JPS6113361B2 - - Google Patents

Info

Publication number
JPS6113361B2
JPS6113361B2 JP54102791A JP10279179A JPS6113361B2 JP S6113361 B2 JPS6113361 B2 JP S6113361B2 JP 54102791 A JP54102791 A JP 54102791A JP 10279179 A JP10279179 A JP 10279179A JP S6113361 B2 JPS6113361 B2 JP S6113361B2
Authority
JP
Japan
Prior art keywords
phase
coercive force
palladium
temperature
maximum energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54102791A
Other languages
Japanese (ja)
Other versions
JPS5627901A (en
Inventor
Kyoshi Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DENKI JIKI ZAIRYO KENKYUSHO
Original Assignee
DENKI JIKI ZAIRYO KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DENKI JIKI ZAIRYO KENKYUSHO filed Critical DENKI JIKI ZAIRYO KENKYUSHO
Priority to JP10279179A priority Critical patent/JPS5627901A/en
Publication of JPS5627901A publication Critical patent/JPS5627901A/en
Publication of JPS6113361B2 publication Critical patent/JPS6113361B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はパラジウムおよび鉄を主成分としてこ
れに少量(0.5%以下)の不純物を含む永久磁石
およびその製造方法に関するもので、その目的と
するところは加工が容易でかつ保磁力と最大エネ
ルギー積の大きい永久磁石を得ることにある。 従来α−γ′変態を利用した永久磁石として知
られているものにはバイカロイ(商品名)と称す
るFe−52Co−9.5V系合金より成る磁石がある。
この合金系には高温にγ相があり室温ではα+
γ′(規則格子)相がある。従つてこの合金を水
焼入れ後冷間加工するとγ相がα相になり焼戻す
とα相の一部が微細なγ′相に変り分散析出する
ことにより保磁力が増加する。しかしバイカロイ
磁石の保磁力は一般に小さく最高でも500Oeで、
しかもその値を発揮させるためには98%程度の強
制的な冷間加工を行う必要がある。さらに合金に
は酸化しやすいバナジウム元素を含んでいるため
溶解法がむずかしくその製造工程が複雑であるな
どの欠点がある。 本発明の鉄パラジウム合金はγ相よりα相とγ
相との微細析出相に変る鉄パラジウム系合金の
規則格子の変態型磁石に関するものである。この
鉄パラジウム系磁石特性については1964年にクス
マンらが18〜50原子%のパラジウム、残量鉄の合
金を1000℃より焼入れし、これを450℃に焼戻し
た場合(時間の詳細については不明)に保磁力
780Oeを発揮せしめたことが知られているが、残
留磁束密度および最大エネルギー積については記
述がなされていない。 よつて本発明者は鉄パラジウム合金の磁石特性
について詳細な研究を行つた。すなわちまずその
第1の場合にはパラジウムが28〜38原子%で残量
が鉄の適当量を空気中、不活性ガス中あるいは真
空中において適当な溶解炉を用いて溶解したのち
充分に撹拌して組成的に均一な溶融合金を造り、
これらを適当な形や大きさの鋳型に注入あるいは
石英管に吸い上げて健全な鋳物とし、常温中で鍛
造、引抜きなどの加工法によつて目的の形状にし
た。つぎにこれら鉄パラジウム合金を第1図の平
衡状態図にみられるγ相の650゜〜990℃の温度範
囲で適当時間均質固溶化処理して水中あるいは空
気中で急冷し、または炉中で徐冷した。最後に焼
戻温度はクスマンらが行つた450℃より低い350゜
〜440℃とし、長時間加熱した後徐冷して高い保
磁力を有する永久磁石が得られた。 つぎに第2の場合には均質固溶化処理後、水中
あるいは空気中で急冷した合金を90%以上の線引
き圧延等の塑性加工を施し、350゜〜440℃の温度
で40〜1000時間位の長時間焼戻すことによつてさ
らに優秀な磁石特性を発揮せしめることができ
た。 かように本発明によれば、組成によつて夫々違
うがクスマンらが得た保磁力の値200〜760Oeよ
り約5〜7割も大きい800〜1300Oeの優秀な永久
磁石が得られるのである。 この理由はγ相単相の得られる650゜〜990℃に
於ける均質固溶化処理に引続く冷却は、空気中に
おける急冷でも炉中で徐冷する何れでもよいが、
次の焼戻温度を少くとも440℃以下、(好ましくは
350゜〜440℃)の温度で少くとも40時間以上(好
ましくは40〜1000時間)の長時間焼鈍すると、高
温に於て生じたγ相固溶体がα相とγ相との微
細析出物の分散析出した規則格子より成る結晶構
造をもつたものができ、この組織が高い保磁力と
最大エネルギー積の大きな永久磁石の得られる原
因と考えられる。 ここで焼鈍温度を440℃以上とすると、α相と
γ相の析出物が粗大化し、こののとき上述の磁
気特性が低下するものと判断せられる。また350
℃以下では焼鈍時間があまり長くなりすぎて経済
的でないと共に磁性の向上も格別望めないので、
350゜〜440℃の温度範囲が好適であると認めた。 つぎに本発明の実施例について述べる。 原料としては99.9%純度の電解鉄およびパラジ
ウムを用いた。実験の試料を造るには全重量10g
の原料を目的の組成に秤量してNCタンマン管に
入れ、アルゴンガスを吹きかけながらタンマン炉
によつて溶かしたのちよく撹拌して均質な溶融合
金とし、これを直径約3.5mmの石英管に吸い上げ
た。さらに得られた丸棒から30mmの長さのものを
切りとり750゜〜990℃の温度で約1時間加熱した
のち水焼入れを施してつぎの実験を行つた。 第2図にはこのように熱処理した組成の異なる
5種類の試料No.4,10,12,14,16の合金を400
゜〜470℃の種々の温度に20時間焼戻処理を施し
た場合の磁石特性を示す。図からわかるように保
磁力は410゜〜420℃の温度において急に増加し、
約440℃の温度において最高値を示すが、これよ
り温度を高くすると一般に保磁力は低下する。こ
れらの結果から本発明は析出初期の350゜〜440℃
の低い温度において長時間の焼戻処理を施すこと
によつて、440℃以上の高温度で短時間焼戻処理
する場合よりもさらに微細な分散析出物を得て高
保磁力を発揮せしめられることがわかつた。 第3図には鉄パラジウム系合金のうち代表的な
組成で4種類の試料No.5,9,12,15の合金を水
焼入れ後400℃の温度で長時間焼戻処理を施した
場合の時間と磁石特性との関係が示してある。こ
の図からわかるように、400℃の温度において焼
戻した場合には約20時間保持しても保磁力の増加
は僅かであるが、40〜60時間になると急に増加し
はじめ200時間以上加熱すると極大が見られるよ
うになる。試料No.12の合金では380時間加熱によ
つて1200Oeの高い保磁力が得られた。ちなみに
これよりも高い450℃で等温加熱した場合には約
50時間程度で極大を示すが、そのときの最高の保
磁力は低く850Oeであつた。 第4図にはこのような熱処理方法により各合金
において最高の保磁力を得たときの残留磁束密度
および最大エネルギー積と組成との関係が示して
ある。図中黒丸で示した保磁力だけが前述のクス
マンらによつて明らかにされた値で、Fe−32原
子%Pd合金で最高780Oeが得られている。これに
対して白丸で示した本発明合金の場合にはFe−
34原子%Pd合金が最高1200Oeの保磁力を示し、
そのときの残留磁束密度は9000G、最大エネルギ
ー積は4.2MGOeであり、非常に優秀な磁石特性
を有することがわかる。 つぎに第1表には代表的な合金について磁石の
製造条件および熱処理条件を種々に変えた場合の
特性が示してある。表からわかるように焼入れ速
度の早い水中急冷が空気中急冷の場合より多少高
い保磁力を示しているが大差なく、400℃/時の
速度で徐冷却した場合でも非常に優秀な磁石特性
が得られている。すなわち一般に通常の磁石合金
では均質固溶化処理後緩慢に冷却すると特性が劣
化するが、この発明の合金の場合には冷却速度に
よる著しい影響がなく、実用上温度による安定度
が高く非常に有利な特徴を有していることがわか
る。
The present invention relates to a permanent magnet containing palladium and iron as main components and a small amount (0.5% or less) of impurities, and a method for manufacturing the same. The goal is to obtain a large permanent magnet. A conventionally known permanent magnet that utilizes α-γ' transformation is a magnet made of an Fe-52Co-9.5V alloy called Bicaloy (trade name).
This alloy system has a γ phase at high temperatures and α+ phase at room temperature.
There is a γ′ (regular lattice) phase. Therefore, when this alloy is cold-worked after water quenching, the γ phase becomes an α phase, and when tempered, a part of the α phase changes to a fine γ' phase, which is dispersed and precipitated, thereby increasing the coercive force. However, the coercive force of Bicaloy magnets is generally small, at most 500 Oe,
Moreover, in order to achieve this value, it is necessary to perform forced cold working of about 98%. Furthermore, since the alloy contains the element vanadium, which is easily oxidized, it is difficult to melt and the manufacturing process is complicated. The iron-palladium alloy of the present invention has an α phase and a γ phase rather than a γ phase.
This invention relates to a transformation type magnet with an ordered lattice of an iron-palladium alloy that changes into a fine precipitated phase with one phase. Regarding the characteristics of this iron-palladium magnet, in 1964, Kussmann et al. quenched an alloy of 18 to 50 atomic percent palladium and the remaining iron at 1000°C and then tempered it to 450°C (the details of the time are unknown). coercive force
It is known that it exhibited 780 Oe, but the residual magnetic flux density and maximum energy product are not described. Therefore, the present inventor conducted detailed research on the magnetic properties of iron-palladium alloys. That is, in the first case, an appropriate amount of palladium with 28 to 38 at. to create a compositionally uniform molten alloy,
These were injected into a mold of an appropriate shape and size or sucked into a quartz tube to form a sound casting, which was then shaped into the desired shape through processing methods such as forging and drawing at room temperature. Next, these iron-palladium alloys are subjected to homogeneous solution treatment for an appropriate time in the temperature range of 650° to 990°C of the γ phase seen in the equilibrium phase diagram in Figure 1, and then rapidly cooled in water or air, or slowly cooled in a furnace. It got cold. Finally, the tempering temperature was set at 350° to 440°C, lower than the 450°C used by Kussmann et al., and a permanent magnet with high coercive force was obtained by heating for a long time and then slowly cooling. In the second case, after homogeneous solution treatment, the alloy is quenched in water or air and subjected to plastic working such as wire drawing of 90% or more. By tempering for a long time, we were able to exhibit even more excellent magnetic properties. Thus, according to the present invention, it is possible to obtain an excellent permanent magnet with a coercive force of 800 to 1300 Oe, which is approximately 50 to 70% larger than the value of 200 to 760 Oe obtained by Kussman et al., although it varies depending on the composition. The reason for this is that the cooling that follows the homogeneous solid solution treatment at 650° to 990°C to obtain a single γ phase can be either rapid cooling in air or slow cooling in a furnace.
The subsequent tempering temperature should be at least 440℃ (preferably
When annealing is performed at a temperature of 350° to 440°C for a long period of at least 40 hours (preferably 40 to 1000 hours), the γ phase solid solution generated at high temperature becomes a fine precipitate of α phase and γ 1 phase. A crystal structure consisting of dispersed and precipitated regular lattices is created, and this structure is thought to be the reason for obtaining a permanent magnet with a high coercive force and a large maximum energy product. If the annealing temperature is set to 440° C. or higher, the precipitates of the α phase and the γ1 phase become coarse, and in this case it is considered that the above-mentioned magnetic properties deteriorate. 350 again
If the annealing time is below ℃, the annealing time will be too long, which is not economical, and no particular improvement in magnetic properties can be expected.
A temperature range of 350° to 440°C has been found to be suitable. Next, embodiments of the present invention will be described. Electrolytic iron and palladium with a purity of 99.9% were used as raw materials. To make a sample for the experiment, the total weight is 10g.
Weigh the raw materials to the desired composition, put them into an NC Tammann tube, melt them in the Tammann furnace while blowing argon gas, stir well to make a homogeneous molten alloy, and suck it up into a quartz tube with a diameter of about 3.5 mm. Ta. Further, a 30 mm long piece was cut from the obtained round bar, heated at a temperature of 750° to 990°C for about 1 hour, and water quenched to perform the following experiment. Figure 2 shows five alloys of sample Nos. 4, 10, 12, 14, and 16 with different compositions heat-treated in this way.
The magnet properties are shown when tempering is performed for 20 hours at various temperatures from ° to 470 °C. As can be seen from the figure, the coercive force increases rapidly at temperatures between 410° and 420°C.
The coercive force reaches its maximum value at a temperature of about 440°C, but as the temperature rises above this, the coercive force generally decreases. Based on these results, the present invention can be applied to
By performing tempering treatment for a long time at a low temperature of 440℃, it is possible to obtain finer dispersed precipitates and exhibit higher coercive force than when tempering treatment is performed for a short time at a high temperature of 440℃ or higher. I understand. Figure 3 shows the results of four types of sample Nos. 5, 9, 12, and 15, which have typical compositions among iron-palladium alloys, after water quenching and tempering at a temperature of 400°C for a long time. The relationship between time and magnetic properties is shown. As can be seen from this figure, when tempered at a temperature of 400℃, the increase in coercive force is slight even after holding for about 20 hours, but after 40 to 60 hours it starts to increase suddenly and when heated for more than 200 hours. You can see the maximum. In the alloy of sample No. 12, a high coercive force of 1200 Oe was obtained after heating for 380 hours. By the way, when heated isothermally at a higher temperature of 450℃, approximately
It reached a maximum after about 50 hours, but the highest coercive force at that time was low, 850 Oe. FIG. 4 shows the relationship between residual magnetic flux density, maximum energy product, and composition when the highest coercive force is obtained for each alloy by such a heat treatment method. The coercive force indicated by the black circle in the figure is the only value clarified by Kussman et al., and the maximum value of 780 Oe was obtained for the Fe-32 atomic % Pd alloy. On the other hand, in the case of the alloy of the present invention indicated by a white circle, Fe−
34 atomic% Pd alloy exhibits coercive force up to 1200 Oe,
At that time, the residual magnetic flux density was 9000G and the maximum energy product was 4.2MGOe, indicating that it has extremely excellent magnetic properties. Next, Table 1 shows the characteristics of representative alloys when the magnet manufacturing conditions and heat treatment conditions are variously changed. As can be seen from the table, quenching in water, which has a faster quenching rate, shows a slightly higher coercive force than quenching in air, but there is no significant difference, and even when slowly cooling at a rate of 400°C/hour, very excellent magnetic properties are obtained. It is being In other words, in general, the properties of ordinary magnet alloys deteriorate when they are cooled slowly after homogeneous solution treatment, but the alloy of this invention has no significant effect on cooling rate, and has high stability with temperature in practice, making it extremely advantageous. It can be seen that it has characteristics.

【表】【table】

【表】 また表中には試料No.9,10,12,13,15の合金
を約950℃で1時間加熱して水焼入れしたのち約
95%以上の線引き加工を施して焼戻処理した場合
の特性が示してある。表からわかるように線引き
加工をした場合の磁石特性はいずれも向上してい
る。すなわち試料No.13合金(35原子%pd)では
最高1300Oeの保磁力が得られ、そのときの残留
磁束密度は9000G、最大エネルギー積は
4.78MGOeである。試料No.12合金(34原子%pd)
では5.5MGOeの最大エネルギー積が得られ、そ
のときの保磁力は1280Oe、残留磁束密度は
10500Gである。第5図には試料No.10(d:水焼
入れ後線引き加工)、試料No.12(a:水焼入れ)
および試料No.12(d)合金の減磁曲線が示してある。
またこれらの合金は加工が非常に容易で特に小型
で複雑な形状の磁石の製造に適する。 最後に本発明において鉄パラジウム合金の組成
を28〜38原子%パラジウムの合金に限定したの
は、パラジウムが28原子%未満および38原子%を
超えては保磁力が800Oe以下となり、最大エネル
ギー積(BH)naxが3MGエルステツド以下とな
り、製造条件の如何にかかわらず磁石特性が劣化
するからである。 本発明の磁石は小型で強力な磁石材料を提供す
るのが目的であるので、保磁力Hcが大きくかつ
最大エネルギー積(BH)naxが大きいことが必要
であり、第1表および第4図を参照して最大エネ
ルギー積は3メガガウスエルステツド以上が好ま
しいのでパラジウムの組成範囲を28〜38原子%と
限定したものである。 以上詳述したとおり、本発明の永久磁石は鉄と
パラジウムの合金より成るので加工性がよく、保
磁力と最大エネルギー積が大きい永久磁石が得ら
れる格別顕著な効果がある。
[Table] In addition, the table also shows the alloys of sample Nos. 9, 10, 12, 13, and 15 after being water-quenched by heating at approximately 950°C for 1 hour.
The characteristics are shown when the material is subjected to 95% or more wire drawing and tempering treatment. As can be seen from the table, the magnetic properties are improved when wire drawing is applied. In other words, sample No. 13 alloy (35 atomic% PD) has a maximum coercive force of 1300 Oe, the residual magnetic flux density is 9000 G, and the maximum energy product is
It is 4.78 MGOe. Sample No. 12 alloy (34 atomic% pd)
, the maximum energy product of 5.5MGOe is obtained, the coercive force is 1280Oe, and the residual magnetic flux density is
It is 10500G. Figure 5 shows sample No. 10 (d: wire drawing after water quenching) and sample No. 12 (a: water quench).
and the demagnetization curve of sample No. 12(d) alloy are shown.
In addition, these alloys are very easy to process and are particularly suitable for manufacturing small, complex-shaped magnets. Finally, in the present invention, the composition of the iron-palladium alloy is limited to an alloy containing 28 to 38 at% palladium, because if the palladium content is less than 28 at% or more than 38 at%, the coercive force will be less than 800 Oe, and the maximum energy product ( BH) This is because the nax becomes less than 3 MG oersted, and the magnetic properties deteriorate regardless of the manufacturing conditions. Since the purpose of the magnet of the present invention is to provide a small and strong magnetic material, it is necessary to have a large coercive force Hc and a large maximum energy product (BH) nax . For reference, since the maximum energy product is preferably 3 mega Gauss Oersted or more, the composition range of palladium is limited to 28 to 38 atomic percent. As detailed above, since the permanent magnet of the present invention is made of an alloy of iron and palladium, it has good workability and has a particularly remarkable effect in that a permanent magnet having a large coercive force and a large maximum energy product can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はFe−Pd合金の平衡状態図、第2図は
24〜40原子%Pd中5種類の合金の焼戻温度と磁
石特性との関係を示す磁石特性図、第3図は本発
明による代表的な4種類の合金の等温焼戻時間と
磁石特性との関係を示す特性図、第4図は本発明
のFe−Pd合金における組成と磁石特性との関係
ならびにクスマンらの保磁力の値との特性比較
図、第5図は本発明磁石の代表的なNo.10(d),No.12
(a),No.12(d)合金の減磁曲線である。
Figure 1 is the equilibrium state diagram of Fe-Pd alloy, Figure 2 is
A magnet characteristic diagram showing the relationship between the tempering temperature and magnetic properties of five types of alloys in 24 to 40 at% Pd. Figure 3 shows the isothermal tempering time and magnetic properties of four representative alloys according to the present invention. Figure 4 is a characteristic diagram showing the relationship between the composition and magnetic properties of the Fe-Pd alloy of the present invention, and a characteristic comparison diagram with the coercive force value of Kussman et al., Figure 5 is a representative diagram of the magnet of the present invention. No.10(d), No.12
Demagnetization curves of alloys (a) and No.12(d).

Claims (1)

【特許請求の範囲】 1 原子比にしてパラジウムが28〜38%、残量鉄
で不純物0.5%以下を含む、γ相の地にα相とγ
相とが微細に分散析出した構造より成り、保磁
力500エルステツド以上、残留磁束密度6キロガ
ウス以上、最大エネルギー積2メガガウスエルス
テツド以上であることを特徴とする最大エネルギ
ー積の大きい高保磁力永久磁石。 2 原子比にしてパラジウムが28〜38%、残量鉄
で多少の不純物を含む合金を650゜〜990℃の温度
において適当時間均質固溶化処理したのち水中あ
るいは空気中で急冷または炉中で徐冷し、さらに
350゜〜440℃の温度に長時間加熱してγ相の地に
α+γ相を微細に分散析出せしめることを特徴
とする最大エネルギー積の大きい高保磁力永久磁
石の製造方法。 3 原子比にしてパラジウムが28〜38%、残量鉄
で多少の不純物を含む合金を650゜〜990℃の温度
において適当時間均質固溶化処理して水中あるい
は空気中で急冷し、90%以上の線引き又は圧延等
の塑性加工をしたのち350゜〜440℃に長時間加熱
してγ相の地にα+γ相を微細に分散析出せし
めることを特徴とする最大エネルギー積の大きい
高保磁力永久磁石の製造方法。
[Scope of Claims] 1. α phase and γ in the γ phase, containing 28 to 38% palladium in terms of atomic ratio and 0.5% or less of impurities as iron remaining.
High coercive force with a large maximum energy product, consisting of a structure in which one phase is finely dispersed and precipitated, and characterized by a coercive force of 500 oersted or more, a residual magnetic flux density of 6 kilogauss or more, and a maximum energy product of 2 megagauss oersted or more. permanent magnet. 2 An alloy containing 28 to 38% palladium in atomic ratio and some impurities with the remaining iron is subjected to homogeneous solution treatment at a temperature of 650° to 990°C for an appropriate period of time, then rapidly cooled in water or air or slowed in a furnace. Cool and then
A method for producing a high coercive force permanent magnet with a large maximum energy product, which comprises heating to a temperature of 350° to 440°C for a long time to finely disperse and precipitate the α+γ 1 phase on the γ phase. 3. An alloy containing 28 to 38% palladium in atomic ratio and some impurities with the remaining iron is subjected to homogeneous solid solution treatment at a temperature of 650° to 990°C for an appropriate period of time, and then rapidly cooled in water or air to achieve 90% or more. A high coercive force permanent magnet with a large maximum energy product, which is characterized by being subjected to plastic processing such as wire drawing or rolling, and then heated to 350° to 440°C for a long time to finely disperse and precipitate the α+γ 1 phase on the γ phase. manufacturing method.
JP10279179A 1979-08-14 1979-08-14 Manufacture of high coercive-forced permanent magnet with maximum energy product Granted JPS5627901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10279179A JPS5627901A (en) 1979-08-14 1979-08-14 Manufacture of high coercive-forced permanent magnet with maximum energy product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10279179A JPS5627901A (en) 1979-08-14 1979-08-14 Manufacture of high coercive-forced permanent magnet with maximum energy product

Publications (2)

Publication Number Publication Date
JPS5627901A JPS5627901A (en) 1981-03-18
JPS6113361B2 true JPS6113361B2 (en) 1986-04-12

Family

ID=14336929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10279179A Granted JPS5627901A (en) 1979-08-14 1979-08-14 Manufacture of high coercive-forced permanent magnet with maximum energy product

Country Status (1)

Country Link
JP (1) JPS5627901A (en)

Also Published As

Publication number Publication date
JPS5627901A (en) 1981-03-18

Similar Documents

Publication Publication Date Title
Kaneko et al. New ductile permanent magnet of Fe‐Cr‐Co system
US4093477A (en) Anisotropic permanent magnet alloy and a process for the production thereof
JPH0158261B2 (en)
JP2513679B2 (en) Ultra-high coercive force permanent magnet with large maximum energy product and method for manufacturing the same
JPS5856731B2 (en) Heat treatment method for Fe↓-Co↓-Cr alloy for permanent magnets
US4396441A (en) Permanent magnet having ultra-high coercive force and large maximum energy product and method of producing the same
US3983916A (en) Process for producing semi-hard co-nb-fl magnetic materials
US4465526A (en) High-coercive-force permanent magnet with a large maximum energy product and a method of producing the same
KR830001327B1 (en) Method of manufacturing magnetic element made of alloy
JPS5947017B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS6113361B2 (en)
JPS5947018B2 (en) Magnetic alloy for magnetic recording and playback heads and its manufacturing method
JPS63149356A (en) Soft magnetic alloy for reed chip, manufacture thereof and reed switch
US3350240A (en) Method of producing magnetically anisotropic single-crystal magnets
JPS5924177B2 (en) Square hysteresis magnetic alloy
JPS633943B2 (en)
JPH0258761B2 (en)
CN114381668B (en) Supersaturated solid solution soft magnetic material and preparation method thereof
JPS62122106A (en) Sintered permanent magnet
JPH01255645A (en) Fe-co groupe magnetic alloy and its production
US4134756A (en) Permanent magnet alloys
US2829970A (en) Beryllium containing nickel, manganese, copper alloys
JPS5929084B2 (en) Manufacturing method of permanent magnet alloy
JPS5814499B2 (en) Kakugata Hysteresis Jisei Gokin Oyobi Sonoseizouhouhou
JPH01221820A (en) Manufacture of magnetic lead-piece with rectangular hysteresis and lead switch