JPS61132855A - Oxygen sensor - Google Patents

Oxygen sensor

Info

Publication number
JPS61132855A
JPS61132855A JP59254679A JP25467984A JPS61132855A JP S61132855 A JPS61132855 A JP S61132855A JP 59254679 A JP59254679 A JP 59254679A JP 25467984 A JP25467984 A JP 25467984A JP S61132855 A JPS61132855 A JP S61132855A
Authority
JP
Japan
Prior art keywords
sputtering
oxygen sensor
electrode
oxygen
fluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59254679A
Other languages
Japanese (ja)
Inventor
Shotaro Oka
正太郎 岡
Osamu Tawara
修 田原
Hiroyoshi Mizuguchi
博義 水口
Megumi Shinada
恵 品田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP59254679A priority Critical patent/JPS61132855A/en
Publication of JPS61132855A publication Critical patent/JPS61132855A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4073Composition or fabrication of the solid electrolyte
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/406Cells and probes with solid electrolytes
    • G01N27/407Cells and probes with solid electrolytes for investigating or analysing gases
    • G01N27/4075Composition or fabrication of the electrodes and coatings thereon, e.g. catalysts

Abstract

PURPOSE:To increase the response speed with the concn. change in an oxygen sensor for which single crystal lanthanum fluoride is used by forming a platinum electrode consisting of a thin film formed by sputtering as an electrode for a sensing part. CONSTITUTION:The single crystal lanthanum fluoride 2 is formed as a solid electrolyte and a reference electrode part 3 of an inorg. solid consisting of a thin fluoride + metallic tin layer is provided on one side thereof. The surface is masked by an epoxy resin 31 so as not to be affected by the gaseous oxygen in the atm. air. The platinum electrode 4 consisting of the thin film formed by sputtering is provided on the sensing surface of the other surface by which the response speed with the concn. change is increased and the linearity between the logarithm of the oxygen concn. and the generated voltage is satisfactorily maintained.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、酸素センサに関する。さらに詳しくは、固
体電解質を用いてなり、種々のガスや大気中の酸素濃度
を検知できる濃淡電池式の酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application This invention relates to an oxygen sensor. More specifically, the present invention relates to a concentration battery type oxygen sensor that uses a solid electrolyte and can detect oxygen concentrations in various gases and the atmosphere.

(ロ)従来技術 従来から、固体電解質を用いて種々の化学物質を検知す
る試みがなされており、安定化ジルコニアを用いた限界
電流式や濃淡電池式の酸素センサは燃焼ガスや溶融金属
中の酸素測定や管理に広く使用されている。
(b) Prior art Previous attempts have been made to detect various chemical substances using solid electrolytes, and limiting current type and concentration battery type oxygen sensors using stabilized zirconia are used to detect chemicals in combustion gas and molten metal. Widely used for oxygen measurement and management.

しかしながら、かようなジルコニアを用いた酸素センサ
は基本的に高温領域でないと使用、できないという欠点
があった。
However, such an oxygen sensor using zirconia has the drawback that it cannot be used except in a high temperature region.

この点に関し、低温領域においても感応しうる固体電解
質を用いた酸素センサの研究が種々なされており、最近
フッ化ランタン単結晶を用いた常温下でも感応しうる酸
素センサが提案されるようになった。かかる酸素センサ
は、板状の単結晶フッ化ランタンの片面に、エポキシ樹
脂で外気とマスクされたフッ化錫+金属錫(5nF3+
 Sn )混合層からなる参照電極部を形成し、他面の
一部に白金黒粉末とフッ化錫粉末との混合物を圧着して
感応部電極を形成せしめた濃淡電池式のものである。
In this regard, various studies have been conducted on oxygen sensors using solid electrolytes that are sensitive even in low-temperature regions, and recently oxygen sensors that are sensitive even at room temperature using lanthanum fluoride single crystals have been proposed. Ta. This oxygen sensor is made of tin fluoride + metal tin (5nF3+) which is masked from the outside air with epoxy resin on one side of a plate-shaped single crystal lanthanum fluoride.
This is a concentration battery type in which a reference electrode part is formed of a Sn) mixed layer and a sensitive part electrode is formed by pressing a mixture of platinum black powder and tin fluoride powder onto a part of the other surface.

しかしながら、かかる酸素センサは、応答速度が不充分
なものであり、例えば100℃の温度下、酸素濃度10
%から100%への変化に対する応答に約4分を要し、
さらに100%から10%への応答に約20分もかかる
という問題点があった。
However, such an oxygen sensor has an insufficient response speed, for example, at a temperature of 100°C and an oxygen concentration of 10%.
It takes about 4 minutes to respond to a change from % to 100%,
Another problem was that it took about 20 minutes to respond from 100% to 10%.

(ハ)発明の目的 この発明は、上記従来の問題点に鑑みなされたものであ
り、応答性ことに酸素濃度の極端な変化に対する応答性
が優れた酸素センサを提供しようとするものである。
(c) Purpose of the Invention The present invention has been made in view of the above-mentioned conventional problems, and it is an object of the present invention to provide an oxygen sensor with excellent responsiveness, especially responsiveness to extreme changes in oxygen concentration.

本発明者らは、鋭意研究を行なった結果、単結晶フッ化
ランタンを用いた前述の酸素センサにおける感応部電極
、すなわち白金黒圧着電極の代わりに、スパッタリング
による薄膜の白金電極を形成させることにより、驚くべ
きことに濃度変化に対する応答速度が約十倍速くなり、
かつ酸素濃度の対数と発生電位との直線性も良好に保た
れるという事実を見出した。
As a result of extensive research, the present inventors have found that, in place of the sensitive electrode in the aforementioned oxygen sensor using single crystal lanthanum fluoride, that is, the platinum black crimp electrode, a thin film platinum electrode is formed by sputtering. Surprisingly, the response speed to concentration changes became about ten times faster,
We have also found that the linearity between the logarithm of oxygen concentration and the generated potential is maintained well.

(ニ)発明の構成 かくしてこの発明によれば.フツ化ランタンを固体電解
質とし、その一面に外気とマスクされた無機固体からな
る参照電極部を備え、他面の感応面に、スパッタリング
により形成された薄膜の白金電極を備えたことを特徴と
する酸素センサが提供される。
(d) Structure of the invention Thus, according to this invention. Lanthanum fluoride is used as a solid electrolyte, and one side thereof is provided with a reference electrode portion made of an inorganic solid that is masked with outside air, and the other sensitive surface is provided with a thin film platinum electrode formed by sputtering. An oxygen sensor is provided.

この発明は、従来の白金黒を主体とする電極の代わりに
、スパッタリングによる白金電極を感応部電極として用
いることにより.フツ化ランタンを用いた濃淡電池式の
酸素センサの応答性の顕著な向上を可能としたものであ
る。
This invention uses sputtered platinum electrodes as sensitive electrodes instead of conventional electrodes mainly made of platinum black. This has made it possible to significantly improve the response of a concentration cell-type oxygen sensor using lanthanum fluoride.

上記スパッタリングとは、半導体工業等に′おいて薄膜
製造技術の一つとして知られている所謂スパッタリング
法を示し、直流スパッタリングと交流スパッタリングに
大別される。この発明においては、いずれの方法を適用
してもよい。すなわち、直流スパッタリングの場合には
、放電用の陰極に白金板を、陽極にフッ化ランタン基板
を配置し、アルゴン等の放電ガスの雰囲気下、直流グロ
ー放電を行なえばよい。また、交流スパッタリングの場
合にはターゲットに白金板を、対極(アース極)にフッ
化ランタン板を配置し、アルゴン等の放電ガスの雰囲気
下、好ましくはターゲットの白金板にコンデンサを接続
して逆スパツタリングを防ぎつつ、交流グロー放電を行
なえばよい。通常、放電ガス圧の低さや放電の安定性等
の点で交流スパッタリングを適用するのが好ましい。
The above-mentioned sputtering refers to the so-called sputtering method known as one of the thin film manufacturing techniques in the semiconductor industry and the like, and is roughly divided into DC sputtering and AC sputtering. In this invention, any method may be applied. That is, in the case of DC sputtering, a platinum plate is placed as a cathode for discharge, a lanthanum fluoride substrate is placed as an anode, and DC glow discharge is performed in an atmosphere of discharge gas such as argon. In the case of AC sputtering, a platinum plate is placed as the target and a lanthanum fluoride plate is placed as the counter electrode (earth electrode), and a capacitor is preferably connected to the platinum plate of the target in an atmosphere of discharge gas such as argon. AC glow discharge may be performed while preventing sputtering. Generally, it is preferable to use AC sputtering in view of low discharge gas pressure, stability of discharge, and the like.

なお、放電ガス圧、放電電圧、放電電流等の放電条件は
、公知の条件から適宜選択すればよい。
Note that discharge conditions such as discharge gas pressure, discharge voltage, and discharge current may be appropriately selected from known conditions.

ただし、得られる白金の薄膜の膜厚は約1μm以下に制
御することが通しており、ことに約0.5μ−以下とす
るのが好ましい。膜厚が1μmを超えると、固体電解質
への酸素の透過性が阻害されるため通していない。この
制御は、通常、放電時間を調整することにより行なわれ
る。
However, the thickness of the resulting platinum thin film is generally controlled to be about 1 .mu.m or less, and preferably about 0.5 .mu.m or less. When the film thickness exceeds 1 μm, the permeability of oxygen to the solid electrolyte is inhibited, so that it is not allowed to pass through the solid electrolyte. This control is usually performed by adjusting the discharge time.

この発明の固体電解質のフッ化ランタンとしては、単結
晶フッ化ランタンを用いるのが好ましい。
As the lanthanum fluoride of the solid electrolyte of this invention, it is preferable to use single crystal lanthanum fluoride.

またその形状としてもスパッタリング時の取扱い易さ、
コスト等の点から平板伏のものを用いるのが好ましい。
Also, its shape makes it easy to handle during sputtering.
From the viewpoint of cost etc., it is preferable to use a flat plate.

通常、上記平板上の片面(感応面)に上記薄膜の白金電
極がスパッタリングにより形成される。
Usually, the thin film platinum electrode is formed on one side (the sensitive side) of the flat plate by sputtering.

一方、他面には参照電極部が形成される。この参照電極
部としては、無機固体からなりフッ素イオン導電性のも
のが挙げられる。この無機固体としては、金属フッ化物
を用いるのが好ましく通常、フッ化錫.フツ化鉛.フツ
化アンチモン.フツ化銀等が挙げられ、これらはそれぞ
れの還元金属(錫、鉛、アンチモン、銀等)を含有して
いることが好ましム−1゜これら参照電極部は電位差測
定部へ導通される。かかる参照電極部は、外気中の酸素
ガスに影響されることなく一定の電極電位を保持できる
ように外界とマスクされていることを要する。このマス
クは通常、エポキシ樹脂等の合成樹脂接着剤等で参照電
極部ことに無機固体の外面を被覆することにより行なえ
ばよい。
On the other hand, a reference electrode portion is formed on the other surface. This reference electrode section may be made of an inorganic solid and conductive to fluorine ions. As this inorganic solid, it is preferable to use a metal fluoride, usually tin fluoride. Lead fluoride. Antimony fluoride. Examples include silver fluoride, which preferably contains the respective reducing metals (tin, lead, antimony, silver, etc.).These reference electrode parts are electrically connected to the potential difference measurement part. Such a reference electrode part needs to be masked from the outside world so that a constant electrode potential can be maintained without being affected by oxygen gas in the outside air. This mask is usually made by coating the outer surface of the inorganic solid on the reference electrode portion with a synthetic resin adhesive such as epoxy resin.

なお、上記無機固体からなる参照電極部は、通常.フツ
化金属の粉末と還元金属粉末とを不活性ガスの雰囲気下
、溶融してフッ化ランタン上に展延したり、プレスによ
って圧着することにより容易に密着形成できる。
Note that the reference electrode section made of the above-mentioned inorganic solid is usually. Close contact can be easily formed by melting metal fluoride powder and reduced metal powder in an inert gas atmosphere and spreading them on lanthanum fluoride, or by pressing them together with a press.

(ホ)実施例 以下、この発明を実施例により説明するが、これにより
この発明は限定されるものではない。
(e) Examples The present invention will be explained below using examples, but the invention is not limited thereby.

直径10m厚さ2mのフッ化ランタン単結晶を、第2図
に示すごとく、真空槽(6)、白金板ターゲット(7)
、対極(8;アース電極)、排気系(9)、アルゴンガ
ス(放電ガース)導入管αφ、磁場発生コイル(11)
、タンク回路(12)及びシャッター(13)を備えた
交流スパッタリング装置内の対極(8)上に配置し、タ
ーゲット、対極間に高周波電圧を加えて交流スパッタリ
ングを行なった。スパッタリング条件は以下の通りであ
る。
A lanthanum fluoride single crystal with a diameter of 10 m and a thickness of 2 m was placed in a vacuum chamber (6) and a platinum plate target (7) as shown in Figure 2.
, counter electrode (8; earth electrode), exhaust system (9), argon gas (discharge girth) introduction tube αφ, magnetic field generating coil (11)
was placed on a counter electrode (8) in an AC sputtering apparatus equipped with a tank circuit (12) and a shutter (13), and AC sputtering was performed by applying a high frequency voltage between the target and the counter electrode. The sputtering conditions are as follows.

放電ガス圧力S  2X10″″2torr放電出カニ
  210W 反 射 波: 40W以下 放電ガス供給量:4.2mj!/分 放電時間:15分 このようにして片面に薄膜(約0.5μm)の白金電極
を形成したフッ化ランタンを得た。
Discharge gas pressure S 2X10''2torr Discharge output crab 210W Reflected wave: 40W or less Discharge gas supply amount: 4.2mj! /min Discharge time: 15 minutes In this way, a lanthanum fluoride having a thin film (approximately 0.5 μm) of platinum electrode formed on one side was obtained.

次いで.フツ化錫の粉末と金属錫の粉末を重量比3ニア
で混合し、220℃で熱処理することにより参照電極を
厚み約0.5flで形成し、さらに金属銀を焼付けて参
照電極部を作製した。
Next. A reference electrode with a thickness of about 0.5 fl was formed by mixing tin fluoride powder and metallic tin powder at a weight ratio of 3nia, heat-treating the mixture at 220°C, and then baking metallic silver to produce a reference electrode part. .

次いで、白金電極及び参照電極部の銀膜に白金線を接続
し、参照電極部外周及び円板状のフッ化ランタンの側周
にエポキシ樹脂をコートすることにより、第1図に示す
ごときこの発明の酸素センサ(1)を得た0図において
、(2)はフッ化ランタン単結晶、(3)はフッ化銀土
金属錫層、(4)はスパッタリングによる白金電極、(
5)は電位差計に接続される白金リード線、(31)は
エポキシ樹脂、(33)は銀膜をそれぞれ示す。
Next, a platinum wire was connected to the platinum electrode and the silver film of the reference electrode part, and the outer periphery of the reference electrode part and the side periphery of the disk-shaped lanthanum fluoride were coated with epoxy resin, thereby producing the invention as shown in FIG. In Figure 0, the oxygen sensor (1) was obtained, (2) is a lanthanum fluoride single crystal, (3) is a silver fluoride earth metal tin layer, (4) is a platinum electrode made by sputtering, (
5) shows a platinum lead wire connected to a potentiometer, (31) shows an epoxy resin, and (33) shows a silver film.

このようにして得たこの発明の酸素センサ(1)を用い
、100℃下で酸素濃度を10%から100%に急激に
変化させた際の応答の遅れを測定した結果を、比較例と
共に第3図に示す。なお、比較例は、白金電極(勾の代
わりに白金黒をプレスした電極を用いたものである。
Using the oxygen sensor (1) of the present invention thus obtained, the response delay was measured when the oxygen concentration was suddenly changed from 10% to 100% at 100°C. Shown in Figure 3. In addition, the comparative example uses a platinum electrode (an electrode made of pressed platinum black instead of a gradient).

このよ、うに従来の白金黒を感応部電極として用いたも
の(応答遅れ約4分)に比してこの発明の酸素センサは
約30秒程度の遅れしか生じておらず、応答性が顕著に
改善されていることが判る。
As shown above, compared to the conventional one using platinum black as the sensitive electrode (response delay of about 4 minutes), the oxygen sensor of the present invention has a delay of only about 30 seconds, and the response is significantly improved. It can be seen that it has been improved.

一方、上記この発明の酸素センサの酸素濃度に対する電
位差の変化を測定した結果を第4図に示す、このように
酸素濃度の対数と電位差との直線性は良好に保たれてい
ることが判る。
On the other hand, the results of measuring the change in potential difference with respect to oxygen concentration of the oxygen sensor of the present invention are shown in FIG. 4, and it can be seen that the linearity between the logarithm of oxygen concentration and the potential difference is well maintained.

(へ)発明の効果 この発明の酸素センサは酸素濃度を従来に比してより鋭
敏に検知できるものであり、しかもネルンスト応答も良
好に保たれるものである。そして、該センサは100℃
未満ことに常温下においても酸素に対する応答性を示す
ものであり、優れた応答性とも相俟って、排気ガスや燃
焼ガス等の高温雰囲気の計測が主体とされていた固体電
解質を用いた酸素センサの用途を拡大しうるものである
(F) Effects of the Invention The oxygen sensor of the present invention can detect oxygen concentration more sensitively than conventional sensors, and also maintains a good Nernst response. And the sensor is 100℃
In particular, it exhibits responsiveness to oxygen even at room temperature, and together with its excellent responsiveness, it has been used mainly to measure high-temperature atmospheres such as exhaust gas and combustion gas. This makes it possible to expand the applications of the sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の酸素センサの一実施例を示す構成
説明図、第2図は、この発明の酸素センサの作製工程を
例示する説明図、第3図はこの発明の酸素センサの応答
性を比較例と共に示すグラフ、第4図は同じく酸素濃度
と電位差との関係を示すグラフである。 (1)−酸素センサ、 (2)・・−・フッ化ランタン単結晶、(3)・−・フ
ッ化銀土金属錫層、   −(4)・−・白金電極、 (31)・・−・エポキシ樹脂。、 tご′−一、・ 代理人 弁理士  野 河 信 太 部  :L−3副
FIG. 1 is a configuration explanatory diagram showing one embodiment of the oxygen sensor of the present invention, FIG. 2 is an explanatory diagram illustrating the manufacturing process of the oxygen sensor of the present invention, and FIG. 3 is a response diagram of the oxygen sensor of the present invention. FIG. 4 is a graph showing the relationship between oxygen concentration and potential difference. (1) -Oxygen sensor, (2)...Lanthanum fluoride single crystal, (3)...Silver fluoride earth metal tin layer, -(4)...Platinum electrode, (31)...- ·Epoxy resin. , tGo'-1, Agent: Patent Attorney Shintabe Nogawa: Deputy L-3

Claims (2)

【特許請求の範囲】[Claims] 1.フツ化ランタンを固体電解質とし、その一面に外気
とマスクされた無機固体からなる参照電極部を備え、他
面の感応面に、スパツタリングにより形成された薄膜の
白金電極を備えたことを特徴とする酸素センサ。
1. It is characterized by using lanthanum fluoride as a solid electrolyte, having a reference electrode part made of an inorganic solid masked with outside air on one side, and a thin film platinum electrode formed by sputtering on the other sensitive side. oxygen sensor.
2.フツ化ランタンが、単結晶フツ化ランタンである特
許請求の範囲第1項記載の酸素センサ。
2. The oxygen sensor according to claim 1, wherein the lanthanum fluoride is a single crystal lanthanum fluoride.
JP59254679A 1984-11-30 1984-11-30 Oxygen sensor Pending JPS61132855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59254679A JPS61132855A (en) 1984-11-30 1984-11-30 Oxygen sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59254679A JPS61132855A (en) 1984-11-30 1984-11-30 Oxygen sensor

Publications (1)

Publication Number Publication Date
JPS61132855A true JPS61132855A (en) 1986-06-20

Family

ID=17268354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59254679A Pending JPS61132855A (en) 1984-11-30 1984-11-30 Oxygen sensor

Country Status (1)

Country Link
JP (1) JPS61132855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851303A (en) * 1986-11-26 1989-07-25 Sri-International Solid compositions for fuel cells, sensors and catalysts
US5134042A (en) * 1986-11-26 1992-07-28 Sri International Solid compositions for fuel cells, sensors and catalysts

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794642A (en) * 1980-07-01 1982-06-12 France Etat Potential difference measuring apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5794642A (en) * 1980-07-01 1982-06-12 France Etat Potential difference measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4851303A (en) * 1986-11-26 1989-07-25 Sri-International Solid compositions for fuel cells, sensors and catalysts
US5134042A (en) * 1986-11-26 1992-07-28 Sri International Solid compositions for fuel cells, sensors and catalysts

Similar Documents

Publication Publication Date Title
US5755940A (en) Lithium ionic conducting glass thin film and carbon dioxide sensor comprising the glass thin film
JPS6110756A (en) Gas sensor and manufacture thereof
JPS6069544A (en) Gas sensor
JPS61132855A (en) Oxygen sensor
JPS59211854A (en) Metallic oxide electrode
CA1198345A (en) Sensor for determining the oxygen content in a gas
JPH02269948A (en) Sensor for combustion control
JP3770456B2 (en) Measuring method of gas concentration
JPS588743B2 (en) Gas/humidity sensor
US4303490A (en) Exhaust electrode process for exhaust gas oxygen sensor
US3502554A (en) Method for forming thin films
JPH0464051A (en) Oxygen sensor
JPH0147740B2 (en)
JPH06213853A (en) Manufacture of gas detecting element
Godovski et al. Analysis of hydrogen fluoride with SnO2 gas sensors
JP2849588B2 (en) Thin film gas sensor and method of manufacturing the same
JPH05156439A (en) Production of transparent conductive film and measuring instrument
JPH0348643B2 (en)
JP2743215B2 (en) Working electrode for electrochemical hydrogen fluoride detector
RU2100801C1 (en) Solid gas sensor
JPH0763724A (en) Nitrogen oxides sensor
JPH04208848A (en) Electrochemical gas sensor and manufacture thereof
JPH01302152A (en) Thin film moisture sensing element
JPS61200454A (en) Membrane humidity-sensitive element
JPH0348644B2 (en)