JPS61136426A - System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus - Google Patents

System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus

Info

Publication number
JPS61136426A
JPS61136426A JP59257430A JP25743084A JPS61136426A JP S61136426 A JPS61136426 A JP S61136426A JP 59257430 A JP59257430 A JP 59257430A JP 25743084 A JP25743084 A JP 25743084A JP S61136426 A JPS61136426 A JP S61136426A
Authority
JP
Japan
Prior art keywords
exhaust gas
reactor
ratio
amount
nox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59257430A
Other languages
Japanese (ja)
Inventor
Jiro Igaki
井垣 次郎
Toshiaki Kobayashi
俊明 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP59257430A priority Critical patent/JPS61136426A/en
Publication of JPS61136426A publication Critical patent/JPS61136426A/en
Pending legal-status Critical Current

Links

Landscapes

  • Treating Waste Gases (AREA)

Abstract

PURPOSE:To conserve fuel gas used in raising the temp. of exhaust gas, by preliminarily calculating the ratio of NOX concn./exhaust gas amount and the relation between reaction temp. and the change in a denitration ratio and controlling reaction temp. corresponding to the variation in the ratio of NOX concn./ exhaust gas amount. CONSTITUTION:The exhaust gas from a coke oven 1 is sent to a waste gas denitration apparatus 21 by a denitration fan 2. In a heating furnace 6, fuel gas is introduced from fuel gas piping 7 corresponding to the difference between actual reaction temp. measured by a thermometer 16 and set reaction temp. on the basis of the inlet of a reactor 17 and high temp. exhaust gas raised in its temp. in the heating furnace 6 is mixed with exhaust gas not guided to the heating furnace to perform the control of reaction temp. The amount of exhaust gas and the concn. of NOX are measured by an exhaust gas flowmeter 14 and a NOX densitometer 15 and reaction temp. is automatically controlled from the ratio thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は排ガスを加熱してこれにNH3を添加し触Is
層を有する反応器においてNOxを還元する排煙脱硝処
理装置の温度制御方法に関する6〔従来の技術〕 本発明の適用される排煙脱硝処理装置21のフローを第
1図に示した。コークス炉等1の排ガスは脱硝ファン2
によって反応器17に送られる。
Detailed Description of the Invention [Industrial Application Field] The present invention heats exhaust gas and adds NH3 to it.
6. Related to Temperature Control Method of Flue Gas Denitrification Treatment Apparatus for Reducing NOx in a Reactor Having a Layer 6 [Prior Art] FIG. 1 shows the flow of a flue gas denitrification treatment apparatus 21 to which the present invention is applied. Exhaust gas from coke oven etc. 1 is denitrified fan 2
is sent to the reactor 17 by.

その途中においてNH3投入装置12からNH3を添加
される。脱硝ファンの吐出側のガスの一部を加熱炉6に
導いて加熱し5反応器17における反応を促進゛する0
反応器17における反応率(以下、脱硝率と称す、)は
排ガスの量が増加する程、反応嚢中の触媒性能に対する
負荷が大きくなるので一時的に低下し、又排ガスのNO
x濃度が増加する程、触媒の活性点に到達する確率が増
すので、一時的に反応率が増大する。従って従来から計
器室のオペレータは脱硝率が低下してくると、加熱炉6
に余分に燃料ガスを送り込み、反応器17の温度(以下
反応温度と称す、)を高くして、脱硝率の低下を防止し
、また逆に脱硝率が上昇してくると、加熱炉6における
燃料ガスコスト削減のため反応温度を下げていた。
During this process, NH3 is added from the NH3 injection device 12. A part of the gas on the discharge side of the denitrification fan is guided to the heating furnace 6 and heated to promote the reaction in the reactor 17.
The reaction rate in the reactor 17 (hereinafter referred to as NOx removal rate) temporarily decreases as the amount of exhaust gas increases, as the load on the catalyst performance in the reaction chamber increases.
As the x concentration increases, the probability of reaching the active site of the catalyst increases, so the reaction rate temporarily increases. Therefore, traditionally, when the denitrification rate decreases, operators in the control room
The temperature of the reactor 17 (hereinafter referred to as reaction temperature) is increased by feeding extra fuel gas into the reactor 17 to prevent the denitrification rate from decreasing, and conversely, when the denitrification rate increases, The reaction temperature was lowered to reduce fuel gas costs.

以上のようにオペレータは排ガスの量やNOx濃度の変
動に対して、加熱炉6に投入する燃料ガス量により反応
温度を手動設定するわけであるが、対象排ガス発生炉の
操業との並行作業として、排出NOx9度を規定値に保
ち、かつ加熱炉6における燃料ガスの省エネルギーを計
るために反応温度を頻繁に細かく調整し、排出NOx濃
度を一定の限界内に管理することはかなり難しい、特に
製鉄所全体の操業条件の変更に伴って対象排ガス発生炉
の使用燃料ガスカロリーの変更が不可避であり、このよ
うな場合に排ガスの量やNox濃度の急激で大幅な変動
に対して手動では対処し切れないことが多い、そこで、
従来からオペレータの負荷を軽減し、かつNOx濃度の
排出規制を遵守できる範囲内で、最大限に省エネルギー
を達成するために反応温度の自動制御が要望されていた
As described above, the operator manually sets the reaction temperature based on the amount of fuel gas fed into the heating furnace 6 in response to fluctuations in the amount of exhaust gas and NOx concentration. It is quite difficult to keep the exhaust NOx concentration within a certain limit by frequently finely adjusting the reaction temperature in order to maintain the exhaust NOx concentration at a specified value of 9 degrees and to save energy of the fuel gas in the heating furnace 6, especially in steel manufacturing. Changes in the fuel gas calories used in the target exhaust gas generating furnace are unavoidable due to changes in the operating conditions of the entire plant. It often doesn't cut, so
Automatic control of reaction temperature has traditionally been desired in order to reduce the burden on the operator and achieve maximum energy savings within the range of complying with NOx concentration emission regulations.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は対象排ガス発生炉の使用ガスカロリーにより変
化する排ガス量やそのNOx濃度にかかわらず、排出N
Ox濃度を目標の一定値にコントロールすることにより
、オペレータの負荷の軽減、NOx濃度の排出規制の完
全遵守、排ガス相部用加熱炉の燃料ガスの省エネルギー
を達成することを目的とするものである。
The present invention enables the emission of N regardless of the amount of exhaust gas and its NOx concentration, which vary depending on the gas calories used in the target exhaust gas generating furnace.
By controlling the Ox concentration to a constant target value, the objective is to reduce the burden on the operator, fully comply with emission regulations for NOx concentration, and save energy for fuel gas in the exhaust gas phase heating furnace. .

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は上記問題を解決するため種々研究を重ねた結
果、排煙脱硝処理装置21の反応器17における脱硝率
は反応温度及びコークス炉使用燃料ガスカロリーにより
変化する(NOx濃度)/(排ガス量)比と良い相関が
あることを知見した。
The present inventor has conducted various studies to solve the above problems, and has found that the denitrification rate in the reactor 17 of the flue gas denitrification treatment device 21 changes depending on the reaction temperature and the calories of the fuel gas used in the coke oven. It was found that there is a good correlation with the amount) ratio.

本発明は上記知見に基いて完成されたもので、排ガスを
脱硝反応に必要な温度まで昇温した後NH3を添加して
反応器を通過させ、排ガス中のNo xt−還元除去す
る排煙脱硝方法において。
The present invention was completed based on the above knowledge, and is a flue gas denitrification method in which the exhaust gas is heated to the temperature required for the denitrification reaction, NH3 is added thereto, and the mixture is passed through a reactor to reduce and remove NO xt in the exhaust gas. In the method.

(NOx濃度)/(排ガス量)比および反応器での反応
温度と脱硝率の変化との関係を予め求めておき、これら
の関係から、脱硝処理設備出口のNOx濃度が一定とな
るように、(NOx9度)/(排ガス量)比の変動に応
じて反応温度を制御することを特徴とする反応器温度の
自動制御方法である。
The relationship between the (NOx concentration)/(exhaust gas amount) ratio and the reaction temperature in the reactor and the change in the denitrification rate is determined in advance, and from these relationships, the NOx concentration at the outlet of the denitrification processing equipment is kept constant. This is an automatic reactor temperature control method characterized by controlling the reaction temperature according to fluctuations in the (NOx 9 degrees)/(exhaust gas amount) ratio.

〔作用〕[Effect]

脱硝率Xを、従来の操業データから、反応温度Tと、使
用燃料ガスカロリーにより変化する(NOx濃度)/(
排ガス量)比とをパラメータとして整理したところ第2
図、第3図に示すような良い相関があることがわかった
。第2図、第3図の関係は次の2式で表わせる。
Based on conventional operation data, the denitrification rate
When the exhaust gas amount) ratio was organized as a parameter, the second
It was found that there was a good correlation as shown in Figures 3 and 3. The relationship between FIGS. 2 and 3 can be expressed by the following two equations.

X= f (NOx/F)−=−(1)X= g (T
)     −−−−(2)ここに、 X:脱硝率 NOx/F: (NOx濃度)/排ガス量)比 T:反応温度 である。
X= f (NOx/F)−=−(1)X= g (T
) ----(2) Here, X: Denitrification rate NOx/F: (NOx concentration)/Exhaust gas amount) ratio T: Reaction temperature.

排出N0x濃度を管理値に維持する本発明の作用は次の
通りである。
The effect of the present invention for maintaining the exhaust NOx concentration at a control value is as follows.

排ガス量、NOx濃度が変動する前の排ガスの量、NO
x濃度及び反応温度をそれぞれ、Fl、NOx1.T1
とし、対象排ガス発生炉の操業状況の変化により変動し
た後の排ガスの量、NOx濃度、反応温度を各々F2 
、N0X2 、T2とする。
Exhaust gas amount, amount of exhaust gas before NOx concentration changes, NO
x concentration and reaction temperature, Fl, NOx1. T1
The amount of exhaust gas, NOx concentration, and reaction temperature after fluctuations due to changes in the operating status of the target exhaust gas generating furnace are each adjusted to F2.
, NOX2 and T2.

コノ場合、N0Xt/FlがN0X2/F2に増大する
と脱硝率いわゆる反応率ΔX N Ox / Fが上昇
するので、これに対応して反応器17に導入する排ガス
温度をTlからT2へと下げることができる。従って、
排ガスを脱硝反応率向上のために加熱している場合は、
燃料の投入量を少なくすることができる。
In this case, when NOXt/Fl increases to NOX2/F2, the denitrification rate, so-called reaction rate ΔX NOx / F, increases, so it is possible to correspondingly lower the temperature of the exhaust gas introduced into the reactor 17 from Tl to T2. can. Therefore,
If exhaust gas is heated to improve the denitrification reaction rate,
The amount of fuel input can be reduced.

?i44図に、コークス炉の稼動率WRが一定値(WR
=120%)のと、Jの(NOX濃度)/(排ガス量)
比の変化ΔN Ox / Fと、反応温度変化ΔTとの
関係を例示した。また第5図にはコークス炉の燃料ガス
カロリーQと、(NOx濃度)/(排ガス量)比との関
係を示した。これらの関係を図示しない制御器に与えて
おくことにより、脱硝率を一定に保つ制御を自動的に行
うことができる。
? Figure i44 shows that the operating rate WR of the coke oven is a constant value (WR
=120%) and J's (NOX concentration)/(exhaust gas amount)
The relationship between the ratio change ΔN Ox /F and the reaction temperature change ΔT is illustrated. Further, FIG. 5 shows the relationship between the fuel gas calorie Q of the coke oven and the (NOx concentration)/(exhaust gas amount) ratio. By providing these relationships to a controller (not shown), control to keep the denitrification rate constant can be automatically performed.

〔実施例〕〔Example〕

第1図に示すようにコークス炉1からの排ガスは脱硝フ
ァン2により排煙脱硝処理装置21に送られる。排煙脱
硝処理装置21は加熱炉6、NH3投入装置12、反応
器17とこれらの付属機器、計測器類からなる。
As shown in FIG. 1, exhaust gas from a coke oven 1 is sent to an exhaust gas denitrification treatment device 21 by a denitrification fan 2. The flue gas denitrification treatment device 21 consists of a heating furnace 6, an NH3 injection device 12, a reactor 17, and their auxiliary equipment and measuring instruments.

排煙脱硝処理装置21はコークス炉の排ガスの温度(1
20〜180’O)を反応温度(220〜280°C)
まで昇温するための加熱炉6を備えているが、加熱炉6
では、反応器17人口を基準として温度計16により測
定された実際の反応温度と設定反応温度との差に応じて
、燃料ガス配管7から燃料ガスが投入される。そして加
熱炉6において昇温された高温排ガスは加熱炉6に導か
れなかった排ガスと混合され反応温度制御がなされる。
The flue gas denitrification treatment device 21 controls the temperature of the flue gas of the coke oven (1
20-180'O) at reaction temperature (220-280°C)
The heating furnace 6 is equipped with a heating furnace 6 to raise the temperature to
Then, fuel gas is introduced from the fuel gas pipe 7 in accordance with the difference between the actual reaction temperature measured by the thermometer 16 and the set reaction temperature based on the population of the reactor 17. The high-temperature exhaust gas heated in the heating furnace 6 is mixed with the exhaust gas not introduced into the heating furnace 6, and the reaction temperature is controlled.

その後、NH3供給装置12によりNH3が排ガス中の
NOxに対して一定のモル比率(約1.0〜1.1)で
添加される。NH3の流量はNH3流量計13で測定さ
れる。
Thereafter, NH3 is added by the NH3 supply device 12 at a constant molar ratio (approximately 1.0 to 1.1) to NOx in the exhaust gas. The flow rate of NH3 is measured by an NH3 flow meter 13.

それから、反応器17で脱硝処理する排ガス量およびN
Ox濃度がそれぞれ流量計14、NOx濃度計15によ
り測定される0反応器17で脱硝処理された排ガス中の
NOx濃度すなわち、排出NOx濃度はNOx濃度計1
8により測定され規制値以下として煙突20より大°気
中に放散される。
Then, the amount of exhaust gas to be denitrified in the reactor 17 and the amount of N
The NOx concentration in the exhaust gas denitrated in the reactor 17, that is, the discharged NOx concentration, is measured by the NOx concentration meter 1.
8 and dissipates into the atmosphere from the chimney 20 as being below the regulation value.

コークス炉1の使用燃料ガスカロリーが変化する時の反
応温度の自動制御例を第6図に示す。
FIG. 6 shows an example of automatic control of the reaction temperature when the fuel gas calorie used in the coke oven 1 changes.

コークス炉lを有する事業所ではカロリーの非常に異な
るガスを使用する場合が多い、その燃料ガスの例として
コークス炉で発生する高カロリー(約4000〜450
0kcau/Nrrr’) のコークス炉ガス(以下C
OGと称す)や1.高炉で発生する低カロリー(約70
0〜800kcaJL/Nm’)の高炉ガス(BFG)
にCOGを加えた混合ガス(以下MGと称す、)がある
Business establishments with coke ovens often use gases with very different calorific values. An example of fuel gas is the high calorie gas generated in coke ovens (approximately 4,000 to 450
0 kcau/Nrrr') coke oven gas (hereinafter C
OG) and 1. The low calorie generated in the blast furnace (approximately 70
0~800kcaJL/Nm') blast furnace gas (BFG)
There is a mixed gas (hereinafter referred to as MG) in which COG is added to COG.

−例として、コークス炉がCOGを使用する場合とMG
を使用する場合の排ガス量とNOx濃度を比較すると、
COGを使用する場合の排ガス量は、MGを使用する場
合の約0.74倍であり、COGを使用する場合のNO
x濃度はMGを使用する場合の約1.2〜2.6倍であ
る。(但し、排ガスの量やNOx濃度のCOG使用時と
MG使用時の比率は対象コークス炉の燃焼方法等によっ
てかなり異なる。) 従って、使用燃料ガスをCOGからMGに変更する場合
、:i46図(&)のように入側の(NOx一度)/(
排ガス量)比N Ox / Fが5.0ppm/lo’
Nm″hr−’から4.0 p pm/ l O’ N
rn”hr’に減少するため反応、温度Tは225℃か
ら235℃に自動制御する。一方便用燃料ガスをMGか
らCOGに変更する場合は第6図(b)のように(NO
x8度)/(排ガス量)比が4.0p p m/ 10
’ Nrn’ h r−”から5.0ppm/104N
rn’hr−’に増加するため反応温度Tは235℃か
ら225℃に自動制御する。
- For example, if a coke oven uses COG and MG
Comparing the exhaust gas amount and NOx concentration when using
The amount of exhaust gas when using COG is approximately 0.74 times that when using MG, and the amount of exhaust gas when using COG is approximately 0.74 times that when using MG.
x concentration is about 1.2 to 2.6 times that when using MG. (However, the amount of exhaust gas and the ratio of NOx concentration when using COG and when using MG vary considerably depending on the combustion method of the target coke oven.) Therefore, when changing the fuel gas used from COG to MG: Figure i46 ( &) on the inlet side (NOx once)/(
Exhaust gas amount) ratio NOx/F is 5.0 ppm/lo'
Nm″hr-’ to 4.0 ppm/l O’N
rn"hr", the reaction temperature T is automatically controlled from 225°C to 235°C.On the other hand, when changing the fuel gas for convenience from MG to COG, as shown in Figure 6(b) (NO
x8 degrees)/(exhaust gas amount) ratio is 4.0 p p m/10
'Nrn'hr-'' to 5.0ppm/104N
The reaction temperature T is automatically controlled from 235°C to 225°C in order to increase the temperature to rn'hr-'.

〔発明の効果〕〔Effect of the invention〕

本発明は、排ガスにNH3を添加して反応器で脱硝する
脱硝装置であって反応温度を調整する加熱炉を有する脱
硝装置において、燃料変更等による大幅な条件変動を含
む排ガスの脱硝率を自動的に一定に保つことができる。
The present invention is a denitrification device that adds NH3 to exhaust gas and denitrates it in a reactor, and has a heating furnace that adjusts the reaction temperature. can be kept constant.

このことにより、加熱炉の使用エネルギーを最も効率的
に最小限の使用量に抑えることができる効果を奏する。
This brings about the effect that the energy used by the heating furnace can be most efficiently suppressed to the minimum amount.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の適用される脱硝設備のフローシー
ト、第2図は脱硝率と(NOx9度)/(排ガス量)比
との関係を示すグラフ、第3図は脱硝率と反応温度との
関係を示すグラフ、第4図は(NOx濃度)/(排ガス
量)比の変化に対する反応温度変化との関係を示すグラ
フ、第5図は燃料ガスカロリーと(NOx濃度)/(排
ガス量)比との関係を示すグラフ、第6図は自動制御を
説明するチャートである。 l・・・コークス炉 ?・・・脱硝ファン 3・・・温度計 5.8,13.14・・・流量計 6・・・加熱炉 7・・・燃料ガス用配管 12・・・NH3供給装置 15.18・・・NOx濃度計 17・・・反応器 2.0・・・煙突 21・・・排煙脱硝処理装置
Fig. 1 is a flow sheet of the denitrification equipment to which the method of the present invention is applied, Fig. 2 is a graph showing the relationship between the denitrification rate and the (NOx 9 degrees)/(exhaust gas amount) ratio, and Fig. 3 is the denitrification rate and reaction temperature. Figure 4 is a graph showing the relationship between reaction temperature changes and changes in the (NOx concentration)/(exhaust gas amount) ratio, and Figure 5 is a graph showing the relationship between fuel gas calories and (NOx concentration)/(exhaust gas amount). ) is a graph showing the relationship with the ratio, and FIG. 6 is a chart explaining automatic control. l...Coke oven? ... Denitration fan 3 ... Thermometer 5.8, 13.14 ... Flow meter 6 ... Heating furnace 7 ... Fuel gas piping 12 ... NH3 supply device 15.18 ... NOx concentration meter 17...reactor 2.0...chimney 21...exhaust gas denitrification treatment device

Claims (1)

【特許請求の範囲】 1 排ガスを脱硝反応に必要な温度まで昇温した後NH
_3を添加して反応器を通過させ、排ガス中のNO_x
を還元除去する排煙脱硝方法において、(NO_x濃度
)/(排ガス量)比および反応器での反応温度と脱硝率
の変化との関係を予め求めておき、これらの関係か ら、脱硝処理設備出口のNO_x濃度が一定となるよう
に、(NO_x濃度)/(排ガス量)比の変動に応じて
反応温度を制御することを特徴とする反応器温度の自動
制御方法。
[Claims] 1. After heating the exhaust gas to the temperature required for the denitrification reaction, NH
_3 is added and passed through the reactor to reduce NO_x in the exhaust gas.
In the flue gas denitrification method that reduces and removes NO_x, the relationship between the (NO_x concentration)/(exhaust gas amount) ratio and the reaction temperature in the reactor and the change in the denitrification rate is determined in advance, and from these relationships, the 1. A method for automatically controlling a reactor temperature, characterized in that the reaction temperature is controlled according to fluctuations in the ratio of (NO_x concentration)/(exhaust gas amount) so that the NO_x concentration of is constant.
JP59257430A 1984-12-07 1984-12-07 System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus Pending JPS61136426A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59257430A JPS61136426A (en) 1984-12-07 1984-12-07 System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59257430A JPS61136426A (en) 1984-12-07 1984-12-07 System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus

Publications (1)

Publication Number Publication Date
JPS61136426A true JPS61136426A (en) 1986-06-24

Family

ID=17306253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59257430A Pending JPS61136426A (en) 1984-12-07 1984-12-07 System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus

Country Status (1)

Country Link
JP (1) JPS61136426A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086497A (en) * 2009-10-15 2011-04-28 Fujisoku:Kk Toggle switch
CN105921012A (en) * 2016-06-29 2016-09-07 平顶山市普恩科技有限公司 Device and method for removing nitric oxides in adipic acid tail gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011086497A (en) * 2009-10-15 2011-04-28 Fujisoku:Kk Toggle switch
CN105921012A (en) * 2016-06-29 2016-09-07 平顶山市普恩科技有限公司 Device and method for removing nitric oxides in adipic acid tail gas

Similar Documents

Publication Publication Date Title
JP6853316B2 (en) Denitration device
CN108919845B (en) Automatic control method for nitrogen oxide concentration of denitration system
JPS61136426A (en) System for automatically controlling temperature of reactor of waste gas denitration treatment apparatus
CN109838795A (en) A kind of incinerator and method for realizing high nitrogenous exhaust gas, waste liquid nitrogen oxides minimizing discharge
US4737345A (en) System for efficiently removing oxides of nitrogen from exhaust gas
US6237368B1 (en) Process for the regulating or controlling the NOx content of exhaust gases given off during the operating of glass melting furnaces with several burners run alternately
EP0796919B2 (en) Process and plant for thermal treatment of metals in protecting atmosphere
JPS6339635B2 (en)
JP5225701B2 (en) Low NOx combustion control method and method for producing reduction product
JP2003302008A (en) Catalyst combustion device
CN220284121U (en) Energy-saving automatic control system for induced draft fan of blast furnace hot blast stove
JPS59213425A (en) Denitration method of combustion waste gas
CN219567981U (en) Denitration hot-blast furnace air distribution system
JPH08127811A (en) Method for controlling combustion in hot blast stove
JPS6051606B2 (en) Air-fuel ratio control device for heating furnace for exhaust gas denitrification
JPH08318132A (en) Method for denitrating waste gas and denitrator
JP2018105595A (en) Coal burning boiler
KR20230116997A (en) Operation control method of accelerated denitrification system
JPS6354922A (en) Method for controlling flue gas temperature
JPS5941713A (en) Combustion control process
JPH11527A (en) Denitrification control method
JPH09126413A (en) Processing method of combustion gas in re-burning combustion method
JPH0324225A (en) Oxygen enriching combustion method for continuous heating furnace
JPH08117553A (en) Method and device for controlling injection amount of ammonia of denitration apparatus
JPH0257980B2 (en)