JPS6113712B2 - - Google Patents

Info

Publication number
JPS6113712B2
JPS6113712B2 JP53158668A JP15866878A JPS6113712B2 JP S6113712 B2 JPS6113712 B2 JP S6113712B2 JP 53158668 A JP53158668 A JP 53158668A JP 15866878 A JP15866878 A JP 15866878A JP S6113712 B2 JPS6113712 B2 JP S6113712B2
Authority
JP
Japan
Prior art keywords
hydrogen atom
dichloromethane
general formula
group
cis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53158668A
Other languages
Japanese (ja)
Other versions
JPS5585581A (en
Inventor
Masakatsu Matsumoto
Keiko Kuroda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sagami Chemical Research Institute
Original Assignee
Sagami Chemical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sagami Chemical Research Institute filed Critical Sagami Chemical Research Institute
Priority to JP15866878A priority Critical patent/JPS5585581A/en
Publication of JPS5585581A publication Critical patent/JPS5585581A/en
Publication of JPS6113712B2 publication Critical patent/JPS6113712B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Pyrane Compounds (AREA)
  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は、新芏な䞀般匏 匏䞭、R1は氎玠原子又はアルアルコキシ基、R2
は氎玠原子、R3は氎玠原子又はアルコキシ基を
瀺し、R4及びR5はそれぞれ独立に、R4が氎玠原
子又はアリヌル基で、R5がアルコキシ基を瀺す
か、R4及びR5が䞀緒にな぀お−−CH22−ず
なり、結合する盞手ず䞀䜓ずな぀お環を圢成しう
る。〕。で衚わされる−ホルミルクロマン誘導
䜓及びその補造方法に関する。 前蚘䞀般匏で衚わされる−ホルミルク
ロマン誘導䜓は、医薬品、蟲薬等の合成䞭間䜓ず
しお利甚できる。䟋えば、−ホルミルクロマン
誘導䜓は酞凊理によりフロベンゟフラン誘導䜓
に、又酞化的脱ホルミル化によりクロマノン誘導
䜓やむ゜フラボン誘導䜓に倉換できる。䞋蚘参
考䟋参照。フロベンゟフラン誘導䜓の䞭には、
アフラトキシン、ベルシコロリン、ステリグマト
シスチン等のように匷い生理䜜甚を有する化合物
が数倚く知られおいる〔Ed.by K.Nakanishi et
al.、“Natural Products Chemistry”、Vol.2、
Kodansha、Tokyo1975参照〕。又、む゜フ
ラボン誘導䜓はダむアれむン、フオルモノネチ
ン、ゞナネステむン等のように、怍物の生長抑制
䜜甚及び皮々の発芜阻害䜜甚を有しおいるこずが
知られおいる〔高橋ら、生理掻性倩然物化孊、東
京倧孊出版䌚1973参照〕。 埓来、フロベンゟフラン誘導䜓の合成法ずしお
は、䟋えば、(1)プノヌルず−ブロモ−・
−ヘキサゞ゚ンを塩基の存圚䞋に瞮合させ、次い
でその生成物をルむス酞の存圚䞋クラむれン転䜍
させた埌、四酞化オスミりム−過ペり玠酞ナトリ
りムで酞化しお、脱氎するこずにより補造する方
法〔N.E.Pawlowski et al.、Tetra.Letter、1321
1974参照〕、(2)−アセチルキノンにゞヒドロ
フランを付加させる方法〔P.Kuser et al.、
Helv.Chim.Acta、54、9691321参照〕、(3)
−ヒドロキシアセトプノン誘導䜓よりたず、メ
チルクマリンを合成、次いでメチル基の二酞化れ
レン酞化によりホルミルクマリンを合成、これを
ゞアルコキシメチルクマリンに倉換し、還元凊
理、次いで酞凊理するこずにより合成する方法
〔F.M.Dean、“The Total Synthesis of Natural
Products”、Vol.1、P.467、ed.by J.Apsimon、
Wiley−Interscience、New York1973参照〕
等が知られおいる。 しかしながら(1)及び(3)の方法は原料及び反応詊
剀が高䟡あるいは入手困難であるばかりでなく、
操䜜が煩雑であり、又、(1)及び(2)の方法は、芳銙
栞の任意の䜍眮に所望の官胜基を導入するこず等
が困難であるため、いずれの方法も工業的には採
甚し難い。 䞀方、む゜フラボン誘導䜓の合成法ずしおは、
(1)−ヒドロキシデオキシベンゟむンをギ酞゚ス
テルによりホルミル化し、閉環する方法〔P.C.
Joshi、K.Venkataraman、J.Chem.Soc.、513
1934参照、〕、(2)同じく−ヒドロキシデオキ
シベンゟむンを塩化゚トキサリルず瞮合させ、次
いで加氎分解、脱炭酞する方法〔W.Baker et al.
、J.Chem.Soc.、18601953参照〕、(3)ω−ブ
ロモアセトプノン誘導䜓ずプノヌル類を瞮合
させ、ω−プノキシアセトプノンを合成し、
次いでシアンヒドリンずし、その埌閉環、脱氎に
より合成する方法〔E.Spašth and E.Lederer、
Chem.Ber.、63B、7431930参照〕等数倚く
知られおいる。しかし、いずれも原料の入手が困
難であるずか、操䜜が煩雑である等、工業的補法
ずしおは難点が倚い。 本発明者等は、埓来の欠点を克服すべく鋭意怜
蚎した結果、本発明を芋出すに至぀たものであ
る。即ち、本発明は容易に入手可胜なβ−アルコ
キシスチレン誘導䜓を甚いお光増感剀の存圚䞋、
可芖光光源を甚いお酞化するずずもにモノ眮換な
いしシス−・−ゞ眮換゚チレン誘導䜓ず反応
させるこずにより本発明の化合物を合成できるも
のである。このものは前蚘した劂く、酞凊理ある
いは酞化凊理等するこずのみで有甚な化合物に容
易に導くこずができるものであり、工業的にみお
極めお有意矩なる発明であるずいえる。 本発明は䞋蚘の劂き反応匏により衚わすこずが
できる。 匏䞭、はアルキル基を瀺し、R1、R2、R3、R4
及びR5は前蚘同様の意味を瀺す。 本発明の方法においお第䞀工皋は䞀般匏
で衚わされるβ−アルコキシスチレン誘導䜓を光
増感剀の存圚䞋、可芖光光源を甚いお光酞化する
事を構成芁件ずするものである。前蚘䞀般匏
で衚わされるβ−アルコキシスチレン誘導
䜓は盞圓するベンズアルデヒド誘導䜓、プニル
アセチレン誘導䜓、あるいはプニルアセトアル
デヒド誘導䜓から容易に補造するこずができる。
本発明の方法においお甚いる光増感剀ずしおはテ
トラプニルポルフむン、ロヌズベンガル、メチ
レンブルヌ、゚オシン、ヘマトポルフむリン、フ
ルオレツセむン、スルホロヌダミン等がある。
又、可芖光光源ずしおはナトリりムランプ及びペ
り玠ランプを䟋瀺するこずができる。尚、玫倖光
では反応䜓及び生成物の異性化及び分解等の副反
応が生起する為奜たしくない。埓぀お、ペり玠ラ
ンプ等の玫倖光を含む光源を甚いる堎合には玫倖
光フむルタヌを通した光源が奜たしい。 本工皋の光酞化は、酞玠源ずしお玔酞玠又は酞
玠䟛絊物質、䟋えば空気を甚いるこずができる。
本工皋を実斜するに圓぀おは溶媒の䜿甚が奜たし
く、䟋えばゞクロロメタン、トリクロロフルオロ
メタン、四塩化炭玠等のハロゲン化炭玠が特に奜
たしい。メタノヌル、゚タノヌル、酢酞等のプロ
トン性溶媒は副反応が起こる傟向にあるので奜た
しくない。反応は宀枩以䞋の枩床で円滑に進行す
るが、宀枩以䞊でぱンド過酞化物が分解
するおそれがある。目的物を遞択的に埗るには−
100℃−℃が奜たしい。 本発明の第二工皋は、第䞀工皋で圢成される䞀
般匏で衚わされる゚ンド過酞化物を単離若
しくは単離するこずなく䞀般匏で衚わされ
るモノ眮換又はシス−・−ゞ眮換゚チレン誘
導䜓ず反応させるものである。モノ眮換又はシス
−・−ゞ眮換゚チレン誘導䜓ずしおはメチル
ビニル゚ヌテル、゚チルビニル゚ヌテル、む゜ブ
チルビニル゚ヌテル等のアルキルビニル゚ヌテ
ル、ゞヒドロフラン、β−メトキシスチレン等の
ビニル眮換芳銙族化合物を䟋瀺するこずができ
る。これらの化合物は工業的に容易に入手可胜で
ある。 第二工皋においおは、溶媒ずしお四塩化炭玠、
クロロホルム、ゞクロロメタン、トリクロロフル
オロメタン等のハロゲン化炭化氎玠、アセトン、
メチル゚チルケトン等のゞアルキルケトン、ゞ゚
チル゚ヌテル、テトラヒドロフラン、ゞメトキシ
゚タン等の゚ヌテル、ベンれン、トル゚ン、キシ
レン等の芳銙族炭化氎玠溶媒を甚い、前蚘䞀般匏
で衚わされるモノ眮換又はシス−・−
ゞ眮換゚チレンをβ−アルコキシスチレン誘導䜓
に察しお−10圓量を加え反応を行うものであ
る。反応枩床は、−30℃−80℃の範囲で円滑に進
行するが、反応速床ず反応の遞択性の芳点から−
20℃−宀枩が奜たしい。 曎に本発明は、前蚘した第䞀工皋ず第二工皋ず
を段階的に区別するこずなく実斜するこずもでき
る。この堎合は䞀般匏で衚わされるβ−ア
ルコキシスチレン誘導䜓ず䞀般匏で衚わさ
れるモノ眮換又はシス−・−ゞ眮換゚チレン
誘導䜓ずを光増感剀の存圚䞋可芖光光源を甚いお
酞化するものであ぀お、諞条件は前蚘した第二工
皋ず同様の範囲で行なえる。 以䞋本発明を実斜䟋及び参考䟋により曎に詳现
に説明する。 実斜䟋  cis−β−メトキシスチレン0.67mol
をゞクロロメタン20ml䞭、テトラプニルポルフ
むンTPPを光増感剀ずし、酞玠雰囲気䞋、−
78℃で玄時間光照射した。このものにむ゜ブチ
ルビニル゚ヌテル50molを加え、℃
で玄15時間攟眮したのち濃瞮し、シリカゲルカラ
ムにかけ、ゞクロロメタンで流し出したずころ、
−ホルミル−−む゜ブトキシクロマン747mg
を埗た。原料回収40mg。収率68。このものの物
理定数およびスペクトルデヌタ、元玠分析倀は衚
に瀺した。 実斜䟋  trans−β−メトキシスチレン0.67
molをゞクロロメタン20ml䞭、TPPを光増感剀
ずし、酞玠雰囲気䞋、−78℃で玄時間光照射し
た。このものにむ゜ブチルビニル゚ヌテルmlを
加え、宀枩で日間撹拌したのち濃瞮し、シリカ
ゲルカラムにかけ、ゞクロロメタンで流し出した
ずころ、−ホルミル−−む゜ブトキシクロマ
ン298mgを埗た。収率26。 実斜䟋  cis−β−メトキシスチレン0.67mol
をトリクロロフルオロメタン10ml䞭、TPPを光
増感剀ずし、酞玠雰囲気䞋、−78℃で玄時間光
照射したずころ、゚ンドベルオキシドの結晶が析
出した。光照射埌、−78℃にお結晶を濟別採取
し、−75℃でNMRスペクトルを枬定した。なお、
この結晶は宀枩では非垞に䞍安定である。 NMRin CD2Cl2Ύ3.55、3H、5.49−
6.28、7Hppm. この結晶を−78℃でゞクロロメタンにずかし、
む゜ブチルビニル゚ヌテルmlを加えお℃にも
どし、そのたた玄15時間攟眮した。このものを濃
瞮し、シリカゲルカラムにかけ、ゞクロロメタン
で流し出したずころ、−ホルミル−−む゜ブ
トキシクロマン0.37を埗た。収率32。 実斜䟋  cis−β−メトキシスチレン0.67mol
をゞクロロメタン10ml䞭、TPPを光増感剀ず
し、酞玠雰囲気䞋、−78℃で玄6.5時間光照射し
た。このものに゚チルビニル゚ヌテル0.1115
molを加え、℃で玄15時間攟眮したのち濃
瞮し、シリカゲルカラムにかけ、ゞクロロメタン
で流し出したずころ、−゚トキシ−−ホルミ
ルクロマン395mgを埗た。収率38。このものの
物理定数およびスペクトルデヌタ、元玠分析倀は
衚に瀺した。 実斜䟋  cis−β−メトキシスチレン0.67mol
を゚チルビニル゚ヌテル0.1115molの共
存䞋、四塩化炭玠10ml䞭、TPPを光増感剀ず
し、酞玠雰囲気䞋、℃で玄時間光照射した。
このものを濃瞮し、シリカゲルカラムにかけ、ゞ
クロロメタンで流し出したずころ、−゚トキシ
−−ホルミルクロマン194mgを埗た。収率19
。 実斜䟋  cis−β−メトキシスチレン0.67mol
をゞクロロメタン20ml䞭、TPPを光増感剀ず
し、酞玠雰囲気䞋、−78℃で玄時間光照射し
た。このものに、・−ゞヒドロフランmlを
加え、℃で玄15時間攟眮したのち濃瞮し、シリ
カゲルカラムにかけ、ゞクロロメタンで流し出し
たずころ、−ホルミル−・・3a・9a−テト
ラヒドロ−フロ〔・−〕−4H−−ベンゟ
ピラン130mgを埗た。収率13。このものの物理
定数およびスペクトルデヌタヌ、元玠分析倀は衚
に瀺した。 実斜䟋  cis−β−メトキシスチレン0.67mol
をゞクロロメタンml䞭、TPPを光増感剀ず
し、酞玠雰囲気䞋、−78℃で玄時間光照射し
た。このものにcis−β−メトキシスチレン1.34
10molを加え、℃で玄15時間攟眮した
のち濃瞮し、シリカゲルカラムにかけ、ゞクロロ
メタンで流し出したずころ、−ホルミル−−
メトキシ−−プニルクロマン720mgを埗た。
収率54。このものの物理定数およびスペクトル
デヌタ、元玠分析倀は衚に瀺した。 実斜䟋  cis−β−メトキシスチレン1.3410mol
を四塩化炭玠20ml䞭、TPPを光増感剀ずし、酞
玠雰囲気䞋、℃で玄3.5時間光照射した。この
ものを濃瞮し、シリカゲルカラムにかけ、ゞクロ
ロメタンで流し出したずころ、−ホルミル−
−メトキシ−−プニルクロマン600mgを埗
た。原料回収30mg。収率46。 実斜䟋  cis−−−メトキシプニル−−メト
キシ゚チレン0.412.5molをトリクロロフ
ルオロメタン10ml䞭、TPPを光増感剀ずし、酞
玠雰囲気䞋、−78℃で玄時間光照射埌、枛圧
䞋、トリクロロフルオロメタンを留去し、アセト
ンml、む゜ブチルビニル゚ヌテルmlを加え、
℃で玄15時間攟眮した。このものを濃瞮し、シ
リカゲルカラムにかけ、ゞクロロメタンヘキ
サンの混合溶媒で流し出したずころ、−ホル
ミル−−む゜ブトキシ−−メトキシクロマン
190mgを埗た。収率29。このものの物理定数お
よびスペクトルデヌタは衚に瀺した。 実斜䟋 10 −−ベンゞロキシ−−メトキシプニ
ル−−メトキシ゚チレン1.03.7molを
ゞクロロメタンml䞭、TPPを光増感剀ずし、
酞玠雰囲気䞋、−78℃で玄時間光照射した。こ
のものに、む゜ブチルビニル゚ヌテルmlを加
え、℃で玄15時間攟眮したのち濃瞮し、シリカ
ゲルカラムにかけ、ゞクロロメタンで流し出した
ずころ、−ベンゞロキシ−−ホルミル−−
む゜ブトキシ−−メトキシクロマン200mgを埗
た。収率15。このもののスペクトルデヌタは衚
に瀺した。 実斜䟋 11 cis−−−メトキシプニル−−メト
キシ゚チレン0.412.5molをトリクロロフ
ルオロメタン10ml䞭、TPPを光増感剀ずし、酞
玠雰囲気䞋、−78℃で玄時間光照射した。光照
射埌、枛圧䞋、トリクロロフルオロメタンを留去
し、アセトンml、cis−−−メトキシプ
ニル−−メトキシ゚チレン1.06.1mol
を加え、℃で玄15時間攟眮した。このものを濃
瞮し、シリカゲルカラムにかけ、ゞクロロメタン
ヘキサンの混合溶媒で流し出したずころ、
−−メトキシプニル−・−ゞメトキ
シ−−ホルミルクロマン180mgを埗た。収率22
。このものの物理定数およびスペクトルデヌ
タ、元玠分析倀は衚に瀺した。
The present invention provides a novel general formula (In the formula, R 1 is a hydrogen atom or an aralkoxy group, R 2
represents a hydrogen atom, R 3 represents a hydrogen atom or an alkoxy group, R 4 and R 5 each independently represent a hydrogen atom or an aryl group, R 5 represents an alkoxy group, or R 4 and R 5 represent a hydrogen atom or an aryl group, or They can be combined to form -O-(CH 2 ) 2 - and can be combined with the partner to form a ring. ]. ) and a method for producing the same. The 4-formylchroman derivative represented by the general formula () can be used as a synthetic intermediate for pharmaceuticals, agricultural chemicals, and the like. For example, 4-formylchroman derivatives can be converted into frobenzofuran derivatives by acid treatment, and chromanone derivatives and isoflavone derivatives by oxidative deformylation. (See reference example below). Among the Flobenzofuran derivatives,
Many compounds are known to have strong physiological effects, such as aflatoxin, versicolorin, and sterigmatocystin [Ed. by K. Nakanishi et al.
al., “Natural Products Chemistry”, Vol.2,
Kodansha, Tokyo (1975). reference〕. In addition, isoflavone derivatives, such as diazein, phormononetin, diunestein, etc., are known to have plant growth-inhibiting effects and various germination-inhibiting effects [Takahashi et al., Chemistry of Physiologically Active Natural Products, University of Tokyo Press. (1973)]. Conventionally, as a method for synthesizing flobenzofuran derivatives, for example, (1) phenol and 1-bromo-2.5
- A method of manufacturing by condensing hexadiene in the presence of a base, then subjecting the product to Claisen rearrangement in the presence of a Lewis acid, followed by oxidation with osmium tetroxide-sodium periodate and dehydration [NEPawlowski et al. al., Tetra.Letter, 1321
(1974)], (2) Method for adding dihydrofuran to 2-acetylquinone [P. Kuser et al.,
See Helv.Chim.Acta, 54 , 969 (1321)], (3)O
- A method in which methylcoumarin is first synthesized from a hydroxyacetophenone derivative, then formylmarin is synthesized by oxidation of the methyl group with gelene dioxide, and this is converted to dialkoxymethylcoumarin, followed by reduction treatment and then acid treatment [ FMDean, “The Total Synthesis of Natural
Products”, Vol.1, P.467, ed.by J.Apsimon,
See Wiley-Interscience, New York (1973)]
etc. are known. However, methods (1) and (3) not only require raw materials and reaction reagents to be expensive or difficult to obtain;
The operations are complicated, and methods (1) and (2) make it difficult to introduce a desired functional group into any position of the aromatic nucleus, so neither method can be adopted industrially. It's difficult. On the other hand, as a method for synthesizing isoflavone derivatives,
(1) Method of formylating O-hydroxydeoxybenzoin with formic acid ester and ring-closing [PC
Joshi, K.Venkataraman, J.Chem.Soc., 513
(1934) [W.Baker et al.
, J.Chem.Soc., 1860 (1953)], (3) condensing an ω-bromoacetophenone derivative with a phenol to synthesize ω-phenoxyacetophenone,
Next, cyanohydrin is synthesized by ring closure and dehydration [E.Spašth and E.Lederer,
Chem.Ber., 63B , 743 (1930)] and many others are known. However, all of these methods have many drawbacks as industrial production methods, such as difficulty in obtaining raw materials and complicated operations. The inventors of the present invention have discovered the present invention as a result of intensive studies aimed at overcoming the conventional drawbacks. That is, the present invention uses an easily available β-alkoxystyrene derivative in the presence of a photosensitizer.
The compound of the present invention can be synthesized by oxidizing using a visible light source and reacting with a mono-substituted or cis-1,2-disubstituted ethylene derivative. As mentioned above, this compound can be easily converted into a useful compound simply by acid treatment or oxidation treatment, and can be said to be an extremely significant invention from an industrial perspective. The present invention can be represented by the following reaction formula. (In the formula, R represents an alkyl group, R 1 , R 2 , R 3 , R 4
and R 5 have the same meanings as above. ) In the method of the present invention, the first step is the general formula ()
A component of the method is to photooxidize the β-alkoxystyrene derivative represented by the formula using a visible light source in the presence of a photosensitizer. The β-alkoxystyrene derivative represented by the general formula () can be easily produced from the corresponding benzaldehyde derivative, phenylacetylene derivative, or phenylacetaldehyde derivative.
Photosensitizers used in the method of the present invention include tetraphenylporphin, rose bengal, methylene blue, eosin, hematoporphyrin, fluorescein, sulforhodamine B, and the like.
Furthermore, examples of visible light sources include sodium lamps and iodine lamps. It should be noted that ultraviolet light is not preferred because side reactions such as isomerization and decomposition of reactants and products occur. Therefore, when using a light source containing ultraviolet light such as an iodine lamp, the light source is preferably passed through an ultraviolet light filter. In the photooxidation of this step, pure oxygen or an oxygen-supplying substance such as air can be used as the oxygen source.
In carrying out this step, it is preferable to use a solvent, and halogenated carbons such as dichloromethane, trichlorofluoromethane, and carbon tetrachloride are particularly preferable. Protic solvents such as methanol, ethanol, and acetic acid are not preferred because they tend to cause side reactions. The reaction proceeds smoothly at temperatures below room temperature, but at temperatures above room temperature there is a risk that the endoperoxide () will decompose. To selectively obtain the target −
100°C-0°C is preferred. In the second step of the present invention, the endoperoxide represented by the general formula () formed in the first step is isolated or the mono-substituted or cis-1.2 represented by the general formula () is isolated without isolation. - It is reacted with a disubstituted ethylene derivative. Examples of mono-substituted or cis-1,2-disubstituted ethylene derivatives include alkyl vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, and isobutyl vinyl ether, and vinyl-substituted aromatic compounds such as dihydrofuran and β-methoxystyrene. These compounds are easily available industrially. In the second step, carbon tetrachloride as a solvent,
Halogenated hydrocarbons such as chloroform, dichloromethane, trichlorofluoromethane, acetone,
Using dialkyl ketones such as methyl ethyl ketone, ethers such as diethyl ether, tetrahydrofuran, and dimethoxyethane, and aromatic hydrocarbon solvents such as benzene, toluene, and xylene, monosubstituted or cis-1,2-
The reaction is carried out by adding 1 to 10 equivalents of disubstituted ethylene to the β-alkoxystyrene derivative. The reaction temperature is in the range of -30℃ to 80℃, and the process proceeds smoothly, but from the viewpoint of reaction rate and reaction selectivity, -
20°C-room temperature is preferred. Furthermore, the present invention can also be carried out without distinguishing between the first step and the second step described above. In this case, a β-alkoxystyrene derivative represented by the general formula () and a mono- or cis-1,2-disubstituted ethylene derivative represented by the general formula () are combined using a visible light source in the presence of a photosensitizer. The oxidation process can be carried out under the same conditions as in the second step described above. The present invention will be explained in more detail below with reference to Examples and Reference Examples. Example 1 cis-β-methoxystyrene 0.67g (5mmol)
in 20 ml of dichloromethane with tetraphenylporphin (TPP) as a photosensitizer under an oxygen atmosphere.
Light irradiation was performed at 78°C for about 4 hours. Add 5 g (50 mmol) of isobutyl vinyl ether to this, and
After leaving it for about 15 hours, it was concentrated, applied to a silica gel column, and flushed out with dichloromethane.
4-formyl-2-isobutoxychroman 747mg
I got it. Raw material recovery 40mg. Yield 68%. The physical constants, spectral data, and elemental analysis values of this product are shown in the table. Example 2 trans-β-methoxystyrene 0.67g (5m
mol) in 20 ml of dichloromethane, using TPP as a photosensitizer, was irradiated with light at -78°C for about 5 hours in an oxygen atmosphere. 5 ml of isobutyl vinyl ether was added to this, and after stirring at room temperature for 3 days, it was concentrated, applied to a silica gel column, and flushed out with dichloromethane to obtain 298 mg of 4-formyl-2-isobutoxychroman. Yield 26%. Example 3 cis-β-methoxystyrene 0.67g (5mmol)
When the mixture was irradiated in 10 ml of trichlorofluoromethane with TPP as a photosensitizer in an oxygen atmosphere at -78°C for about 3 hours, endoveroxide crystals were precipitated. After light irradiation, the crystals were collected by filtration at -78°C, and the NMR spectrum was measured at -75°C. In addition,
This crystal is very unstable at room temperature. NMR (in CD 2 Cl 2 ): ή3.55 (s, 3H), 5.49−
6.28 (m, 7H) ppm. Dissolve this crystal in dichloromethane at -78℃,
5 ml of isobutyl vinyl ether was added, the temperature was returned to 5°C, and the mixture was left to stand for about 15 hours. This was concentrated, applied to a silica gel column, and flushed out with dichloromethane to obtain 0.37 g of 4-formyl-2-isobutoxychroman. Yield 32%. Example 4 cis-β-methoxystyrene 0.67g (5mmol)
was irradiated in 10 ml of dichloromethane with TPP as a photosensitizer at -78°C for about 6.5 hours in an oxygen atmosphere. Add this to 0.11 g of ethyl vinyl ether (15
mmol) was added, left at 5°C for about 15 hours, concentrated, applied to a silica gel column, and flushed out with dichloromethane to obtain 395 mg of 2-ethoxy-4-formylchroman. Yield 38%. The physical constants, spectral data, and elemental analysis values of this product are shown in the table. Example 5 cis-β-methoxystyrene 0.67g (5mmol)
was irradiated with light in 10 ml of carbon tetrachloride in the presence of 0.11 g (15 mmol) of ethyl vinyl ether at 5° C. in an oxygen atmosphere using TPP as a photosensitizer for about 6 hours.
This was concentrated, applied to a silica gel column, and flushed out with dichloromethane to obtain 194 mg of 2-ethoxy-4-formylchroman. Yield 19
%. Example 6 cis-β-methoxystyrene 0.67g (5mmol)
was irradiated in 20 ml of dichloromethane with TPP as a photosensitizer at -78°C for about 5 hours in an oxygen atmosphere. To this, 3 ml of 2,3-dihydrofuran was added, and after standing at 5°C for about 15 hours, it was concentrated, applied to a silica gel column, and flushed out with dichloromethane. -Furo[2.3-b]-4H-1-benzopyran (130 mg) was obtained. Yield 13%. The physical constants, spectral data, and elemental analysis values of this product are shown in the table. Example 7 cis-β-methoxystyrene 0.67g (5mmol)
was irradiated in 5 ml of dichloromethane with TPP as a photosensitizer at -78°C for about 3 hours in an oxygen atmosphere. This one has cis-β-methoxystyrene 1.34
g (10 mmol) was added, left at 5°C for about 15 hours, concentrated, applied to a silica gel column, and flushed out with dichloromethane, resulting in 4-formyl-2-
720 mg of methoxy-3-phenylchroman was obtained.
Yield 54%. The physical constants, spectral data, and elemental analysis values of this product are shown in the table. Example 8 cis-β-methoxystyrene 1.34g (10mmol)
was irradiated in 20 ml of carbon tetrachloride with TPP as a photosensitizer at 5° C. for about 3.5 hours in an oxygen atmosphere. When this was concentrated, applied to a silica gel column, and flushed out with dichloromethane, 4-formyl-2
-Methoxy-3-phenylchroman (600 mg) was obtained. Raw material recovery 30mg. Yield 46%. Example 9 0.41 g (2.5 mmol) of cis-1-(p-methoxyphenyl)-2-methoxyethylene was dissolved in 10 ml of trichlorofluoromethane at -78°C under an oxygen atmosphere using TPP as a photosensitizer. After irradiation with light for a period of time, trichlorofluoromethane was distilled off under reduced pressure, and 5 ml of acetone and 3 ml of isobutyl vinyl ether were added.
It was left at 5°C for about 15 hours. When this was concentrated, applied to a silica gel column, and flushed out with a mixed solvent of 2 parts dichloromethane and 1 part hexane, 4-formyl-2-isobutoxy-7-methoxychroman
Obtained 190mg. Yield 29%. The physical constants and spectral data of this product are shown in the table. Example 10 1.0 g (3.7 mmol) of 1-(2-benzyloxy-4-methoxyphenyl)-2-methoxyethylene in 5 ml of dichloromethane, using TPP as a photosensitizer,
Light irradiation was carried out at −78° C. for about 2 hours in an oxygen atmosphere. 5 ml of isobutyl vinyl ether was added to this, and after standing at 5°C for about 15 hours, it was concentrated, applied to a silica gel column, and flushed out with dichloromethane.
200 mg of isobutoxy-7-methoxychroman was obtained. Yield 15%. The spectral data of this product are shown in the table. Example 11 0.41 g (2.5 mmol) of cis-1-(p-methoxyphenyl)-2-methoxyethylene was dissolved in 10 ml of trichlorofluoromethane at -78°C under an oxygen atmosphere using TPP as a photosensitizer. Irradiated with light for a period of time. After light irradiation, trichlorofluoromethane was distilled off under reduced pressure, and 5 ml of acetone and 1.0 g (6.1 mmol) of cis-1-(p-methoxyphenyl)-2-methoxyethylene were added.
was added and left at 5°C for about 15 hours. This was concentrated, applied to a silica gel column, and flushed out with a mixed solvent of 1 part dichloromethane and 1 part hexane.
180 mg of 3-(p-methoxyphenyl)-2,7-dimethoxy-4-formylchroman was obtained. Yield 22
%. The physical constants, spectral data, and elemental analysis values of this product are shown in the table.

【衚】【table】

【衚】 参考䟋  −ホルミル−−メトキシ−−プニルク
ロマン200mg0.7molを、ゞアザビシクロり
ンデカン100mg、・2′−ゞピリゞル10mg、酢酞
銅10mgずずもに、・−ゞメチルホルムアミド
ml䞭、酞玠雰囲気䞋、40−50℃で玄15時間撹拌
した。反応終了埌、このものを食塩氎に投じ、゚
ヌテル50mlで抜出、硫酞マグネシりムで也燥し、
濃瞮した。残枣をシリカゲルカラムにかけ、ゞク
ロロメタンで流し出したずころ、む゜フラボン
130mgを埗た。収率78。 mp.145℃文献倀*148℃。 Joshi、Venkataraman、J.Chem.Soc.、
1934、513. 参考䟋  −−メトキシプニル−・−ゞメト
キシ−−ホルミルクロマン70mg0.2molを
・−ゞメチルホルムアミドmlに溶かし、ゞ
アザビシクロりンデカン100mg、・2′−ゞピリ
ゞル10mg、酢酞銅10mgを・−ゞメチルホルム
アミドmlにずかしお調補した溶液の0.3mlを加
えお、酞玠雰囲気䞋、40〜50℃で玄時間撹拌し
た。反応終了埌、このものを食塩氎に投じ、゚ヌ
テル抜出、硫酞マグネシりムで也燥し、濃瞮した
ずころ、ホルモノネチンメチル゚ヌテルが結晶ず
しお折出した。収量56mg99。 mp.165−166℃゚タノヌルから再結晶、文献
倀*162−164℃ DICTIONARY OF ORGANIC
COMPOUNDS Vol.2、p.813printed by
MARZEN. 参考䟋  −ホルミル−−む゜ブトキシクロマン650
mg2.8molを・−ゞメトキシ゚タンml
に溶かし、−78℃で撹拌しながら、50硫酞氎溶
液玄mlを加えた。このものを宀枩にもどし、
時間撹拌したのち゚ヌテルで垌釈し、氎に投じ
た。゚ヌテル局を重炭酞ナトリりム氎溶液で掗浄
し、硫酞マグネシりム也燥埌濃瞮した。残枣をシ
リカゲルカラムにかけ、ゞクロロメタンで流し出
したのち酢酞゚チルで流し出したずころ、−ヒ
ドロキシフロベンゟフラン270mgを埗た。収率54
。このもののスペクトルデヌタは文献倀N.
E.Pawlowski、et al.、TL.、1321、1974ず䞀
臎した。
[Table] Reference Example 1 200 mg (0.7 mmol) of 4-formyl-2-methoxy-3-phenylchroman was mixed with 100 mg of diazabicycloundecane, 10 mg of 2,2'-dipyridyl, and 10 mg of copper acetate, and 5 ml of N-N-dimethylformamide. The mixture was stirred at 40-50°C for about 15 hours under an oxygen atmosphere. After the reaction was completed, this product was poured into a saline solution, extracted with 50 ml of ether, dried over magnesium sulfate,
Concentrated. When the residue was applied to a silica gel column and flushed out with dichloromethane, isoflavones were detected.
Obtained 130 mg. Yield 78%. mp.: 145℃ (Literature value: * 148℃). *: Joshi, Venkataraman, J.Chem.Soc.,
1934, 513. Reference Example 2 70 mg (0.2 mmol) of 3-(p-methoxyphenyl)-2,7-dimethoxy-4-formylchroman was dissolved in 3 ml of N.N-dimethylformamide, 100 mg of diazabicycloundecane, 0.3 ml of a solution prepared by dissolving 10 mg of 2,2'-dipyridyl and 10 mg of copper acetate in 1 ml of N.N-dimethylformamide was added, and the mixture was stirred at 40 to 50° C. for about 3 hours under an oxygen atmosphere. After the reaction was completed, this product was poured into a saline solution, extracted with ether, dried over magnesium sulfate, and concentrated to precipitate formononetin methyl ether as crystals. Yield 56 mg (99%). mp.: 165-166℃ (recrystallized from ethanol, literature value: * 162-164℃) *: DICTIONARY OF ORGANIC
COMPOUNDS Vol.2, p.813printed by
MARZEN. Reference example 3 4-formyl-2-isobutoxychroman 650
mg (2.8 mmol) in 5 ml of 1,2-dimethoxyethane
About 1 ml of 50% sulfuric acid aqueous solution was added while stirring at -78°C. Return this to room temperature, 3
After stirring for an hour, the mixture was diluted with ether and poured into water. The ether layer was washed with aqueous sodium bicarbonate, dried over magnesium sulfate, and concentrated. The residue was applied to a silica gel column and flushed out with dichloromethane and then with ethyl acetate to obtain 270 mg of 2-hydroxyfurobenzofuran. Yield 54
%. The spectral data of this product is the literature value (N.
E. Pawlowski, et al., TL., 1321, 1974).

Claims (1)

【特蚱請求の範囲】  䞀般匏 で衚わされる−ホルミルクロマン誘導䜓〔匏
䞭、R1は氎玠原子又はアルアルコキシ基、R2は
氎玠原子、R3は氎玠原子又はアルコキシ基を瀺
し、R4及びR5はそれぞれ独立に、R4が氎玠原子
又はアリヌル基で、R5がアルコキシ基を瀺す
か、R4及びR5が䞀緒にな぀お−−CH22−ず
なり、結合する盞手ず䞀䜓ずな぀お環を圢成しう
る。〕。  䞀般匏 で衚わされるβ−アルコキシスチレン誘導䜓を光
増感剀の存圚䞋、可芖光光源を甚いお光酞化し、
圢成せる䞀般匏 で衚わされる゚ンド過酞化物を、䞀般匏 で衚わされるモノ眮換又はシス−・−ゞ眮換
゚チレン誘導䜓ず反応させるこずを特城ずする、
䞀般匏 で衚わされる−ホルミルクロマン誘導䜓の補造
方法〔匏䞭、はアルキル基、R1は氎玠原子又
はアルアルコキシ基、R2は氎玠原子、R3は氎玠
原子又はアルコキシ基を瀺し、R4及びR5はそれ
ぞれ独立に、R4が氎玠原子又はアリヌル基で、
R5がアルコキシ基を瀺すか、R4及びR5が䞀緒に
な぀お−−CH22−ずなり、結合する盞手ず
䞀䜓ずな぀お環を圢成しうる。〕。
[Claims] 1. General formula 4-formylchroman derivative represented by [wherein R 1 is a hydrogen atom or an aralkoxy group, R 2 is a hydrogen atom, R 3 is a hydrogen atom or an alkoxy group, and R 4 and R 5 are each independently, Either R 4 is a hydrogen atom or an aryl group and R 5 is an alkoxy group, or R 4 and R 5 are combined to form -O-(CH 2 ) 2 - and combine with the bonding partner to form a ring. Can be formed. ]. 2 General formula A β-alkoxystyrene derivative represented by is photooxidized using a visible light source in the presence of a photosensitizer,
General formulas that can be formed The endo peroxide represented by the general formula characterized by reacting with a mono-substituted or cis-1,2-disubstituted ethylene derivative represented by
general formula A method for producing a 4-formylchroman derivative represented by [wherein, R is an alkyl group, R 1 is a hydrogen atom or an aralkoxy group, R 2 is a hydrogen atom, R 3 is a hydrogen atom or an alkoxy group, and R 4 and R 5 each independently, R 4 is a hydrogen atom or an aryl group,
R 5 represents an alkoxy group, or R 4 and R 5 are combined to form -O-(CH 2 ) 2 -, and can be combined with the bonding partner to form a ring. ].
JP15866878A 1978-12-25 1978-12-25 4-formylchroman derivative and its preparation Granted JPS5585581A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15866878A JPS5585581A (en) 1978-12-25 1978-12-25 4-formylchroman derivative and its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15866878A JPS5585581A (en) 1978-12-25 1978-12-25 4-formylchroman derivative and its preparation

Publications (2)

Publication Number Publication Date
JPS5585581A JPS5585581A (en) 1980-06-27
JPS6113712B2 true JPS6113712B2 (en) 1986-04-15

Family

ID=15676736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15866878A Granted JPS5585581A (en) 1978-12-25 1978-12-25 4-formylchroman derivative and its preparation

Country Status (1)

Country Link
JP (1) JPS5585581A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5504080B2 (en) * 2010-07-13 2014-05-28 富士フむルム株匏䌚瀟 Method for producing vinyl ether compound
CN105111221B (en) * 2015-09-28 2017-09-22 湖南倧孊 Furans and the 9 oxime derivate of chroman 6 and preparation method and application

Also Published As

Publication number Publication date
JPS5585581A (en) 1980-06-27

Similar Documents

Publication Publication Date Title
La Belle et al. Synthesis of 11-oxatricyclo [5.3. 1.02, 6] undecane derivatives via organometallic cyclizations
JPS6139949B2 (en)
Demuth et al. Photocycloadditions of 2‐(trimethylsilyloxy)‐1, 3‐butadiene to 2‐cycloalkenones. Access to the basic pentalenolactone skeleton
Ando et al. Studies on the Synthesis of Sesquiterpene Lactones, 16. The Syntheses of 11β, 13-Dihydrokauniolide, Estafiatin, Isodehydrocostuslactone, 2-Oxodesoxyligustrin, Arborescin, 1, 10-Epiarborescin, 11β, 13-Dihydroludartin, 8-Deoxy-11β, 13-dihydrorupicolin B, 8-Deoxyrupicolin B, 3, 4-Epiludartin, Ludartin, Kauniolide, Dehydroleucodin, and Leucodin
JPH03109384A (en) Production of (s)-4-hydroxymethyl-gamma-lactone
US3894920A (en) Process for preparing alkyl-substituted 3,6-dihydro-o-dioxin derivatives
JPS6113712B2 (en)
CN111138429A (en) Synthesis method of 1,2, 4-triazole pyridine derivatives
JP3338854B2 (en) Method for producing new areno [e] indole
Cantrell Reactivity of photochemically excited 3-acylthiophenes, 3-acylfurans, and the formylthiophenes and furans
Hori et al. Stable 2-thianaphthalenes: synthesis and reactions with electrophiles
JP2856814B2 (en) Epoxy derivative and method for producing the same
Pariza et al. Bruceantin support studies. 5. Rapid access to a highly functionalized tricyclic bruceantin intermediate
US4011242A (en) Prostaglandin intermediates and processes for preparation of prostaglandin intermediates
SU1366061A3 (en) Method of obtaining lineatine
JPH01249765A (en) Production of chroman derivative and alpha-tocopherol
Lévai Epoxidation of homoisoflavones
CN115785104A (en) Method for synthesizing spiro [ indoline-3, 3' -pyrrolidine ] derivative catalyzed by monovalent gold
Padwa et al. Photochemical transformations of small ring heterocyclic systems. LX. Photochemical ring-opening reactions of substituted chromenes and isochromenes
JPS6348269B2 (en)
Brown et al. Synthesis of new medium ring aromatic lactones via halocyclization of 2-hydroxyphenylalkanoic acid allylic esters
CN116396257A (en) Preparation method of dihydrocoumarin compound
JPH0259821B2 (en)
JPS6056689B2 (en) Production method of cis-2-cycloalkene-1,4-diol
JPS625893B2 (en)