JPS5819401A - Method and device for treatment of metallic powder - Google Patents
Method and device for treatment of metallic powderInfo
- Publication number
- JPS5819401A JPS5819401A JP56116619A JP11661981A JPS5819401A JP S5819401 A JPS5819401 A JP S5819401A JP 56116619 A JP56116619 A JP 56116619A JP 11661981 A JP11661981 A JP 11661981A JP S5819401 A JPS5819401 A JP S5819401A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- metal powder
- decarburizing
- decarburization
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims description 56
- 238000000034 method Methods 0.000 title claims description 40
- 238000005261 decarburization Methods 0.000 claims description 52
- 239000002184 metal Substances 0.000 claims description 51
- 229910052751 metal Inorganic materials 0.000 claims description 51
- 238000001816 cooling Methods 0.000 claims description 34
- 230000001590 oxidative effect Effects 0.000 claims description 23
- 238000000889 atomisation Methods 0.000 claims description 10
- 238000006243 chemical reaction Methods 0.000 claims description 6
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 229910052698 phosphorus Inorganic materials 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 2
- 238000009700 powder processing Methods 0.000 claims 3
- 239000007789 gas Substances 0.000 description 110
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- 229910052760 oxygen Inorganic materials 0.000 description 9
- 229910052799 carbon Inorganic materials 0.000 description 8
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 239000002245 particle Substances 0.000 description 4
- 229910045601 alloy Inorganic materials 0.000 description 3
- 239000000956 alloy Substances 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 3
- 239000000428 dust Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000009692 water atomization Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000009689 gas atomisation Methods 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910052774 Proactinium Inorganic materials 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003610 charcoal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000010405 reoxidation reaction Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/14—Treatment of metallic powder
- B22F1/145—Chemical treatment, e.g. passivation or decarburisation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F9/082—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
- B22F2009/0824—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid with a specific atomising fluid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2999/00—Aspects linked to processes or compositions used in powder metallurgy
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
- Powder Metallurgy (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は、油アトマイズ法により得たNl 、Mo
。Detailed Description of the Invention This invention provides Nl, Mo obtained by oil atomization method.
.
Ou、Co、Fe、P、W等のF@と同等以上に酸化物
生成自由エネルギーの高い難酸化性元素の一種以上、合
計で95wt1g以上を含有する、いわゆる主成分とす
る金属粉末の脱炭を連続的に効率よく処理する方法、お
よびその装置に関する。Decarburization of metal powders whose so-called main components contain at least 95wt1g of one or more oxidizable elements such as Ou, Co, Fe, P, and W, which have a free energy of oxide formation equal to or higher than that of F@. The present invention relates to a method for continuously and efficiently processing , and an apparatus therefor.
ところで、金属粉末の製造法としては、水アトマイズ法
、ガスアトマイズ法、油アトマイズ法が知られている。By the way, water atomization method, gas atomization method, and oil atomization method are known as methods for producing metal powder.
上記水アトマイズ法で製造された金属粉末は、噴霧媒の
水によって容易に酸化され、金属粉末の圧縮性、成形性
、焼結性よシその成分として酸素含有量の低いことが望
まれている点において、得られた金属粉末を1000
’Cで3〜ls時間という高温、かつ長時間の還元処理
を施さなければならなく、シかもこの処理においてさえ
せいぜい酸素含有量が02wt1l K Lか還元処理
できないという問題がある。壇た、ガスアトマイズ法娘
、噴霧媒として島、Ar勢のいわゆる不活性ガスを使用
し、金属粉末を製造する方法であり、多量に必要とする
不活性ガスが高価であるとともに、得られ九成品の粒子
形状が球形になり、その焼結性が悪いという問題があっ
た。また1、油アトマイズ法は、油を噴霧媒として金属
粉末を製造する方法であって、水ア)wイズ法に比べて
、得られ丸金属粉末に酸化が生じていない(酸素含、有
量が低い)という点において優れてい名が、アトマイズ
時に浸炭するため低炭素用途原料として使用するために
は、脱炭処理を施さなければならない。上記油アトマイ
ズ法における脱炭処理は現状において、連続的に効率的
な処6理方法あるいは処理装置が見い出されていない状
態である。The metal powder produced by the above-mentioned water atomization method is easily oxidized by water as a spray medium, and it is desired that the metal powder has compressibility, moldability, sinterability, and low oxygen content as a component. At the point, the obtained metal powder is 1000
It is necessary to perform a reduction treatment at a high temperature of 3 to 1 seconds at C for a long time, and even in this treatment, there is a problem that the reduction treatment cannot be performed if the oxygen content is at most 0.2wt1lKL. The first, gas atomization method, is a method of producing metal powder using a so-called inert gas such as argon as the atomizing medium.The inert gas required in large quantities is expensive, and the finished product is difficult to obtain. There was a problem that the particle shape became spherical and the sinterability was poor. In addition, 1. The oil atomization method is a method for producing metal powder using oil as an atomizing medium, and compared to the water atomization method, the resulting round metal powder is free from oxidation (oxygen-containing, However, since it is carburized during atomization, it must be decarburized in order to be used as a raw material for low-carbon applications. At present, no continuously efficient decarburization treatment method or treatment apparatus has been found in the oil atomization method.
この発明法は、Ni、Nb、Ou、On、Pa、P、W
等の元素01種以上を主成分とする低炭素(≦OJwt
ll) 、低酸素(≦0.2vtl)金属粉末を得るに
肖って、その酸素含有量を低減させるに、油アトマイズ
法で金属粉末を製造し、製造した金属粉末の脱炭処理を
施すに際し、連続的に効率よく処理する方法、およびそ
の装置を提供するものであって、その特徴は、油アトマ
イズ法によシ得たN1 、un、Ou=、 Oo 、F
@ 、P、 W等の元素の1種以上を主成分とする金属
粉末を移動床上に供給し、前記移動床上の金属粉末を脱
炭性ガス雰囲気を保った脱炭工程内で650℃〜120
0℃に加熱し、ついで、非酸化性ガス雰囲気を保った冷
却工程内で冷却すること、更に必要に応じて前記脱炭性
ガス中に混入した脱炭反応阻害成分を除去しながら、諌
脱真性ガスを微積使用する方法であり、またその装置は
、両端にホイールを備え、エンドレスに移動する移動床
と、前記移動床の上流側の上方に金属粉末を移動床に供
給する供給装置と、前記供給装置の下流側に設は脱炭性
ガス供給系に接続した脱炭室と、前記脱炭室O下流11
1に設は非酸化性βス供給系に接続した冷却室と、必要
に応じて前記脱炭性ガス供給系社、脱炭性ガス中に混入
した脱炭反応阻害成分を除去して該ガスの成分を調整す
るガス成分調整器を備えた循環系、あるいはまた前記脱
炭室と前記冷却室との境界に脱炭室のガスが冷却室へ混
入することを防ぐ中空構造のガス流出壁とよシ構成され
た装置である。This invention method is applicable to Ni, Nb, Ou, On, Pa, P, W.
Low carbon containing 01 or more elements such as (≦OJwt
ll) In order to obtain a low oxygen (≦0.2vtl) metal powder, in order to reduce its oxygen content, the metal powder is produced by an oil atomization method, and when the produced metal powder is decarburized. , provides a continuous and efficient processing method and an apparatus thereof, the characteristics of which are: N1, un, Ou=, Oo, F obtained by the oil atomization method.
A metal powder containing at least one of the following elements as a main component is supplied onto a moving bed, and the metal powder on the moving bed is heated at 650°C to 120°C in a decarburization process that maintains a decarburizing gas atmosphere.
Heating to 0°C, then cooling in a cooling process that maintains a non-oxidizing gas atmosphere, and further decarburizing while removing decarburization reaction inhibiting components mixed in the decarburizing gas as necessary. This method uses a small amount of true gas, and the device includes a moving bed that is equipped with wheels at both ends and moves endlessly, and a supply device that supplies metal powder to the moving bed above the upstream side of the moving bed. , a decarburization chamber connected to the decarburization gas supply system and a downstream 11 of the decarburization chamber O are provided on the downstream side of the supply device.
1 is equipped with a cooling chamber connected to the non-oxidizing β gas supply system and, if necessary, the decarburizing gas supply system, which removes the decarburization reaction inhibiting components mixed into the decarburizing gas and cools the gas. a circulation system equipped with a gas component regulator for adjusting the components of the decarburization chamber, or a gas outflow wall having a hollow structure at the boundary between the decarburization chamber and the cooling chamber to prevent gas from the decarburization chamber from entering the cooling chamber; It is a well-constructed device.
以下、本発明法について詳細に説明する。The method of the present invention will be explained in detail below.
本発明者らは、連続的かつ効率よく脱炭処理する方法に
ついて種々検討した結果、移動床を採用した。移1床を
採用することによシ、移動床の上流側より炭素含有量の
高い金属粉末を粉末のま\あるいは塊状にして所定量連
続的に供給すると、その下流側より処理後の金属粉末を
効率よく回収することが可能となる。この移動床には、
両端にホイールを設け、エンドレスに駆動する方式を採
用する。この移動床の下流側で供給した炭素含有量の高
い金属粉末は、移動床の移動にともなって、脱炭工程に
入る。この脱炭工程はHmO,)Isの混合ガス、co
、、ooの義金ガス、丸ガスあるいはこれらにN3など
の不活性ガスを混合した脱炭性の雰囲気になってお沙、
シか−も下流側の最終雰罪気温度は金属粉末を550>
12(6)K加熱するようになっている。The inventors of the present invention adopted a moving bed as a result of various studies on methods for continuous and efficient decarburization. By adopting a moving bed, a predetermined amount of metal powder with high carbon content is continuously supplied from the upstream side of the moving bed in the form of powder or lumps, and the metal powder after treatment is supplied from the downstream side. can be collected efficiently. This moving floor has
It has wheels on both ends and uses a system that drives it endlessly. The metal powder with high carbon content supplied downstream of the moving bed enters a decarburization process as the moving bed moves. This decarburization process is a mixed gas of HmO, )Is, co
,, oo metal gas, round gas, or a mixture of these with inert gas such as N3 to create a decarburizing atmosphere.
The final atmospheric temperature on the downstream side of the metal powder is 550>
It is designed to be heated to 12 (6) K.
脱炭性ガスとしてHaO9oO1などの酸化性ガス成分
を含むガスを使用する場合には脱炭工程の初期の温度が
低い段階において金属粉末社酸化されるが、前記金属粉
末はNl 、Mo、Ou、Oo、F@e PAW等の元
素の1種以上を主成分とする、いわゆる難酸化性元素を
主成分とした金属粉末である−」も、その後の高温脱炭
過程において還元現象が容J&に生じ、金属粉末中の酸
素量が再び低くなるので差支えない。When a gas containing an oxidizing gas component such as HaO9O1 is used as the decarburizing gas, the metal powder is oxidized at a low temperature in the initial stage of the decarburization process, but the metal powder contains Nl, Mo, Ou, Metal powder whose main component is one or more of the elements such as Oo, F@e PAW, etc., which is a so-called oxidizable-resistant element, also undergoes a reduction phenomenon during the subsequent high-temperature decarburization process. There is no problem because the amount of oxygen in the metal powder becomes low again.
すなわち難酸化性元素を主成分とする金属粉末の場合は
、非酸化性雰囲気で予熱をしなくても、常温の金属粉末
を直接、脱炭工程へ入れても、最終的に低い酸素含有量
の金属粉末を得ることにおいて間lllは生じない。In other words, in the case of metal powder whose main component is a non-oxidizing element, even if the metal powder at room temperature is directly fed into the decarburization process without preheating in a non-oxidizing atmosphere, the final result is a low oxygen content. No gaps occur in obtaining the metal powder.
この脱炭工程にあっては、脱炭性ガス雰囲気を保ち、し
かもその雰囲気温度が重要であり、脱炭の最も効率のよ
い温度範囲を定めた。すなわち55(℃以下の温度では
、金属粉末中の炭素の拡散が弱く、たとえ脱炭性ガス雰
囲気であっても脱炭が進まず、また1200t:以上の
雰囲気温度であっては、粉末の強固な相互固着が起こり
固着粉末の破砕処理を必要とすると同時に粉末冶金用途
などの原料金属粉として微粉の存在割合が減少し好まし
くない。従って、本発明では、脱炭工程における温度を
550℃〜1200tの範囲とした。In this decarburization process, it is important to maintain a decarburizing gas atmosphere and the temperature of the atmosphere, and the temperature range for the most efficient decarburization was determined. In other words, at temperatures below 55°C, the diffusion of carbon in the metal powder is weak and decarburization does not proceed even in a decarburizing gas atmosphere, and at ambient temperatures above 1200 t: Mutual adhesion occurs, requiring crushing of the stuck powder, and at the same time, the proportion of fine powder as a raw metal powder for powder metallurgy applications decreases, which is undesirable.Therefore, in the present invention, the temperature in the decarburization process is set to 550°C to 1200 t. The range of
ついで、脱炭処理された金属粉末は冷却工程に入る。冷
却工程は、脱炭ニーにおける高温金属粉末を冷却するも
のであって、この工程では、前記金属粉末の再酸化を防
止するためにHa 、 Nl 、lるいはAtの如き非
酸化性ガスIF8気としている。この冷却工程で金属粉
末は常温近くまで冷却されて取り出される。Next, the decarburized metal powder enters a cooling process. The cooling step is to cool the high temperature metal powder in the decarburization knee, and in this step, a non-oxidizing gas such as Ha, Nl, L or At is added to IF8 gas to prevent the metal powder from being re-oxidized. It is said that In this cooling process, the metal powder is cooled to near room temperature and then taken out.
さらにこの発明では、必要に応じて脱炭性ガス中に混入
した脱炭反応阻害成分を除去しながら、該脱炭性ガスの
循環使用に当っている。この発明において、脱炭工程よ
り排出される脱炭性ガス中□ には、金属粉末の炭素
が00あるいはcH4成分として混入し、との脱炭性ガ
スを循環使用すると該ガス中の00あるいはOH4度が
高くなり、ひいては脱炭が阻害される結果となり、従っ
て脱炭性ガス中の00濃度を所定値に保つよう、多量の
ω成分あるいはOR3威分は除去している。さらKまた
、脱炭性ガスとしてH,0,0へなどの酸化性ガス成分
を含有するガスを使用する場合は、冷却工程における雰
囲気圧力を脱炭工程における雰囲気圧力よ抄も高く保ち
、脱炭性ガス成分である)& 0 、 oo、など、の
ガスが多量に冷却工程内に流入するのを防ぎ冷却過程に
おける金属粉末の再酸化を防止する必要がある。Further, in the present invention, the decarburizing gas is recycled and used while removing decarburizing reaction inhibiting components mixed in the decarburizing gas as necessary. In this invention, in the decarburizing gas discharged from the decarburizing process, carbon from the metal powder is mixed as a 00 or cH4 component, and when the decarburizing gas is recycled, the 00 or OH4 in the gas Therefore, in order to maintain the 00 concentration in the decarburizing gas at a predetermined value, a large amount of ω component or OR3 component is removed. Further, when using a gas containing oxidizing gas components such as H,0,0 as the decarburizing gas, the atmospheric pressure in the cooling process should be kept higher than the atmospheric pressure in the decarburizing process. It is necessary to prevent a large amount of carbonaceous gas components such as ) & 0, oo, etc. from flowing into the cooling process, and to prevent reoxidation of the metal powder during the cooling process.
あるいはまた、冷却工程と脱炭工程の境界部に脱炭工程
のH,0、00,などのガス成分が冷却工程に混入する
のを防ぐ中空構造のガス流出壁を設ける必要がある。Alternatively, it is necessary to provide a gas outflow wall with a hollow structure at the boundary between the cooling process and the decarburization process to prevent gas components such as H, 0, 00, etc. from the decarburization process from entering the cooling process.
次にこの発明の装置の一実施例を第1図により説明する
。Next, an embodiment of the apparatus of the present invention will be described with reference to FIG.
第1図において、両端儒にホイール(1−1)を設ケ、
コのホイール(1−t)Kは別に設けたモーター等の駆
動装fKより回動するようになっている。In Figure 1, wheels (1-1) are installed at both ends,
The wheel (1-t) K is rotated by a drive device fK such as a separately provided motor.
マ九、ホイール(1−1)Kは、無端状にベル)(1−
2)が係合されて、移動床(1)を形成する。このベル
ト(1−2)Fi、板状もしくはメツシュ状あるいはキ
ャタピラ状のものであっても問題でない。前記移動床(
1)は、矢、部方向に移動し、この移動床(1)の上流
側の上方には、処理しようとする金属粉末を移動床(1
)K供給するための供給ホッパー(2)を設けている。M9, wheel (1-1) K is an endless bell) (1-1)
2) are engaged to form a moving bed (1). There is no problem even if this belt (1-2) Fi is plate-shaped, mesh-shaped, or caterpillar-shaped. The moving floor (
1) moves in the direction of the arrow, and above the upstream side of this moving bed (1) is a moving bed (1) that carries the metal powder to be processed.
) A supply hopper (2) is provided for supplying K.
前記供給ホッパー(りは、その下部より常に一定割合で
粉末を切出すようになっている。さらに、供給ホッパー
(りの下流側には、脱炭室(3)、冷却室(4)が順次
配設してあり、前記脱炭室(3)の天井部、及び底部に
は加熱器を有し、金属粉末を550t〜1200℃゛に
加熱するよう構成している。The supply hopper is designed to always cut out powder at a constant rate from the lower part of the supply hopper.Furthermore, on the downstream side of the supply hopper, a decarburization chamber (3) and a cooling chamber (4) are sequentially installed. The decarburization chamber (3) is equipped with a heater at the ceiling and bottom, and is configured to heat the metal powder to 550t to 1200°C.
また、脱炭室(3)には、脱炭性ガスを室内に供給する
ための脱炭性ガス供給系(s)が、冷却室(4)には、
非酸化性ガスを室内に供給するだめの非酸化性ガス供給
系(2)が接続されている。前記脱炭性ガス供給系(5
)は、集塵機(6)、ガス成分調整器(7)を脱炭室(
3)のガス排出側より順次配設された微積系を構成し、
集塵機(6)は、脱炭室(3)から排出されゐ脱炭性ガ
ス中に混入した微粒の金g扮末を回収す′るためのもの
であり、また、ガス成分調整器(?)は、金属粉末の脱
炭中に増加する脱炭性ガス中のCO酸成分除去調整する
本のであって、脱炭性ガスO脱炭性を高位に維持するも
のである。In addition, the decarburization chamber (3) has a decarburization gas supply system (s) for supplying decarburization gas into the room, and the cooling chamber (4) has a decarburization gas supply system (s) for supplying decarburization gas into the room.
A non-oxidizing gas supply system (2) for supplying non-oxidizing gas into the room is connected. The decarburizing gas supply system (5
), the dust collector (6) and gas component regulator (7) are installed in the decarburization chamber (
3) constitutes a calculus system arranged sequentially from the gas discharge side,
The dust collector (6) is used to collect fine gold particles mixed in the decarburizing gas discharged from the decarburizing chamber (3), and is also equipped with a gas component regulator (?) is a book that adjusts the removal of CO acid components in the decarburizing gas that increases during decarburization of metal powder, and maintains the decarburizing property of the decarburizing gas O at a high level.
すなわち、脱炭室(3)よね排出される脱炭性ガス中の
多量の00成分は、ガス成分調整器(7)において、ま
ず001に変成された後、00s 吸収剤と接触して
除去されるので、ガス成分調整器(nを通過したガスは
00成分が脱炭反応を阻害しない程度に低くな抄、再び
脱炭性ガスとして使用が可能となる。なお、CO成分量
は、00濃度計によって確認管理される。That is, a large amount of the 00 component in the decarburized gas discharged from the decarburization chamber (3) is first transformed into 001 in the gas component regulator (7), and then removed by contact with the 00s absorbent. Therefore, the gas that has passed through the gas component regulator (n) can be used as a decarburizing gas again if the 00 component is so low that it does not inhibit the decarburization reaction. Confirmed and managed by the meter.
さらに、この脱炭性ガス供給系(6)には、集塵機(6
)の手前にパルプ(9)を設け、脱炭室(3)からの排
出ガス量を調節し、ガス成分訓整器(7)の後方にプロ
ワ−(8)を設け、このゾロワー(8)によって、脱炭
室(3)にガスを供給して循環するようにしている。な
お、(転)は、脱炭性ガス補給系であって、脱炭性ガス
の不足時に核ガスを補給するようにしている。Furthermore, this decarburizing gas supply system (6) includes a dust collector (6).
) is provided in front of the decarburizer (9) to adjust the amount of exhaust gas from the decarburization chamber (3), and a blower (8) is provided behind the gas component regulator (7). By this, gas is supplied to the decarburization chamber (3) and circulated. Note that (Tan) is a decarburizing gas replenishment system that replenishes nuclear gas when there is a shortage of decarburizing gas.
非酸化性ガス供給系岨り冷却室(4)に連通されており
、前記冷却室(4)の終端部より冷めたい非酸化性ガス
を供給し、冷却室(4)の始端部(脱炭室g4)より金
属粉末との熱交換により高温になった前記非酸化性ガス
を排出し、この系(ロ)内の熱交換器(6)により冷却
されて、再びプロワ−(至)によりこの冷めたい非酸化
性ガスを冷却室(4)の終端部に供給する循環系を構成
している。なお、α◆は、冷却室(4)からの排出ガス
量を調整するためのパルプであり、(2)は、非酸化性
ガスの漏風量を補うための補給系である。The non-oxidizing gas supply system is connected to the cooling chamber (4), which supplies cold non-oxidizing gas from the terminal end of the cooling chamber (4) to the starting end (decarburization) of the cooling chamber (4). The non-oxidizing gas that has become high temperature due to heat exchange with the metal powder is discharged from chamber g4), cooled by the heat exchanger (6) in this system (b), and then returned to the blower (to). It constitutes a circulation system that supplies cold non-oxidizing gas to the end of the cooling chamber (4). Note that α◆ is pulp for adjusting the amount of exhaust gas from the cooling chamber (4), and (2) is a replenishment system for supplementing the amount of non-oxidizing gas leakage.
以上のような脱炭性ガス供給系(5)、非酸化性ガス供
給系Ql)において、脱炭性ガスとして、Hlo、HB
Nmの組成のもの、Hlo、Hlの組成のもの、co、
、coの組成のもの等、n、o、oo、を含有するガス
を使用する場合は、冷却室(4)の室内圧を脱炭室(3
)の室内圧より高く保つ必要があり、冷却室(4)、脱
炭室(3)のそれぞれに圧力計を新たに配設し、室内圧
力調整を施すような構成にするとよい。In the decarburizing gas supply system (5) and non-oxidizing gas supply system Ql) as described above, Hlo, HB are used as the decarburizing gas.
Those with a composition of Nm, those with a composition of Hlo, Hl, co,
When using a gas containing n, o, oo, such as a gas with a composition of
), it is preferable to newly install pressure gauges in each of the cooling chamber (4) and the decarburization chamber (3) to adjust the indoor pressure.
また本発明においては、第2図に示すような装置の構成
をとることもできる。Further, in the present invention, an apparatus configuration as shown in FIG. 2 can also be adopted.
すなわち第2図は脱炭室0)の上流側に脱炭性ガス供給
系(5)を接続して脱炭性ガ・スを供給し、冷却室(4
)の下流側に非酸化性ガス供給系(ロ)を接続して非酸
化性ガスを供給する。(9−1)(9−2)はガスの流
量を調整するパルプである。脱炭室(3)と冷却室(4
)の境界には、雰囲気ガスが炉外へ流出できるような中
空構造のガス流出壁(2)が設けてあり、脱炭室(3)
へ供給された脱炭性ガスと冷却室(4)へ供給された非
酸化性ガスがこのガス流出壁曽の内部を通って炉外へ排
出され、排ガス燃焼装置切によって溶焼するようになっ
ている。前記ガス流出壁曽を設けであるのは、脱炭室(
3)の脱炭性ガスがHmo、 COIなどの酸化性ガス
を含んでいる場合に、該ガスが冷却室(4)に混入して
金属粉末の再酸化が生ずるのを防ぐためである。ガス流
出壁aユの内部には仕切板(16−1)を設けて隣接す
る室の雰囲気ガスの混入をより完全に防止することが望
ましい。また、隣接する室のそれぞれの雰囲気ガスの圧
力が大気圧よ抄も高ければ、室内の雰囲気ガスはガス流
出壁曽を通って炉外へ排出されるが、隔壁によるガスの
混入防止効果を高めるために、排ガス燃焼装置輔とガス
流出壁曽との間にブロアー(旬を設けて、強制的に各室
内の雰囲気ガスをガス流出壁内部を通って吸引すること
が好ましい。またその場合2、ブロアー(畠)とガス流
出壁との間にパルプ(9−3)を設けて流出するガスの
量を適度に調節することが必要である。In other words, in Figure 2, the decarburizing gas supply system (5) is connected to the upstream side of the decarburizing chamber (0) to supply decarburizing gas, and the decarburizing gas is supplied to the cooling chamber (4).
) is connected to the non-oxidizing gas supply system (b) on the downstream side to supply non-oxidizing gas. (9-1) and (9-2) are pulps that adjust the flow rate of gas. Decarburization chamber (3) and cooling chamber (4
) is provided with a hollow structure gas outflow wall (2) that allows atmospheric gas to flow out of the furnace, and a decarburization chamber (3).
The decarburizing gas supplied to the cooling chamber (4) and the non-oxidizing gas supplied to the cooling chamber (4) are discharged to the outside of the furnace through the inside of this gas outlet wall, and are burned by turning off the exhaust gas combustion device. ing. The gas outflow wall is provided in the decarburization chamber (
This is to prevent the metal powder from being reoxidized by mixing the decarburizing gas in 3) into the cooling chamber (4) when the decarburizing gas contains oxidizing gases such as Hmo and COI. It is desirable to provide a partition plate (16-1) inside the gas outflow wall a to more completely prevent atmospheric gas from adjoining chambers from entering. Additionally, if the pressure of the atmospheric gas in each adjacent chamber is higher than the atmospheric pressure, the atmospheric gas in the chamber will be discharged to the outside of the furnace through the gas outlet wall, but this will increase the effect of the partition wall in preventing gas from entering. Therefore, it is preferable to install a blower between the exhaust gas combustion device and the gas outlet wall to forcibly suck the atmospheric gas in each room through the inside of the gas outlet wall. It is necessary to provide a pulp (9-3) between the blower and the gas outflow wall to appropriately adjust the amount of gas flowing out.
以上の第2図の装置においては、非酸化性ガスおよび脱
炭性ガスの排出ガスを燃焼廃棄しているが、これらの排
出ガスを循環系内に入れて、反応に有害なガス成分を除
去して、循環再使用することは可能である。In the apparatus shown in Figure 2 above, the exhaust gases of non-oxidizing gas and decarburizing gas are burned and disposed of, but these exhaust gases are introduced into the circulation system to remove gas components harmful to the reaction. It is possible to recycle and reuse it.
以下、この発明の実施例について説明する。Examples of the present invention will be described below.
〔実施例1〕
油アトマイズ後脱油して得た第1表に示す組成、粒度分
布を有するN1−Mo−0u系の合金鋼粉末を第1図に
示す装置により脱炭処理を行なった。その際の処理条件
を第2表に、を九その処理結果を第3表に示す。[Example 1] N1-Mo-0u alloy steel powder having the composition and particle size distribution shown in Table 1 obtained by deoiling after oil atomization was decarburized using the apparatus shown in FIG. The processing conditions at that time are shown in Table 2, and the processing results are shown in Table 3.
第1表
第3表
第3表より明らかなごとく、合金粉末中の酸素含有量を
初期の低位の値に保ち、炭素含有量を0.56wt f
l より04)lvtl tで十分脱炭し得ることがで
きた。As is clear from Table 1 and Table 3, the oxygen content in the alloy powder was kept at the initial low value, and the carbon content was reduced to 0.56 wt f.
04) lvtl t was able to sufficiently decarburize.
〔実施例2〕
油アトマイズ後脱油して得た第4表に示す組成、粒度分
布を有するF@−Nl−’Oo系の合金粉末を、実施例
1と同様第1図に示す装置により脱炭処理を行なった。[Example 2] F@-Nl-'Oo alloy powder having the composition and particle size distribution shown in Table 4 obtained by oil atomization and deoiling was processed using the apparatus shown in FIG. 1 in the same manner as in Example 1. Decarburization treatment was performed.
その際のJ6m条件を第5表に1またその処理結果を第
6表に示す。The J6m conditions at that time are shown in Table 5 and the processing results are shown in Table 6.
第4表
本実施例においても、第6表より明らかなごとく、合金
粉末中の酸素含有量を初期の低位の値に保ち、炭素含有
量を0.55 wt−より0.02wt−まで十分脱炭
し得ることができた。Table 4 In this example as well, as is clear from Table 6, the oxygen content in the alloy powder was kept at the initial low value, and the carbon content was sufficiently removed from 0.55 wt- to 0.02 wt-. I was able to get it charcoal.
第1図は、本発明の一実施態様を示す縦断側面図、第2
図は本発明の他の実施態様を示す縦断側面図である。
1−1・・・ホイール、1−2・・・ベルト、1・・・
移動床、2・・・供給ホッパー、3・・・脱炭室、4・
・・冷却室、5・・・脱炭性ガス供給系、6・・・集應
機、7・・・ガス成分調整器、8・・・プロワ−19・
・・バルブ、10・・・脱炭性ガス補給系、11・・・
非酸化性ガス供給系、12・・・熱交換器、13・・・
ブロワ−114・・・パルプ、15・・・非酸化性ガス
補給系、16・・・ガス流出壁、・17・・・排ガス燃
焼装置
自発手続ネ市正書
昭和57年7月2日
特許庁長官 若 杉 和 夫 殿
1、事件の表示
昭和56年 特許願 第 116619 号2、発明
の名称
金属粉末の処理方法およびその装置。
3、補正をする者
事例との関係 出願人
代表者 熊 谷 負 文
1、 本願明細書第9頁第20行「・・・構成している
。」の次に、「なお、移動床としては、図示したベルト
式のものでなく、ブツシャー中ローラー上でトレイを連
続的に移動させる形式のものもある。」を挿入する。
2、 同明細書第14頁の第2表中の脱炭室圧力ro、
004Gkf//W#」をr O,OO04G1wf/
sfJと、同じく第16頁の第6表中の脱炭室圧力r
0000!!G1w/aj Jを「0.0002Gkl
f、に−」とそれぞれ補正する。FIG. 1 is a longitudinal cross-sectional side view showing one embodiment of the present invention, and FIG.
The figure is a longitudinal sectional side view showing another embodiment of the present invention. 1-1...Wheel, 1-2...Belt, 1...
Moving bed, 2... Supply hopper, 3... Decarburization chamber, 4.
...Cooling room, 5.Decarburizing gas supply system, 6.Collector, 7.Gas component regulator, 8.Prower 19.
...Valve, 10...Decarburizing gas supply system, 11...
Non-oxidizing gas supply system, 12... heat exchanger, 13...
Blower 114...Pulp, 15...Non-oxidizing gas replenishment system, 16...Gas outflow wall, 17...Exhaust gas combustion device Voluntary procedure Ne City Publication July 2, 1980 Patent Office Director Kazuo Wakasugi 1. Indication of the case 1982 Patent Application No. 116619 2. Name of the invention: Method and apparatus for treating metal powder. 3. Relationship with the case of the person making the amendment Applicant Representative Kumagai Negative Sentence 1, Page 9, line 20 of the specification of the application, next to “It consists of...”, there is a line that says, “In addition, as a movable bed, , instead of the belt type shown, there is also a type in which the tray is continuously moved on rollers in the butcher. 2. Decarburization chamber pressure ro in Table 2 on page 14 of the same specification,
004Gkf//W#” r O,OO04G1wf/
sfJ and the decarburization chamber pressure r in Table 6 on page 16
0000! ! G1w/aj J to ``0.0002Gkl
f, ni-'', respectively.
Claims (1)
@ Ou @ Oo *F@、P、W等の元素の1種
以上を主成分とする金属粉末を移動床上に供給し、前記
移動床上の金属粉末を脱炭性ガス雰囲気を保った脱炭工
程内で550℃〜1200’CK加熱し、次いで非酸化
性ガス雰囲気を保った冷却工程内で冷却すゐことを特徴
とする金属粉末の処理方法。 (り 油アトマイズ法により得たNl、Mo、Ou、
Oo。 F・、P、W 勢の元素の1種以上を主成分とする金属
粉末を移動床上に供給し、前記移動床上の金属粉末を脱
炭性ガス雰囲気を保った脱炭工程内で550℃〜120
0℃に加熱し、次いで非酸化性ガス雰、囲気を保った冷
却工穏内で冷却するとともに、前記脱炭性ガス中に混入
した脱炭反応阻害成分を除去しながら、該ガスを微積使
用する仁とをlrfgLとする金属粉末の処理方法。 (3) 両端にホイール゛を備えエンドレスに移動す
る移動床と、前記移動床の上流側の上方に金属粉末を移
動床に供給する供給装置と、前記供給装置の下流側に設
は脱炭性ガス供給系に接続した脱炭室と、前記脱炭室の
下流側に毀は非酸化性ガス供給系に接続した冷却室とか
ら構成したことを特徴とする金属粉末の処理装置。 ′(4) 前記脱炭性ガス供給系は、脱炭性ガスを循
の範囲第3項記載の金属粉末の処理装置。 (5)前記脱炭室と前記冷却室の境林に1脱炭室のガス
が冷却室に混入することを防ぐ中空構造のガス流出壁を
設けたことを特徴とする特許請求の範囲第3項、第4項
記載の金属粉末の処理装置。[Claims] (1) Ni@Me obtained by oil atomization method
@ Ou @ Oo *Decarburization process in which metal powder containing one or more elements such as F@, P, and W as a main component is supplied onto a moving bed, and the metal powder on the moving bed is maintained in a decarburizing gas atmosphere. A method for processing metal powder, which comprises heating the metal powder to 550°C to 1200°C in a cooling chamber, and then cooling it in a cooling step in which a non-oxidizing gas atmosphere is maintained. (Nl, Mo, Ou obtained by oil atomization method,
Oo. A metal powder containing at least one of the following elements as a main component is supplied onto a moving bed, and the metal powder on the moving bed is heated at 550°C to 550°C in a decarburization process that maintains a decarburizing gas atmosphere. 120
The decarburizing gas is heated to 0°C, then cooled in a cooling facility with a non-oxidizing gas atmosphere, and the decarburizing gas is removed in small amounts while removing components that inhibit the decarburizing reaction mixed in the decarburizing gas. A method for processing metal powder using lrfgL. (3) A moving bed that is equipped with wheels at both ends and moves endlessly; a feeding device that supplies metal powder to the moving bed above the upstream side of the moving bed; and a decarburizing device installed downstream of the feeding device. 1. A metal powder processing apparatus comprising: a decarburization chamber connected to a gas supply system; and a cooling chamber downstream of the decarburization chamber and connected to a non-oxidizing gas supply system. (4) The metal powder processing apparatus according to item 3, wherein the decarburizing gas supply system circulates the decarburizing gas. (5) A gas outflow wall having a hollow structure is provided between the decarburization chamber and the cooling chamber to prevent gas from one decarburization chamber from entering the cooling chamber. 4. The metal powder processing apparatus according to item 4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56116619A JPS5819401A (en) | 1981-07-24 | 1981-07-24 | Method and device for treatment of metallic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56116619A JPS5819401A (en) | 1981-07-24 | 1981-07-24 | Method and device for treatment of metallic powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5819401A true JPS5819401A (en) | 1983-02-04 |
Family
ID=14691662
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56116619A Pending JPS5819401A (en) | 1981-07-24 | 1981-07-24 | Method and device for treatment of metallic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5819401A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110703A (en) * | 1984-11-06 | 1986-05-29 | Kawasaki Steel Corp | Method and device for finish heat treatment of iron and steel powder |
JPS61139604A (en) * | 1984-12-11 | 1986-06-26 | Sumitomo Metal Ind Ltd | Method for producing medium-high carbon metal powder |
JPS6330819A (en) * | 1986-07-24 | 1988-02-09 | Toyo Contact Lens Co Ltd | Material for hard contact lens |
-
1981
- 1981-07-24 JP JP56116619A patent/JPS5819401A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61110703A (en) * | 1984-11-06 | 1986-05-29 | Kawasaki Steel Corp | Method and device for finish heat treatment of iron and steel powder |
JPH0369961B2 (en) * | 1984-11-06 | 1991-11-06 | Kawasaki Steel Co | |
JPS61139604A (en) * | 1984-12-11 | 1986-06-26 | Sumitomo Metal Ind Ltd | Method for producing medium-high carbon metal powder |
JPH0346524B2 (en) * | 1984-12-11 | 1991-07-16 | Sumitomo Metal Ind | |
JPS6330819A (en) * | 1986-07-24 | 1988-02-09 | Toyo Contact Lens Co Ltd | Material for hard contact lens |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2768888B2 (en) | Direct reduction method of fine iron oxide-containing material and production equipment for performing the method | |
DD151768A5 (en) | METHOD OF REDUCING METAL ORCHES | |
JPS5819401A (en) | Method and device for treatment of metallic powder | |
US5840097A (en) | Method for direct reduction of oxides | |
DE3008445A1 (en) | METHOD AND DEVICE FOR REDUCING PARTICLE ORES TO METALS | |
US4348226A (en) | Direct reduction process for producing metallic iron | |
JPS6364482B2 (en) | ||
JP2002522642A (en) | Heat treatment method of residue material containing heavy metal and iron oxide | |
US6063155A (en) | Fluidized bed process for the production of iron carbide | |
US6569377B2 (en) | Plant for the direct reduction of particulate iron-oxide-containing material | |
US20040237718A1 (en) | Process for reducing metal-containing, in particular iron-ore-containing, particulate material | |
JP2010159474A (en) | Method of finish heat treatment for iron powder and apparatus therefor | |
JP4839869B2 (en) | Finishing heat treatment method and finishing heat treatment apparatus for iron powder | |
KR100245398B1 (en) | Manufacturing method of abrasive grit using steel particles | |
JPS5827902A (en) | Metal powder processing method and device | |
WO2012127760A1 (en) | Method of finish heat treatment of iron powder and apparatus for finish heat treatment | |
JPH0140881B2 (en) | ||
JPS5827901A (en) | Metal powder processing method and device | |
JPS59133301A (en) | Method of simultaneously sintering and cementating iron-basepowder metal forged premolded articles | |
EP0108175A1 (en) | Process for producing alloy steel powder | |
JP6112280B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
JP6112283B1 (en) | Method for producing alloy steel powder for powder metallurgy | |
JPS5980702A (en) | Production of alloy steel powder | |
JPS62274003A (en) | Sintering of powder material | |
JPS5935602A (en) | Production of low oxygen low carbon alloy steel powder |