JPS5983701A (en) Preparation of high carbon alloyed steel powder having excellent sintering property
JP3982945B2 (en) Method for sintering ferrous sintered alloys
JPH07179911A (en) Production of powder for mpp core and production of mpp core from this powder
JPS6249345B2 (en)
JPH0471962B2 (en)
US2372696A (en) Powder metallurgy of high-speed steel