JPS61136236A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61136236A
JPS61136236A JP25752784A JP25752784A JPS61136236A JP S61136236 A JPS61136236 A JP S61136236A JP 25752784 A JP25752784 A JP 25752784A JP 25752784 A JP25752784 A JP 25752784A JP S61136236 A JPS61136236 A JP S61136236A
Authority
JP
Japan
Prior art keywords
plasma
film
evaporation
source
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25752784A
Other languages
Japanese (ja)
Inventor
Hidekazu Murakami
英一 村上
Shinichiro Kimura
紳一郎 木村
Mitsunori Ketsusako
光紀 蕨迫
Kiyoshi Miyake
三宅 潔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25752784A priority Critical patent/JPS61136236A/en
Publication of JPS61136236A publication Critical patent/JPS61136236A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To form an insulating film having few impurities and excellent interfacial characteristics in desired thickness at a low temperature by a method wherein a process in which an Si film having the film thickness less than that of the film to be plasma-processed at high speed is deposited and a process in which the Si film is plasma-processed are repeatedly performed alternately for several times. CONSTITUTION:An Si vapor-deposited film of 20-30nm of thereabout, whereon an initial accelerated oxidation can be performed, is formed and a plasma oxidizing process is repeated several times on the Si vapor-deposited film. An evaporation source 33 of electron beam heating system to be used for evaporation of Si and a plasma source 31 to be used for plasma-processing of evaporated Si are provided in the same vacuum chamber 30 of the semiconductor device. A magnetic-fielded microwave discharge, with which electric discharge can be stably performed at the low pressure of 10<-4>torr or below, is used as a plasma source. As the critical operation pressure of the evaporation source of electron beam heating method is 10<-4>torr, it is a matter of course that the process of Si evaporation and the processing of plasma are alternately performed, and said processes can also be performed simultaneously.

Description

【発明の詳細な説明】 〔発明の利用分野] 本発明は、半導体装置に用いる絶縁膜を低温で形成する
方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention provides a method for forming an insulating film used in a semiconductor device at a low temperature.

〔発明の背景〕[Background of the invention]

従来、半導体製造プロセスにおいて、MOSFETのゲ
ート酸化膜などの能動領域に用いられる絶縁膜はSi基
板の直接熱酸化法で形成し、層間絶縁パッシベーション
用など受動領域に使用される絶縁膜はCVD法等で形成
されることが多い。
Conventionally, in semiconductor manufacturing processes, insulating films used in active regions such as gate oxide films of MOSFETs are formed by direct thermal oxidation of Si substrates, and insulating films used in passive regions, such as for interlayer insulation passivation, are formed by CVD, etc. is often formed.

ところが、上記の熱酸化プロセスは100OC’程度の
高温となる次め、素子の微細化や三次元化に伴って必要
となるプロセス温度の低温化に対しては必ずしも好まし
い方法ではない。
However, the above-mentioned thermal oxidation process involves a high temperature of about 100 OC', which is not necessarily a preferable method for lowering the process temperature, which is required with miniaturization and three-dimensionalization of elements.

そこで、プラズマを用いた低温プロセスが注目され、8
1基板のプラズマ[接酸化によるゲート絶縁膜形成やプ
ラズマCVD法によるバッシベー7ヨン膜形成が研究開
発されるようになった。
Therefore, low-temperature processes using plasma have attracted attention, and 8
Research and development has begun on the formation of gate insulating films by plasma oxidation on one substrate and the formation of basibayon films by plasma CVD.

ところで、プラズマ利用プロセスには、荷電粒子による
照射損1という大きな問題があり、界面特性のよい絶縁
膜を形成するのは難しいのが現状である。例えば、酸素
プラズマを半導体基板に照射して、絶縁膜を成長させる
方法では、膜成長を促進するために、基板に電圧を印加
することが行われるが、(T、 8ngano : T
h1n Sol id pi Ims 。
Incidentally, plasma-based processes have a major problem of irradiation loss 1 due to charged particles, and it is currently difficult to form an insulating film with good interfacial properties. For example, in a method of growing an insulating film by irradiating a semiconductor substrate with oxygen plasma, a voltage is applied to the substrate to promote film growth.
h1n Solid pi Ims.

92 (1982) l 9 )これは、膜成長の場加
とともに照射損傷も大きくしてしまう。しかしながら、
基板に電圧を印加させないと、速い成長速度は得られず
、厚い膜を形成するのは困−である。厚い絶縁膜を低温
で得る方法には、前述したようにプラズマCVDがめる
。これは、プラズマを用いて、ガスの解離及び反応を促
進して基板上に堆積させるため、低い温度で厚い膜の形
成も可能である。
92 (1982) l9) This increases the field stress for film growth as well as irradiation damage. however,
Unless a voltage is applied to the substrate, a high growth rate cannot be obtained and it is difficult to form a thick film. As mentioned above, plasma CVD is used to obtain a thick insulating film at low temperatures. Since this method uses plasma to promote gas dissociation and reaction and deposit it on a substrate, it is possible to form a thick film at a low temperature.

しかし、この方法では、処理前に基板表面に存在する不
純物等が、絶縁膜形成後も界面に残るために、界面特性
は前述のプラズマ酸化、窒化とは比べものにならないぐ
らい悪い、また、反応性ガス中には構成元素のひとつと
して水素が含まれているためにプラズマCVDにおいて
はこれが膜中に取)込まれ、絶縁膜の特性に様々な悪影
l#を及ぼすことが知られている。
However, with this method, impurities that exist on the substrate surface before processing remain at the interface even after the insulating film is formed, so the interface properties are incomparably worse than the plasma oxidation and nitridation described above, and the reactivity is Since hydrogen is contained in the gas as one of the constituent elements, it is known that in plasma CVD, hydrogen is incorporated into the film and exerts various negative effects on the properties of the insulating film.

以上述べてきたように、界面特性や膜質に優れ、半導体
の能動、受動領域の全てに亘って使用可能な絶縁pI&
をプラズマ利用プ、σセスを用いて作るのは、従来の方
法では困難でめった。
As mentioned above, insulating pI&
It is difficult and rare to make using plasma-based processes using conventional methods.

〔発明の目的〕[Purpose of the invention]

本発明の目的に、不純物の少ない、界面特性がすぐれた
、絶縁膜を所望の厚さく低温で形成する方法を提供する
ことにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for forming an insulating film with a desired thickness and low impurity and excellent interfacial properties at a low temperature.

〔発明の概要〕[Summary of the invention]

上記目的を達成する為、本発明では、増速酸化の起こる
初期の酸化段階金<9返すことにより所望の厚さの絶縁
膜を低温で得るものでるる。
In order to achieve the above object, the present invention makes it possible to obtain an insulating film of a desired thickness at a low temperature by reducing the initial oxidation stage of gold <9 in which accelerated oxidation occurs.

すなわち、第1図は、基板にバイアスを印加せずにプラ
ズマ酸化を行った時の酸化膜の成長特性を示し友もので
ある。酸化速度は、時間がたつと飽和傾向を示すため、
1100n以上の酸化膜を形成するのは困難である。し
かし、初期の30分程度においては、増速酸化が起こり
、10A/−程度の成長速度も実現できることがわかる
That is, FIG. 1 shows the growth characteristics of an oxide film when plasma oxidation is performed without applying a bias to the substrate. The oxidation rate tends to saturate over time, so
It is difficult to form an oxide film with a thickness of 1100n or more. However, it can be seen that accelerated oxidation occurs during the initial period of about 30 minutes, and a growth rate of about 10 A/- can be achieved.

このように、基板にバイアスを印加しない方法で形成し
た酸化膜を用いて、MO8キャパシタを作り% S 1
 Ox界面の界面準位密度を調べた結果を第2図に示し
た。熱酸化膜に匹敵する界面特性が得られており、これ
は、荷電粒子による照射損傷が低減されているためと考
えられる。
In this way, an MO8 capacitor is made using an oxide film formed in a manner that does not apply a bias to the substrate, and the % S 1
Figure 2 shows the results of examining the interface state density at the Ox interface. Interface properties comparable to those of thermal oxide films were obtained, and this is thought to be due to reduced irradiation damage caused by charged particles.

上記の結果から、十分な膜厚を有し、かつ界面特性の良
好な酸化膜を形成する方法として、3j蒸着膜のプラズ
マ酸化の〈シ返しが有効である。
From the above results, plasma oxidation of the 3J vapor deposited film is effective as a method for forming an oxide film with sufficient thickness and good interface properties.

すなわち、初期の増速酸化が可能な20〜30nm程度
のSi蒸着属を形成し、これをプラズマ酸化する工程を
数回くシ返せばよい。
That is, it is sufficient to repeat the steps several times to form a Si vapor deposited layer of about 20 to 30 nm, which is capable of initial accelerated oxidation, and to oxidize it with plasma.

この方法で形成した5iOa膜の界面特性は、8i、i
j、着時の基板表面の清浄度に大きく依存すると考えら
れるが、昨今の超高真空技術利用によるMBD装置を用
いれば、十分な清浄度が実現できる。さらに、この工程
においては、CVD法と違って、膜形成に必要な元素以
外の元素を用いていないため、不純物のとり込みがなく
膜質にもすぐれている。
The interfacial properties of the 5iOa film formed by this method are 8i,i
j. Although it is thought that this largely depends on the cleanliness of the substrate surface at the time of deposition, sufficient cleanliness can be achieved by using an MBD apparatus that utilizes recent ultra-high vacuum technology. Furthermore, unlike the CVD method, this process does not use any elements other than those necessary for film formation, so impurities are not introduced and the film quality is excellent.

以上により、蒸f8iaのプラズマ酸化のく)返し法に
よって、素子の受動領域はか9でなく、能動領域にも使
用可能な絶縁膜の低温形成が可能である。
As described above, by the repeated plasma oxidation method of evaporation f8ia, it is possible to form an insulating film at a low temperature that can be used not only in the passive region of the device but also in the active region.

〔発明の実施例〕[Embodiments of the invention]

〔実施ガニ〕 まずSi基板上にS i Ox Jljj、を形成した
例について述べる。
[Example] First, an example in which Si Ox Jljj is formed on a Si substrate will be described.

第3図には、本笑施例で用いた装置の概略図を示す。本
装置は、同−高真空チエンバー内KSiを蒸発させるた
めの電子線加熱方式の蒸発源と、蒸着したSiをプラズ
マ処理するためのプラズマ源とを備えている。プラズマ
源としては、10−’torr以下の低圧力においても
安定性よく放電が行える有磁場マイクロ波放電を用いた
。この方法の原理は、磁場中での電子のサイクロ)cy
ン運動を利用し、電子の実効移動短躯を長くすることに
より、希薄竜ガス中での電子と分子との衝突頻度を高め
放電を行なうものである。電子線加熱方式の蒸発源の動
作限界圧力は、10”l’orr であるから、本装置
では、Si蒸発とプラズマ処理を又互に行なうことはも
ちろん同時に行なうことも可能である。
FIG. 3 shows a schematic diagram of the apparatus used in this example. This apparatus is equipped with an electron beam heating type evaporation source for evaporating the KSi in the high vacuum chamber, and a plasma source for plasma processing the deposited Si. As a plasma source, a magnetic field microwave discharge was used, which can perform stable discharge even at low pressures of 10-'torr or less. The principle of this method is that electron cyclones (cy) in a magnetic field
By utilizing the electron motion and lengthening the effective short length of electron movement, the frequency of collisions between electrons and molecules in dilute dragon gas is increased, resulting in discharge. Since the operating limit pressure of the electron beam heating type evaporation source is 10''l'orr, in this apparatus, Si evaporation and plasma treatment can be performed not only simultaneously, but also simultaneously.

第1図に示した酸化特性を考慮し、電子銃電力40QW
で10分間蒸着することによシ約2゜nmの8i膜を形
成し、これを、基板温度60001マイクロ波パワー1
40Wで約30分プラズマ酸化した。この操作を3回〈
り約し、約1.5時間で約1100nの5j(h膜を形
成した。
Considering the oxidation characteristics shown in Figure 1, the electron gun power was 40QW.
An 8i film with a thickness of approximately 2 nm was formed by vapor deposition for 10 minutes at a substrate temperature of 60,000 and a microwave power of 1.
Plasma oxidation was performed at 40W for about 30 minutes. Repeat this operation 3 times
A 5j(h film) of about 1100 nm was formed in about 1.5 hours.

赤外吸収特性及びエッチ速度測定から、水素などの不純
物を含まず、Si基板をプラズマ酸化した膜に匹敵する
緻密度を有する8i0*aが得られることがわかつ九。
From infrared absorption characteristics and etch rate measurements, it was found that 8i0*a was obtained that did not contain impurities such as hydrogen and had a density comparable to that of a film obtained by plasma oxidation of a Si substrate.9.

同様に、プラズマ窒化を行ない水素を含まない8ixN
4膜を形成できる。窒化は一般に酸化よりl1でおるが
、この方法によれば、拡散律速で窒化適度が飽和するt
丘どの厚い5ilII&を窒化する必要はなく、薄い膜
の窒化をくり返せばよく、十分な膜厚の8imNA膜が
得られる。
Similarly, 8ixN which does not contain hydrogen by plasma nitriding
4 films can be formed. Nitriding generally takes less than 11 compared to oxidation, but according to this method, the nitriding mode saturates due to diffusion control.
It is not necessary to nitride the thick 5ilII& film, and it is sufficient to repeat the nitridation of the thin film, and an 8imNA film with a sufficient thickness can be obtained.

〔実施例2] 次に超高真空Si蒸M装置(MBD)を用いて、ガラス
基板上に、薄膜トランジスタ(TF’TI作成した例に
ついて述べる。
[Example 2] Next, an example in which a thin film transistor (TF'TI) was formed on a glass substrate using an ultra-high vacuum Si vaporization device (MBD) will be described.

第4図に、今回作成したTPTの断面構造を示した。2
 X 10” tartまで排気されたMBD装置内で
、ガラス基板9上に1μmのpoly S i MJl
lt−形成する。基板温度は5ooC%蒸着速度は1人
/戴である。装置外に出して、CVD  5iftマス
クを用いてイオン打込みし、ソース、ビレ4フ層2.3
t−形成した後、再びMBD装置内に戻す。イオンスパ
ッタで表面クリーニングの後、再U8i’iAMし、約
2Qnmのa−8imft形成し、その後約30分のプ
ラズマ酸化を行った。プラズマ酸化条件は実施例1と同
じでおる。これを2回くり返し、約7Qnmのゲート5
j02膜4を形成した。次に、ゲート′#L極6、At
’li℃を設け −た。
Figure 4 shows the cross-sectional structure of the TPT created this time. 2
In the MBD device that was evacuated to X 10” tart, a 1 μm poly Si
lt-form. The substrate temperature was 5ooC% and the deposition rate was 1 person/person. After taking it out of the device, ion implantation was performed using a CVD 5ift mask to form the source, fillet 4, and fillet layers 2.3.
After t-forming, it is returned to the MBD device. After surface cleaning by ion sputtering, U8i'iAM was performed again to form an a-8imft of about 2Q nm, and then plasma oxidation was performed for about 30 minutes. The plasma oxidation conditions were the same as in Example 1. Repeat this twice and use the gate 5 of about 7Qnm.
A j02 film 4 was formed. Next, gate '#L pole 6, At
'li℃ was set.

上記TPTの出力特性(Into%性)t−測定し、し
きい値屯圧Vtt求めたところ、従来のCVD−8i(
ht”ゲート絶縁膜としたものに比べ、Vでか小さくな
ることがわかった。これは、S r Ox−poly 
S ! 界面のトラップ準位が減少した効果と考えられ
る。
When we measured the output characteristic (into% characteristic) t of the above TPT and determined the threshold pressure Vtt, we found that the conventional CVD-8i (
ht” gate insulating film, it was found that the V was smaller than that of the S r Ox-poly
S! This is thought to be an effect of a decrease in the trap levels at the interface.

〔発明の効果] 本発明の方法によれば、不純物を含まず、界面特性も良
好な、高品質絶縁膜を所望の厚さで低温形成することが
可能である。
[Effects of the Invention] According to the method of the present invention, it is possible to form a high-quality insulating film to a desired thickness at a low temperature, which does not contain impurities and has good interface properties.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、プラズマ酸化による膜成長特性を示す図、第
2図は、プラズマ酸化膜の界面準位密度を示す図、第3
図は、プラズマ酸化、窒化及びSi蒸着を同一チェンバ
ー内で行なえる装置の構TPTデバイスの断面構造を示
を図である。 1・・・ポリシリコン襄、2・・・ソース領域、3・・
・ドレイン領域、4・・・酸化膜、5・・・アルミニウ
ム電極、6・・・ゲート電極、9・・・ガラス基板、3
0・・・高真空容器、31・・・有磁場マイクロ波プラ
ズマ源、32・・・プラズマ流、33・・・5iiA発
源、34・・・Si蒸■ 1  図 01ρ     12ρ     lθI肋髪化帳間 
C分〕 藁 2 図 界面ホ゛テンン♀ル Ceン〕 f4 図
Figure 1 is a diagram showing the film growth characteristics by plasma oxidation, Figure 2 is a diagram showing the interface state density of a plasma oxide film, and Figure 3 is a diagram showing the interface state density of a plasma oxide film.
The figure shows a cross-sectional structure of a TPT device, which is an apparatus in which plasma oxidation, nitridation, and Si deposition can be performed in the same chamber. 1...Polysilicon layer, 2...Source region, 3...
- Drain region, 4... Oxide film, 5... Aluminum electrode, 6... Gate electrode, 9... Glass substrate, 3
0...High vacuum container, 31...Magnetic field microwave plasma source, 32...Plasma flow, 33...5iiA source, 34...Si vaporization 1 while
C minute] straw 2 figure surface text

Claims (1)

【特許請求の範囲】[Claims]  プラズマ雰囲気中で絶縁膜を形成する半導体装置の製
造方法において、高速にプラズマ処理される膜厚以下の
Si膜を堆積する工程と、該Si膜をプラズマ処理する
工程とを交互に数回くり返すことにより絶縁膜を形成す
ることを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device in which an insulating film is formed in a plasma atmosphere, a step of depositing a Si film having a thickness equal to or less than that of a film that is subjected to high-speed plasma processing and a step of plasma processing the Si film are alternately repeated several times. 1. A method of manufacturing a semiconductor device, comprising forming an insulating film by forming an insulating film.
JP25752784A 1984-12-07 1984-12-07 Manufacture of semiconductor device Pending JPS61136236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25752784A JPS61136236A (en) 1984-12-07 1984-12-07 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25752784A JPS61136236A (en) 1984-12-07 1984-12-07 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61136236A true JPS61136236A (en) 1986-06-24

Family

ID=17307530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25752784A Pending JPS61136236A (en) 1984-12-07 1984-12-07 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61136236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229129A (en) * 2000-06-08 2005-08-25 Genitech Inc Method of forming thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005229129A (en) * 2000-06-08 2005-08-25 Genitech Inc Method of forming thin film
JP4684706B2 (en) * 2000-06-08 2011-05-18 ジニテック インク. Thin film formation method

Similar Documents

Publication Publication Date Title
US5412246A (en) Low temperature plasma oxidation process
US4804640A (en) Method of forming silicon and aluminum containing dielectric film and semiconductor device including said film
US7033958B2 (en) Semiconductor device and process for producing the same
US7488655B2 (en) Method for fabricating semiconductor device
JP3746478B2 (en) Manufacturing method of semiconductor device
US6825538B2 (en) Semiconductor device using an insulating layer having a seed layer
US5336361A (en) Method of manufacturing an MIS-type semiconductor device
US7326988B2 (en) Semiconductor device and method for fabricating the same
JP2004266263A (en) Method for manufacturing semiconductor device
CN115295407B (en) Preparation method of gate oxide structure of SiC power device and gate oxide structure
CN111430228A (en) Preparation method of dielectric film with ultrahigh dielectric constant
JPS61136236A (en) Manufacture of semiconductor device
KR940005290B1 (en) Method of forming a dielectric film and semiconductor device including said film
JPH10270434A (en) Semiconductor wafer cleaning method for oxide film forming method
JP2840802B2 (en) Method and apparatus for manufacturing semiconductor material
JP2001308319A (en) Insulated gate compound semiconductor device
JPH04199828A (en) Manufacture of oxide thin film of high dielectric constant
KR100379533B1 (en) method for fabricating gate insulating film of semiconductor device
JP2003086588A (en) Manufacturing method of mis-type semiconductor device
JP2006216774A (en) Method of forming insulating film
KR100395912B1 (en) Method for forming the gate electrode in semiconductor device
JPH02142187A (en) Insulated gate type field effect transistor
KR20010045963A (en) Method of manufacturing a capacitor in a semiconductor device
JP2003188374A (en) Semiconductor device and method of manufacturing the same
JPH03156919A (en) Formation of metal-semiconductor junction