JPS60128265A - Device for forming thin film in vapor phase - Google Patents

Device for forming thin film in vapor phase

Info

Publication number
JPS60128265A
JPS60128265A JP23552183A JP23552183A JPS60128265A JP S60128265 A JPS60128265 A JP S60128265A JP 23552183 A JP23552183 A JP 23552183A JP 23552183 A JP23552183 A JP 23552183A JP S60128265 A JPS60128265 A JP S60128265A
Authority
JP
Japan
Prior art keywords
excitation light
reaction
window
thin film
vapor phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23552183A
Other languages
Japanese (ja)
Inventor
Kunihiko Washio
鷲尾 邦彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP23552183A priority Critical patent/JPS60128265A/en
Publication of JPS60128265A publication Critical patent/JPS60128265A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/48Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating by irradiation, e.g. photolysis, radiolysis, particle radiation
    • C23C16/488Protection of windows for introduction of radiation into the coating chamber

Abstract

PURPOSE:To prevent an incident window for excitation light from being clouded by the resulted product of reaction sticking thereto and to enable long-term continuous operation of the reaction for forming a thin film in the stage of forming the thin film by an photochemical vapor phase deposition reaction by attaching easily exchangeable transparent bodies to the incident window for the excitation light. CONSTITUTION:Plural sample substrates 9 are placed on a rotary susceptor 10 in a reaction chamber 4 and while the substrates are heated by a heater 11, the susceptor 10 is rotated. A gaseous mixture of SiH4 and NH3 as a gaseous raw material is introduced into the chamber through an introducing pipe 12 for the gaseous raw material and excitation light is irradiated from an excitation light source 1 through a window material 3a into the chamber 4 so that Si3N4 is deposited on the substrates 9 by the photochemical vapor phase reaction of SiH4 and NH3. The resulted product of reaction sticks to the material 3a to cloud said material in this stage thus resulting in the decreased incident quantity of the excitation light and leading to difficulty in deposition reaction of Si3N4. Plural transparent cover glass 14a are attached to a glass holder 15a rotatable on the inside of the material 3a and when the window material is clouded, the holder 15a is rotated to move the fresh glass 14a to the material 3a so that the substantial excitation light is always made incident to the chamber.

Description

【発明の詳細な説明】 本発明は選定された材料からなる薄膜層を光化学的に気
相被着させる方法に係り、特に、光化学的気相被着反応
を生せしめる反応室に用いられる窓材の曇りを防止する
ようにした気相薄膜形成装置に関する0 光化学的気相被着反応を利用した薄膜形成法は・プラズ
マ反応を利用した薄膜形成法に比べて試料基板や薄膜へ
の放射線損傷を少なくでき、かつ所望の気相反応をよシ
精細に制御できることから、集積回路や太陽電池等の電
子デバイスの重要なプロセス技術として近年盛んに研究
開発がなされるようになった。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for photochemical vapor phase deposition of thin film layers made of selected materials, and more particularly to window materials used in reaction chambers in which photochemical vapor phase deposition reactions occur. Regarding a vapor-phase thin film forming apparatus designed to prevent clouding, the thin film forming method using a photochemical vapor deposition reaction is less likely to cause radiation damage to the sample substrate or thin film than the thin film forming method using a plasma reaction. In recent years, research and development has been actively conducted as an important process technology for electronic devices such as integrated circuits and solar cells because it can be used in small quantities and the desired gas phase reactions can be controlled with great precision.

すでに、シラン(8iH4)、ジシラン(Si2)11
)、アンモニア(NH3)、−酸化二望素(N20)な
どを材料ガスとして用いることによって、半導体膜や絶
縁膜が光化学的気相被着反応によシ形成できるや ようになった。さらに、Cr (CO)a 沸Mo (
C0)。
Already, silane (8iH4), disilane (Si2) 11
), ammonia (NH3), -dibenzene oxide (N20), etc. as material gases, it has become possible to form semiconductor films and insulating films by photochemical vapor phase deposition reactions. Furthermore, Cr(CO)a boiling Mo(
C0).

などの金属カルボニル化合物やAl(CHs )s +
Zn(CHs)zなどの有機金属化合物を材料ガスとし
て用いることによって、金属膜も形成できるようになっ
た。上述したごとく、半導体・絶縁体・導電体からなる
多様な電子材料の薄膜形成が可能なことから、光化学的
気相薄膜形成法の実用化にかける産業界の期待は非常に
大きいといえる。
Metal carbonyl compounds such as Al(CHs)s +
Metal films can now also be formed by using organometallic compounds such as Zn(CHs)z as material gases. As mentioned above, it is possible to form thin films of various electronic materials including semiconductors, insulators, and conductors, so it can be said that the industrial world has very high hopes for the practical application of photochemical vapor phase thin film formation methods.

しかしながら、従来のこの種の気相薄膜形成法に用いる
装置には下記の如き重大な欠点があり、その実用化が阻
まれていた。すなわち、光化学的気相被着反応により生
じた生成物が窓材にも被着し、窓材に曇りが生じ、はな
はだしくは不透明になってしまうため装置の長時間連続
動作が困輔になることである。
However, the conventional apparatus used for this type of vapor phase thin film forming method has the following serious drawbacks, which have prevented its practical application. In other words, the products generated by the photochemical vapor phase deposition reaction also adhere to the window material, causing the window material to become foggy and extremely opaque, making it difficult to operate the device continuously for a long time. It is.

その対策として、従来は窓材に特殊なオイルを塗ったり
、窓材にアルゴンガスなどの不活性なガスを吹きつけた
りしていたが、その効果があまり十分でないため、連続
動作時間の大幅な延長はできないでいた0 本発明の目的は、上述した従来の気相薄膜形成装置の有
する欠点を除去し、腿時間安定した連続動作を可能とし
た気相薄膜形成装置を提供することにある0 本発明は、サセプタと反応ガス人パ出口と励起光注入用
窓とを備えている反応室と、光源を含み前記窓から前記
反応室内に光を導く光学系とを有する気相薄膜形成装置
において、前記反応室の内部に、複数個の透明体を並べ
て設置した基体を、前記窓に近接し、かつ、前記透明体
が前記窓部に合致するように順次透明体が送られるよう
に設けである点に特徴があるO 本発明による利点の一つは、反応室と外気との気密を破
らずに長時間の連続運転ができるよう顛なるため、装置
の稼動度を大幅に高めることができ、薄膜形成に要する
コストを大きく低減することができることである0 また、本発明による他の利点は、窓材としてより光透過
度のよい高品質なものを用いても経済的にひきあうよう
になるため、例えばより短波長の光を励起光として用い
ることができ、高品質な光化学的気相被着反応を生せし
めることも可能になることである。
Conventional countermeasures have been to apply special oil to the window material or to spray inert gas such as argon gas onto the window material, but these methods are not very effective and the continuous operation time has been significantly extended. It is an object of the present invention to provide a vapor phase thin film forming apparatus which eliminates the drawbacks of the conventional vapor phase thin film forming apparatus described above and which enables stable continuous operation over time. The invention provides a vapor phase thin film forming apparatus comprising a reaction chamber equipped with a susceptor, a reaction gas outlet, and an excitation light injection window, and an optical system including a light source and guiding light from the window into the reaction chamber, A base body in which a plurality of transparent bodies are arranged side by side is provided inside the reaction chamber in a manner close to the window, and the transparent bodies are sequentially fed so that the transparent bodies match the window portions. One of the advantages of the present invention is that continuous operation can be performed for a long time without breaking the airtightness between the reaction chamber and the outside air, so the operating efficiency of the apparatus can be greatly increased. Another advantage of the present invention is that the cost required for forming a thin film can be significantly reduced.Another advantage of the present invention is that it becomes economically viable even when high-quality materials with better light transmittance are used as window materials. Therefore, for example, light with a shorter wavelength can be used as excitation light, and it is also possible to produce a high-quality photochemical vapor phase deposition reaction.

次に、この発明の気相薄膜形成装置について図面を参照
して詳細に説明するQ 図はこの発明を具現するだめの装置の一例を示すブロッ
ク図である0図において、励起光1.1から出射した励
起光2は入射側窓材3aを透過して反応室4内に入射し
、出射側窓材3bを透過して出射側パワーメータ5bで
透過光出力をモニタされる。また入射側では半透鏡6に
より励起光の一部が分岐され、入射側パワーメータ5a
によシ励起光入力がモニタされる1、透過光出力および
励起光入力の強度を示す信号出力はともにコントローラ
7に加えられ、透過率が算出されるようになっている。
Next, the vapor phase thin film forming apparatus of the present invention will be explained in detail with reference to the drawings. The emitted excitation light 2 passes through the entrance side window material 3a, enters the reaction chamber 4, and passes through the exit side window material 3b, and the transmitted light output is monitored by the exit side power meter 5b. Also, on the incident side, a part of the excitation light is branched by a semi-transparent mirror 6, and a part of the excitation light is branched by a semi-transparent mirror 6.
The excitation light input is monitored 1, and the transmitted light output and the signal output indicating the intensity of the excitation light input are both applied to the controller 7 to calculate the transmittance.

励起光2はシリンドリカルレンズ8によシ<すび状に集
光され、反応室4内に設けられた試料基板9の近傍を、
前記試料基板9にほぼ平行に入射している。試料基板9
はサセプタ10−ヒに複数枚同時に載せられるようにな
っており、サセプタ10を回転することによって、均一
な薄膜を多数の試1基板上に形成できるようにして量産
に適した構成にしである。試料基板9はサセプタ10を
介して加熱装R11によシ所望の温度にまで加熱される
ようになっている。
The excitation light 2 is focused in the shape of a strip by a cylindrical lens 8, and passes through the vicinity of the sample substrate 9 provided in the reaction chamber 4.
The light is incident almost parallel to the sample substrate 9. Sample substrate 9
A plurality of substrates can be placed on a susceptor 10-1 at the same time, and by rotating the susceptor 10, a uniform thin film can be formed on a large number of test substrates, making it suitable for mass production. The sample substrate 9 is heated to a desired temperature by a heating device R11 via a susceptor 10.

材料ガスは、反応ガス供給管12を介して反応室4に導
入され、ガス排気管13を介して減圧排気される。
The material gas is introduced into the reaction chamber 4 via the reaction gas supply pipe 12 and exhausted under reduced pressure via the gas exhaust pipe 13.

この実施例では、材料ガスとしてSiH4とNH。In this example, SiH4 and NH are used as material gases.

の混合ガスを用いるosiH,とNH3の流量比を1=
lOとし、混合ガスの圧力は8.5Torrとしである
。励起光源lとして193nmArFエキシマーレーザ
を用い、平均出力lOWの励起光を反応室4内に入射さ
せたところ、500′に7分という高い堆積速度で窒化
シリコン膜を試料基板上に被着させることができた。得
られた窒化シリコン膜を評価したところ、リーク電流A
らびに表面電荷密度が少なく、絶縁耐圧の高い誘電体膜
が得られ、その膜質は通常のプラズマCVD法で得られ
る窒化膜より格段に優れていることが判廚した。
The flow rate ratio of osiH and NH3 using a mixed gas of 1 =
The pressure of the mixed gas was 8.5 Torr. When a 193 nm ArF excimer laser was used as the excitation light source 1 and excitation light with an average output of 1 OW was introduced into the reaction chamber 4, a silicon nitride film could be deposited on the sample substrate at a high deposition rate of 500' in 7 minutes. did it. When the obtained silicon nitride film was evaluated, leakage current A
In addition, a dielectric film with low surface charge density and high dielectric strength was obtained, and the film quality was found to be significantly superior to that of a nitride film obtained by ordinary plasma CVD.

光化学的気相被着反応によシ生成した反応生成物が窓材
に被着すると、窓材の透過率が低下し、良質な薄膜を再
現性よく試料基板上に形成することが困難になるため、
図に示したごとく、この構成例では入射側窓材3a、出
射側窓材3bに近接させて励起光2に対して透明な薄い
カバーガラス14a、14bがそれぞれ設けられている
。これらカバーガラス14a、14bはカバーガラスホ
ルダーtsa、tSb上にそれぞれ複数枚取りつけられ
ており、カバーガラスホルダー158,15bを回転す
ることによって、励起光2を透過するカバーガラスを逐
次切り換えられるようになっている。不活性ガス導入口
161,16bを通じてアルゴンガスが導入されており
、アルゴンガスが前記カバーカラス14a、14bなら
びに窓材3a、3bの表面上を通って反応室4内に流入
するようになっている。これによって、光化学的気相被
着反応によって生じる生成物が窓材3a、3bならびに
カバーガラス14a、14bに被着するのをある程度阻
けるようにしている。
When the reaction products produced by the photochemical vapor deposition reaction adhere to the window material, the transmittance of the window material decreases, making it difficult to form a high-quality thin film on the sample substrate with good reproducibility. For,
As shown in the figure, in this configuration example, thin cover glasses 14a and 14b that are transparent to the excitation light 2 are provided close to the entrance side window material 3a and the exit side window material 3b, respectively. A plurality of these cover glasses 14a and 14b are mounted on cover glass holders tsa and tSb, respectively, and by rotating the cover glass holders 158 and 15b, the cover glasses that transmit the excitation light 2 can be successively switched. ing. Argon gas is introduced through the inert gas inlet ports 161 and 16b, and the argon gas flows into the reaction chamber 4 through the surfaces of the cover glasses 14a and 14b and the window materials 3a and 3b. . This makes it possible to prevent products generated by the photochemical vapor phase deposition reaction from adhering to the window materials 3a, 3b and the cover glasses 14a, 14b to some extent.

カバーガラスホルダー1EI、15b上には多数枚のカ
バーガラスを取9つけることができるので、使用中のカ
バーガラスにだとえ曇シが生じたとしても、カバーガラ
スホルダー152,15bを回転させて新だなカバーガ
ラスに切り換えて使用することによって薄膜形成を長時
間連続して行なうととができる。窓材3a 、3bは外
気と反応室4とを隔てる隔壁として用いられているため
、大きな差圧にも破損を生ずることなく耐えられるよう
に厚い部材で構成される。高い透過率を有した窓材を用
いることが必要であるだめ、一般に厚い大形の窓材は価
格が高くなるが、本発明によれば、窓材を取シはずす必
要性は従来に比べて格段に減少12、再研磨等の際に生
じる窓材の破損事故や摩耗を大巾に減らすことができる
ので、従来に比べよシ高品質な窓材を用いても経済的に
ひきあうようになる0本発明では、高価ではあるが溶融
石英よシも紫外域の光透過性を格段に高めたスブラジル
Wlと呼ばれる合成石英の一種を窓材3a 、3bとし
て用いている。窓材3a 、3bの厚みはlo+uであ
る。窓材3 a 、 3 ’bに比し、カバーガラスt
4a、14bについてはそれほど大きな強度を必要とし
ないので、カバーガラス14a、14bの肉厚は薄くて
も差しつかえなく、このため励起光2に対する吸収係数
が窓材に比してやや大きな低品質の材料を用いることが
でき、コストダウンをはかることができる。この発明を
具現する構成例では肉厚0.5闘のバイコールガラスを
用いるようにしている。
Since a large number of cover glasses can be mounted on the cover glass holders 1EI, 15b, even if the cover glasses in use become cloudy, the cover glass holders 152, 15b can be rotated. By switching to a new cover glass and using it, thin film formation can be performed continuously for a long time. Since the window materials 3a and 3b are used as partition walls separating the outside air and the reaction chamber 4, they are made of thick members so as to be able to withstand large differential pressures without damage. Since it is necessary to use a window material with high transmittance, thick and large window materials are generally more expensive, but according to the present invention, there is no need to remove the window material compared to conventional methods. 12, it is possible to greatly reduce damage and abrasion of window materials that occur during re-polishing, etc., making it more economical to use higher quality window materials than in the past. In the present invention, a type of synthetic quartz called subilium Wl, which is expensive but has much higher light transmittance in the ultraviolet region than fused silica, is used as the window materials 3a and 3b. The thickness of the window materials 3a and 3b is lo+u. Compared to the window materials 3a and 3'b, the cover glass t
Since the cover glasses 4a and 14b do not require such great strength, the thickness of the cover glasses 14a and 14b can be thin, and therefore the cover glasses 14a and 14b are made of low-quality material with a slightly larger absorption coefficient for the excitation light 2 than the window material. can be used to reduce costs. In a configuration example embodying the present invention, Vycor glass with a wall thickness of 0.5 mm is used.

以上述べたごとく、本発明によれば反応室と外気との気
密を破らずに長時間の連続運転が可能で、経済的な気相
薄膜形成法が得られる0 なお、以上の説明では本発明を具現するだめの一構成例
についてのみ述べたが、例えば励起光源1として用いた
エキシマ−レーザの代すニHgXeや ランプ!重水素ランプを用いても本発明の目的が達せら
れるなど、本発明の目的を逸脱せずに種々の構成をとる
ことが可能であることはいうまでもない0 例えば、上述の構成例では励起光2は試料基板9にほぼ
平行に入射しだが、この代りに励起光2の一部は試料基
板9上を直接朋射するようにしても良い。まだ、材料ガ
スとしては、7ラン、アンモニアに限らず他種のガス5
でも良いことはもちろんである0又、カバーガラスホル
ダに円板上のものを用いたが、他の形状、例えば帯状の
ものを用いてもよい0要は、順ぐりに新しいカッく一ガ
ラスが窓部に送られてくるようになっていればどのよう
なものでも実施例と同様の効果がある。
As described above, according to the present invention, long-term continuous operation is possible without breaking the airtightness between the reaction chamber and the outside air, and an economical method for forming a vapor phase thin film can be obtained. Although we have only described one example of the configuration of a device that embodies this, for example, the excimer laser used as the excitation light source 1 can be replaced by HgXe or a lamp! It goes without saying that it is possible to take various configurations without departing from the objective of the present invention, such as the objective of the present invention being achieved even by using a deuterium lamp. Although the light 2 is incident on the sample substrate 9 almost parallel to the sample substrate 9, a part of the excitation light 2 may be made to directly enter the sample substrate 9 instead. As for material gases, there are still 7 runs and 5 gases other than ammonia.
Of course, this is a good idea.In addition, although we used a disc-shaped cover glass holder, other shapes, such as a band-shaped one, may also be used. Any kind of material can have the same effect as the embodiment as long as it is sent to the window.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明による気相薄膜形成法を具現するだめの装置
の一構成例を示すブロック図である。 図において、1は励起光源、2け励起光、3a。 3bは窓材、4は反応室・5a・5bはパワーメータ、
6は半透鏡、7はコントローラ、8はシリンドリカル集
光レンズ、9は試料基板、1oはサセプタ、11は加熱
装置、12は反応ガス供給管、13はガス排気管、14
.a、14hはカバーガラス、15a、15bはカバー
ガラスホルダ、16a、16bは不活性ガス導入口であ
る。
The figure is a block diagram showing an example of the configuration of a device that embodies the vapor phase thin film forming method according to the present invention. In the figure, 1 is an excitation light source, 2 excitation lights, 3a. 3b is a window material, 4 is a reaction chamber, 5a and 5b are power meters,
6 is a semi-transparent mirror, 7 is a controller, 8 is a cylindrical condensing lens, 9 is a sample substrate, 1o is a susceptor, 11 is a heating device, 12 is a reaction gas supply pipe, 13 is a gas exhaust pipe, 14
.. a and 14h are cover glasses, 15a and 15b are cover glass holders, and 16a and 16b are inert gas introduction ports.

Claims (1)

【特許請求の範囲】[Claims] サセプタと反応ガス人・出口と励起光注入用窓′とを備
えている反応室と、光源を含み、前記窓から前記反応室
内に光を導く光学系とを有する気相薄膜形成装置におい
て、前記反応室の内部に、複数個の透明体を並べて設置
した基体を、前記窓に近接し、かつ、前記透明体が前記
窓部に合致するように順次透明体が送られるように設け
であることを特徴とする気相薄膜形成装置。
A vapor phase thin film forming apparatus comprising: a reaction chamber including a susceptor, a reactant gas outlet, and an excitation light injection window; and an optical system including a light source and guiding light from the window into the reaction chamber; A base body in which a plurality of transparent bodies are arranged side by side is provided inside the reaction chamber in close proximity to the window, and the transparent bodies are sequentially fed so that the transparent bodies match the window portions. A vapor phase thin film forming device characterized by:
JP23552183A 1983-12-14 1983-12-14 Device for forming thin film in vapor phase Pending JPS60128265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23552183A JPS60128265A (en) 1983-12-14 1983-12-14 Device for forming thin film in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23552183A JPS60128265A (en) 1983-12-14 1983-12-14 Device for forming thin film in vapor phase

Publications (1)

Publication Number Publication Date
JPS60128265A true JPS60128265A (en) 1985-07-09

Family

ID=16987205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23552183A Pending JPS60128265A (en) 1983-12-14 1983-12-14 Device for forming thin film in vapor phase

Country Status (1)

Country Link
JP (1) JPS60128265A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61213376A (en) * 1985-03-19 1986-09-22 Mitsubishi Electric Corp Photochemical film forming device
US4693207A (en) * 1984-12-07 1987-09-15 Sharp Kabushiki Kaisha Apparatus for the growth of semiconductor crystals
US4711790A (en) * 1985-07-17 1987-12-08 Nec Corporation Optical CVD method with a strong optical intensity used during an initial period and device therefor
US4836140A (en) * 1985-12-23 1989-06-06 Hoshin Kagaku Sangyosho Co., Ltd. Photo-CVD apparatus
FR2639474A1 (en) * 1988-11-24 1990-05-25 Canon Kk MICROWAVE PLASMA VAPOR PHASE CHEMICAL DEPOSITION APPARATUS
US6176933B1 (en) * 1998-03-30 2001-01-23 Hyundai Electronics Industries Co., Ltd. End point window assembly in an etching apparatus for fabricating semiconductor devices
US6284049B1 (en) * 1997-05-01 2001-09-04 Nec Corporation Processing apparatus for fabricating LSI devices

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4693207A (en) * 1984-12-07 1987-09-15 Sharp Kabushiki Kaisha Apparatus for the growth of semiconductor crystals
JPS61213376A (en) * 1985-03-19 1986-09-22 Mitsubishi Electric Corp Photochemical film forming device
US4839196A (en) * 1985-03-19 1989-06-13 Mitsubishi Denki Kabushiki Kaisha Photochemical film-forming method
JPH0461074B2 (en) * 1985-03-19 1992-09-29 Mitsubishi Electric Corp
US4711790A (en) * 1985-07-17 1987-12-08 Nec Corporation Optical CVD method with a strong optical intensity used during an initial period and device therefor
US4836140A (en) * 1985-12-23 1989-06-06 Hoshin Kagaku Sangyosho Co., Ltd. Photo-CVD apparatus
FR2639474A1 (en) * 1988-11-24 1990-05-25 Canon Kk MICROWAVE PLASMA VAPOR PHASE CHEMICAL DEPOSITION APPARATUS
US4995341A (en) * 1988-11-24 1991-02-26 Canon Kabushiki Kaisha Microwave plasma CVD apparatus for the formation of a large-area functional deposited film
US6284049B1 (en) * 1997-05-01 2001-09-04 Nec Corporation Processing apparatus for fabricating LSI devices
US6176933B1 (en) * 1998-03-30 2001-01-23 Hyundai Electronics Industries Co., Ltd. End point window assembly in an etching apparatus for fabricating semiconductor devices

Similar Documents

Publication Publication Date Title
US4581248A (en) Apparatus and method for laser-induced chemical vapor deposition
US5803974A (en) Chemical vapor deposition apparatus
JPH0432531B2 (en)
JPS6260467B2 (en)
JPS60128265A (en) Device for forming thin film in vapor phase
JPS60117711A (en) Forming apparatus of thin film
KR850001974B1 (en) Improved photochemical vapor deposition apparatus and method
JPS60117712A (en) Forming method of thin film
JPS63239811A (en) Optical reactor
JPH0334538A (en) Optical pumping reaction apparatus
JPS6149392B2 (en)
JPS59208065A (en) Depositing method of metal by laser
JP3174787B2 (en) Optical CVD equipment
JPH0128830B2 (en)
JPS6064426A (en) Method and device for forming vapor-phase reaction thin- film
JPS61139022A (en) Light excitation reactor
JPS5968923A (en) Thin film forming device
Gonzalez et al. Silicon oxide thin films grown by Xe2∗ excimer lamp chemical vapour deposition: the role of the substrate temperature and the window-substrate distance
JPS6128443A (en) Photochemical gaseous phase growing apparatus
JPS6393108A (en) Formation of optically pumped film
JPH01241818A (en) Device for forming light excitation film
JPH05347247A (en) Photochemical reaction device
JPS6271218A (en) Thin film forming apparatus
JPS59224118A (en) Photochemical vapor-phase reaction method
JPS61196528A (en) Thin film forming apparatus