JPS61131418A - Semiconductor manufacturing equipment - Google Patents

Semiconductor manufacturing equipment

Info

Publication number
JPS61131418A
JPS61131418A JP25344584A JP25344584A JPS61131418A JP S61131418 A JPS61131418 A JP S61131418A JP 25344584 A JP25344584 A JP 25344584A JP 25344584 A JP25344584 A JP 25344584A JP S61131418 A JPS61131418 A JP S61131418A
Authority
JP
Japan
Prior art keywords
glass tube
quartz glass
substrate
light source
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25344584A
Other languages
Japanese (ja)
Other versions
JPH0638404B2 (en
Inventor
Toshiyuki Kobayashi
利行 小林
Yoshimi Otomo
大友 芳視
Noriyoshi Kinoshita
儀美 木之下
Masao Oda
昌雄 織田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP25344584A priority Critical patent/JPH0638404B2/en
Publication of JPS61131418A publication Critical patent/JPS61131418A/en
Publication of JPH0638404B2 publication Critical patent/JPH0638404B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45517Confinement of gases to vicinity of substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To prevent the surface of quartz glass tube from being blurred by reacted product deposited on the surface thereof while augmenting the intensity of illumination on the substrate by a method wherein a light source comprising a quartz glass tube provided with multiple linear lamps arranged in a reaction chamber is utilized while an ultraviolet ray transmitting film is moved along the periphery of this quartz glass tube on the substrate side. CONSTITUTION:A cylindrical quartz glass tube 13 provided with multiple linear lamps utilized as a light source is arranged in a reaction chamber 1 so that a substrate 5 may be irradiated with augmented intensity of illumination by means of approaching the light source 12 to the substrate 5 up to an arbitrary distance. Besides, in case of forming a thin film, any reacted product trying to adhere to the surface of quartz glass tube 13 may be prevented from adhering to the same since the product adheres to a film 14 provided on the surface of tube 13 to be successively wound up.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、光化学的に反応ガスを分解して薄膜を基板
上に形成させる方法(photo chen+1cal
 va−pour deposi1)on =以下光励
起CVD法と称す)を用いて薄膜を形成する半″・導体
製造装置に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention is a method of photochemically decomposing a reactive gas to form a thin film on a substrate (photo chen+1 cal).
The present invention relates to a semiconductor/conductor manufacturing apparatus that forms thin films using va-pour deposition (hereinafter referred to as photo-excited CVD method).

〔従来の技術〕[Conventional technology]

CVD法は集積回路装置におけるWi膜形成等において
重要な技術であるが、従来のCVD法は、主として反応
ガスを加熱して化学反応を起こさせるようにしており1
、このため反応温度が高温となり、これにより形成され
る薄膜はダメージを受は易いものである。      
        ′そこで最近、低温CVD技術として
光励起CVD法が注目されている。この光励起CVD法
は、CVDのエネルギー源として光を用いるものであり
、これによれば、従来の熱励起CVD法、プラズマCV
D法等に比較して反応温度を低温にでき、薄膜へのダメ
ージも少なくすることができる。
The CVD method is an important technology for forming Wi films in integrated circuit devices, etc., but the conventional CVD method mainly heats a reaction gas to cause a chemical reaction.
Therefore, the reaction temperature becomes high, and the thin film formed thereby is easily damaged.
'Therefore, recently, the photoexcitation CVD method has been attracting attention as a low-temperature CVD technology. This photo-excited CVD method uses light as an energy source for CVD, and is different from the conventional thermally-excited CVD method and plasma CVD method.
Compared to methods such as D, the reaction temperature can be lowered and damage to the thin film can be reduced.

また、一般的に光励起CVD法では、光の強度が薄膜の
形成速度に大きな影響を与えることが知られており、基
板温度1反応ガスの組成比、圧力を一定に保った条件下
では、薄膜の形成速度は光の照射強度に比例して速(な
ることが知られている。
In general, in the photo-excited CVD method, it is known that the intensity of light has a large effect on the rate of thin film formation. It is known that the rate of formation of is proportional to the intensity of light irradiation.

第3図はこのような光励起CVD法による従来の薄膜形
成装置の基本的な構成を示し、−図ドおいて、1は膜形
成時にその中が高真空状態に減圧される反応室、2は線
状ランプからなる光源、3は基板加熱用ヒータ、4はシ
ラン等の反応ガス、5−は薄膜が形成される基板、6は
光透過材からなる光入射窓、7は反応ガス供給口、8は
反応後のガス4aを排出するためのガス排出口、9は基
板5を載せる固定台であるI なお、反応室1内は一般的に高真空状態に減圧され、反
応室1の壁、光透過材からなる光入射窓6も当然この圧
力に耐えうる構造、板厚により構成されている。
Figure 3 shows the basic configuration of a conventional thin film forming apparatus using such a photo-excited CVD method. A light source consisting of a linear lamp, 3 a heater for heating the substrate, 4 a reactive gas such as silane, 5 - a substrate on which a thin film is formed, 6 a light entrance window made of a light transmitting material, 7 a reactive gas supply port, Reference numeral 8 denotes a gas outlet for discharging the gas 4a after the reaction, and 9 denotes a fixing table I on which the substrate 5 is placed.The interior of the reaction chamber 1 is generally reduced to a high vacuum state, and the walls of the reaction chamber 1, Naturally, the light entrance window 6 made of a light transmitting material has a structure and plate thickness that can withstand this pressure.

この装置では、反応ガス4が供給ロアから反応室1に導
入されると、該反応ガス4は入射窓6から投射された光
線により励起分解される。そしてこれにより生じた反応
生成物がヒータ3によって低温加熱された基板5上に堆
積し、該基板5上に薄膜が形成される。反応後のガス4
aは排出口8から排出される。
In this apparatus, when a reaction gas 4 is introduced into the reaction chamber 1 from the supply lower, the reaction gas 4 is excited and decomposed by the light beam projected from the entrance window 6. The resulting reaction product is deposited on the substrate 5 heated at a low temperature by the heater 3, and a thin film is formed on the substrate 5. Gas after reaction 4
a is discharged from the discharge port 8.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

この従来の半導体製造装置で−は以上のように反応室1
に光の入射窓6を設け、反応室1外に設けられた光:a
2から光を投射しているが、基板5上への薄膜の形成速
度を速めるためには基板5上の光の照度を強くする必要
があり、このためにはより出力の大きな光源を用いるか
、基板5と光源2の距離を縮め、基板5上の照度を強く
する必要がある。ところが、長寿命で出力の大きい実用
的な光源を求めることは現在では困難であり、また従来
の構造のまま基板5と光源2の間の距離を縮めることも
これらの間に光透過材からなる光入射窓6を、高真空の
圧力に耐えられる構造で反応室1に取り付けねばならな
いことからはなはだ困難であっ−た。
In this conventional semiconductor manufacturing equipment, the reaction chamber 1 is
A light entrance window 6 is provided in the reaction chamber 1, and light provided outside the reaction chamber 1: a
However, in order to speed up the formation of a thin film on the substrate 5, it is necessary to increase the illuminance of the light on the substrate 5, and for this purpose, it is necessary to use a light source with a higher output. , it is necessary to shorten the distance between the substrate 5 and the light source 2 and increase the illuminance on the substrate 5. However, it is currently difficult to find a practical light source with a long life and high output, and it is also possible to shorten the distance between the substrate 5 and the light source 2 with the conventional structure by using a light-transmitting material between them. This was extremely difficult since the light entrance window 6 had to be installed in the reaction chamber 1 with a structure that could withstand high vacuum pressure.

また、光入射窓6に反応生成物が堆積して、いわゆる唸
りが生じ、短波長紫外線がこれを透過しにくくなるとい
う問題点があった。
Further, there is a problem in that reaction products accumulate on the light entrance window 6, causing so-called buzzing, which makes it difficult for short wavelength ultraviolet rays to pass through.

この発明は、このような問題点を解消するためになされ
たもので、基板上の光の照度を高め、さらには反応生成
物の堆積による光の遮蔽の問題を解消できる半導体製造
装置を得ることを目的とするものである。
This invention was made to solve these problems, and it is an object of the present invention to provide a semiconductor manufacturing device that can increase the illuminance of light on a substrate and also solve the problem of light shielding due to the accumulation of reaction products. The purpose is to

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る半導体製造装置は、反応室内の石英ガラ
ス管内に線状ランプを複数個配設してなるものを光源と
して用い、上記石英ガラス管の外周面の基板側部分を覆
うような状態にて紫外線透過フィルムを移動させるフィ
ルム駆動装置を設けたものである。
A semiconductor manufacturing apparatus according to the present invention uses as a light source a plurality of linear lamps disposed inside a quartz glass tube in a reaction chamber, and is arranged so as to cover the substrate side portion of the outer peripheral surface of the quartz glass tube. A film drive device is provided to move the ultraviolet transmitting film.

〔作用〕[Effect]

この発明においては、光源を反応室内に設けたから、該
光源が基板に近づいて該基板上の光の照度が高まり薄膜
は速く形成される。また石英ガラス管下部を覆うフィル
ムを設けたから、反応生成物は該フィルムに付着し、該
フィルムが巻き取られることによって上記石英ガラス管
表面には曇りが生じない。
In this invention, since the light source is provided in the reaction chamber, the light source approaches the substrate, increasing the illuminance of the light on the substrate and forming the thin film quickly. Furthermore, since a film is provided to cover the lower part of the quartz glass tube, the reaction product adheres to the film, and when the film is wound up, no clouding occurs on the surface of the quartz glass tube.

〔実施例〕〔Example〕

以下、本発明の実施例を図について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は第1図のa−n線断面図である。両図
において、1は反応室、13は該反応室l内に設けられ
た回転可能な円筒形石英ガラス管、12は該石英ガラス
管13の内壁に沿って複数の線状ランプが配設されてな
る光源、16は上記石英ガラス管13回転用モータ、1
4は紫外線透過フィルムであり、これは上記円筒形石英
ガラス管13の外周面の基板側部分にこれを覆うような
状態にて移動するよう設けられている。15は該フィル
ム14を上記円筒形石英ガラス管13の回転方向に該石
英ガラス管13と同期させて移動させ巻き取るフィルム
駆動装置、15a、15bは該駆動装置15のフィルム
供給ローラ、巻取ローラである。また、3は基板加熱用
ヒータ、4は反応ガス、5は基板、7は反応ガス供給口
、8は反応後のガス4aを排出するためのガス排出口、
19は基板5を載置し、円筒形石英ガラス管13の軸に
直角方向に移動する移動テーブル、20は該移動テーブ
ル19を駆動するテーブル移動機構であり、これは上記
テーブル19に固着された連結子19aに螺合したボー
ルネジ2.3六これを回転駆動するモータ24とから構
成されている。
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along the line a--n in FIG. In both figures, 1 is a reaction chamber, 13 is a rotatable cylindrical quartz glass tube provided in the reaction chamber 1, and 12 is a plurality of linear lamps arranged along the inner wall of the quartz glass tube 13. 16 is a motor for rotating the quartz glass tube 13;
Reference numeral 4 denotes an ultraviolet transmitting film, which is provided on the substrate side portion of the outer peripheral surface of the cylindrical quartz glass tube 13 so as to be movable so as to cover it. 15 is a film drive device that moves and winds the film 14 in the rotational direction of the cylindrical quartz glass tube 13 in synchronization with the quartz glass tube 13; 15a and 15b are a film supply roller and a take-up roller of the drive device 15; It is. Further, 3 is a heater for heating the substrate, 4 is a reaction gas, 5 is a substrate, 7 is a reaction gas supply port, 8 is a gas discharge port for discharging the gas 4a after the reaction,
19 is a moving table on which the substrate 5 is placed and moves in a direction perpendicular to the axis of the cylindrical quartz glass tube 13; 20 is a table moving mechanism that drives the moving table 19; this is fixed to the table 19; It consists of a ball screw 2.3 screwed onto the connector 19a, and a motor 24 for rotationally driving the ball screw.

11は円筒形石英ガラス管13の曲面側の一端に設けら
れた反応ガス供給ノズル、21は該供給ノズル11とと
もに円筒形石英ガラス管13を挟むよう該ノズル11と
反対側に設けられたガス排出−ノズルである。
11 is a reaction gas supply nozzle provided at one end of the curved side of the cylindrical quartz glass tube 13, and 21 is a gas exhaust provided on the opposite side of the nozzle 11 so as to sandwich the cylindrical quartz glass tube 13 together with the supply nozzle 11. -It is a nozzle.

次に作用効果について説明する。Next, the effects will be explained.

本装置においては、反応ガス4は供給ロアから反応室1
内に供給され、一方光源12である円筒形石英ガラス管
13から光が投射されて該反応ガス4が光化学反応を生
じ、ヒータ3によって加熱されている基板5上に薄膜が
形成される、      そして本装置では円筒形石英
ガラス管13内にづ     複数の線状ランプを配設
したものを光源として用い、該光源12を反応室1内に
設けたので、該光源12を任意の距離まで基板5に近づ
けることができ、該基板5上の光の照度を高めることが
できる。このため光、源の出力を必要以上に高めること
な(基板5上への薄膜の形成速度を速めることができる
In this device, the reaction gas 4 is supplied from the supply lower to the reaction chamber 1.
On the other hand, light is projected from a cylindrical quartz glass tube 13 serving as a light source 12 to cause a photochemical reaction in the reaction gas 4, and a thin film is formed on the substrate 5 heated by the heater 3; In this apparatus, a plurality of linear lamps arranged inside a cylindrical quartz glass tube 13 is used as a light source, and since the light source 12 is installed in the reaction chamber 1, the light source 12 can be extended to any distance between the substrate and the substrate. The illuminance of the light on the substrate 5 can be increased. Therefore, the output of the light source is not increased more than necessary (the speed of forming a thin film on the substrate 5 can be increased).

また上記薄膜形成に際し、反応生成物は上記石英ガラス
管13の表面に付着しようとするが、これば該表面に設
けられたフィルム14に付着し、該フィルム14が順次
巻き取られることによって上記石英ガラス管13表面に
は反応生成物は付着しない、また、石英ガラス管13の
回転速度に同期し、てフィルム14が動くので両者の間
でほこりは発生しない。
Further, during the formation of the thin film, the reaction product tends to adhere to the surface of the quartz glass tube 13, but it adheres to the film 14 provided on the surface, and as the film 14 is sequentially wound up, the reaction product tends to adhere to the surface of the quartz glass tube 13. No reaction products adhere to the surface of the glass tube 13, and since the film 14 moves in synchronization with the rotational speed of the quartz glass tube 13, no dust is generated between the two.

また、本実施例では反応ガス供給ノズル11とガス排出
ノズル21を円筒形石英ガラス管13を挟んで該ガラス
管13下方に設けたので、反応ガス4は、円筒形石英ガ
ラス管13と基板5との間隔力1もっとも狭く、基板5
上の光の照度がもつとも強いところを流れ、該反応ガス
4に光化学反応を速やかに起こさせることができる。ま
たこれらノズル11.21を設けることにより、反応ガ
ス4を短い距離だけ流せばよいため、反応室l内の不必
要な部分に反応ガス4が流れるのを防止できる。又、反
応ガスを短い距離を効率よく流すことができるため、反
応ガスの濃度を均一に、しかも反応ガスの光化学反応の
速度に合わせ十分な量の反応ガスを基板5上に流し込む
ことができ、薄膜の形成速度を速めることができる。
Furthermore, in this embodiment, the reactive gas supply nozzle 11 and the gas discharge nozzle 21 are provided below the cylindrical quartz glass tube 13 with the cylindrical quartz glass tube 13 in between. The spacing force 1 is the narrowest, and the substrate 5
The light flows where the illuminance of the light is high, and can cause the reaction gas 4 to undergo a photochemical reaction quickly. Further, by providing these nozzles 11, 21, the reaction gas 4 only needs to flow over a short distance, so that it is possible to prevent the reaction gas 4 from flowing into unnecessary portions within the reaction chamber 1. In addition, since the reactive gas can be efficiently flowed over a short distance, the concentration of the reactive gas can be made uniform, and a sufficient amount of the reactive gas can be flowed onto the substrate 5 in accordance with the speed of the photochemical reaction of the reactive gas. Thin film formation speed can be increased.

又、円筒形石英ガラス管13内に該ガラス管13の内壁
に沿って線状ランプを適当な間隔をおいて配置している
ので、上記ガラス管13の軸と直角な方向において基板
5上の光の照度分布はある程度均一にでき、さらに該方
向に移動テーブル19を移動させるようにしたので、該
方向の光の照度分布をより均一にでき、従って基板5上
に連続して均一なi膜を形成することができる。
Moreover, since the linear lamps are arranged at appropriate intervals along the inner wall of the cylindrical quartz glass tube 13, the linear lamps are arranged at appropriate intervals within the cylindrical quartz glass tube 13, so that the linear lamps are arranged at appropriate intervals along the inner wall of the cylindrical quartz glass tube 13. The illuminance distribution of the light can be made uniform to some extent, and since the moving table 19 is moved in this direction, the illuminance distribution of the light in that direction can be made even more uniform, and therefore a uniform i-film can be formed continuously on the substrate 5. can be formed.

また反応ガス供給ノズル11とガス排出ノズル21を円
筒形石英ガラス管13を挟んで設けたことにより、移動
テーブル19の移動方向に沿って反応ガスは流れること
になり、反応ガスの流れ方向に沿った微妙な反応ガスの
濃度変化により形成される薄膜への膜厚変化に対する影
響を回避できる。
Furthermore, by providing the reactive gas supply nozzle 11 and the gas discharge nozzle 21 with the cylindrical quartz glass tube 13 in between, the reactive gas flows along the moving direction of the moving table 19. It is possible to avoid the influence of changes in the thickness of the thin film formed due to subtle changes in the concentration of the reactant gas.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明に係る半導体製造装置によれば
、複数の線状ランプを石英ガラス管内に組み込んだもの
を光源として用い、該光源を反応室内に設けたので、基
板上の光の照度を高めて薄膜の形成速度を速めることが
でき、また上記石英ガラス管表面にフィルムを設け、こ
れを移動させ巻き取るようにしたので、゛核表面に曇り
が生ずるのを防止できる効果がある。
As described above, according to the semiconductor manufacturing apparatus according to the present invention, a plurality of linear lamps incorporated in a quartz glass tube is used as a light source, and the light source is provided in the reaction chamber, so that the illuminance of the light on the substrate is In addition, since a film is provided on the surface of the quartz glass tube and the film is moved and wound up, it is possible to prevent clouding on the surface of the core.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例による半導体製造装置の断面
側面図、第2図は第1図の■−■線断面図、第3図は従
来の半導体製造装置の断面側面図である。 1は反応室、12は光源、4は反応ガス、5は基板、1
3は石英ガラス管、14は紫外線透過フィルム、15は
フィルム巻取装置である。 なお図中同一符号は同−又は相当部分を示す。 代理ん早瀬憲−
FIG. 1 is a cross-sectional side view of a semiconductor manufacturing apparatus according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along the line -■ in FIG. 1, and FIG. 3 is a cross-sectional side view of a conventional semiconductor manufacturing apparatus. 1 is a reaction chamber, 12 is a light source, 4 is a reaction gas, 5 is a substrate, 1
3 is a quartz glass tube, 14 is an ultraviolet transmitting film, and 15 is a film winding device. Note that the same reference numerals in the figures indicate the same or equivalent parts. Acting Ken Hayase

Claims (2)

【特許請求の範囲】[Claims] (1)反応室内の反応ガスに光源からの光を投射して光
化学反応を生じさせ該反応ガス中に置かれた基板上に薄
膜を形成させる半導体製造装置において、上記光源が上
記反応室内に設けられた石英ガラス管内に複数の線状ラ
ンプが配設されてなるものであり、上記石英ガラス管の
外周面の基板側部分を覆うような状態にて紫外線透過フ
ィルムを移動させるフィルム駆動装置が設けられている
ことを特徴とする半導体製造装置
(1) In a semiconductor manufacturing apparatus that projects light from a light source onto a reaction gas in a reaction chamber to cause a photochemical reaction and form a thin film on a substrate placed in the reaction gas, the light source is provided in the reaction chamber. A plurality of linear lamps are disposed inside a quartz glass tube, and a film driving device is provided for moving an ultraviolet transmitting film so as to cover the substrate side portion of the outer peripheral surface of the quartz glass tube. Semiconductor manufacturing equipment characterized by
(2)上記石英ガラス管は回転可能になっており、上記
紫外線透過フィルムの移動速度は上記石英ガラス管の周
速度と同速であることを特徴とする特許請求の範囲第1
項記載の半導体製造装置。
(2) The quartz glass tube is rotatable, and the moving speed of the ultraviolet transmitting film is the same as the circumferential speed of the quartz glass tube.
Semiconductor manufacturing equipment as described in .
JP25344584A 1984-11-29 1984-11-29 Semiconductor manufacturing equipment Expired - Lifetime JPH0638404B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25344584A JPH0638404B2 (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25344584A JPH0638404B2 (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS61131418A true JPS61131418A (en) 1986-06-19
JPH0638404B2 JPH0638404B2 (en) 1994-05-18

Family

ID=17251494

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25344584A Expired - Lifetime JPH0638404B2 (en) 1984-11-29 1984-11-29 Semiconductor manufacturing equipment

Country Status (1)

Country Link
JP (1) JPH0638404B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866721B2 (en) * 2001-09-11 2005-03-15 Korea Advanced Institute Of Science And Technology Apparatus and method for photo-induced process

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6866721B2 (en) * 2001-09-11 2005-03-15 Korea Advanced Institute Of Science And Technology Apparatus and method for photo-induced process

Also Published As

Publication number Publication date
JPH0638404B2 (en) 1994-05-18

Similar Documents

Publication Publication Date Title
US4615294A (en) Barrel reactor and method for photochemical vapor deposition
US4597986A (en) Method for photochemical vapor deposition
JP2001137800A (en) Apparatus and method for treating substrate
JPS61131418A (en) Semiconductor manufacturing equipment
US4500565A (en) Deposition process
JPS61131426A (en) Semiconductor manufacturing equipment
JPS60128265A (en) Device for forming thin film in vapor phase
JP2004076076A (en) Apparatus and method for atmospheric-pressure plasma treatment
JPS61131421A (en) Semiconductor manufacturing equipment
JPS60212220A (en) Photochemical reaction apparatus
JPS61131428A (en) Semiconductor manufacturing equipment
JPH0513373B2 (en)
JPS61131422A (en) Semiconductor manufacturing equipment
JPH0334538A (en) Optical pumping reaction apparatus
JPS61131432A (en) Semiconductor manufacturing equipment
JPS61131427A (en) Semiconductor manufacturing equipment
JPS61131430A (en) Semiconductor manufacturing equipment
JPS61108125A (en) Semiconductor manufacturing equipment
JPS61131420A (en) Semiconductor manufacturing equipment
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS61129811A (en) Manufacturing apparatus for semiconductor
JPS61131417A (en) Semiconductor manufacturing equipment
JPS63132423A (en) Photochemical vapor deposition device
JPS61131423A (en) Semiconductor manufacturing equipment
JPS61129816A (en) Semiconductor manufacturing apparatus