JPS61128468A - Solid electrolyte battery - Google Patents

Solid electrolyte battery

Info

Publication number
JPS61128468A
JPS61128468A JP59249280A JP24928084A JPS61128468A JP S61128468 A JPS61128468 A JP S61128468A JP 59249280 A JP59249280 A JP 59249280A JP 24928084 A JP24928084 A JP 24928084A JP S61128468 A JPS61128468 A JP S61128468A
Authority
JP
Japan
Prior art keywords
thin film
battery
solid
solid electrolyte
positive electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59249280A
Other languages
Japanese (ja)
Inventor
Hideaki Otsuka
大塚 秀昭
Takeshi Okada
岡田 武司
Akihiko Yamaji
昭彦 山路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP59249280A priority Critical patent/JPS61128468A/en
Publication of JPS61128468A publication Critical patent/JPS61128468A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/18Cells with non-aqueous electrolyte with solid electrolyte
    • H01M6/185Cells with non-aqueous electrolyte with solid electrolyte with oxides, hydroxides or oxysalts as solid electrolytes

Abstract

PURPOSE:To decrease internal resistance and make compact by forming a battery with a negative active material which supplies lithium ions, a solid electrolyte made of a compound indicated in Li4(1-X)Zn2XGeO4 and a positive active material. CONSTITUTION:A thin film 2 of a compound indicated in Li4(1-X)Zn2XGeO4 (0.09<=X<=0.4) is formed on a positive substrate 3 prepared by sintering (Cu0.3 Sc0.1)2V2O7 by high-frequency sputtering as a solid electrolyte. A lithium metal foil serving as a negative electrode 1 is stacked on the thin film 2 and current collectors 4, 5 are arranged to form a lithium solid electrolyte battery. By forming the electrolyte 2 on the positive electrode 3 as a thin film, internal resistance of the battery is decreased. Since the thickness of the battery can be decreased, a compact, thin and light battery can be realized.

Description

【発明の詳細な説明】 〔発明の分野〕 本発明はリチウム固体電池、さらに詳しくはリチウムを
主体とする負極を有する固体電池に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a lithium solid state battery, and more particularly to a solid state battery having a lithium-based negative electrode.

〔発明の背景〕[Background of the invention]

近年、IC,Li3化が著しい電子機器への電力供給源
として小型、薄型、軽量で、かつエネルギ密度の高い電
池が望まれており、負極活物質がリチウムであるリチウ
ム固体電池が注目されている。
In recent years, there has been a demand for small, thin, lightweight, and high energy density batteries as a power supply source for ICs and electronic devices, which are becoming increasingly popular with Li3, and lithium solid-state batteries, whose negative electrode active material is lithium, are attracting attention. .

固体電池においては、さらに液漏れの心配がない、保存
性能が優れている等の利点があるが、固体電解質の導電
率が水溶液、鼻水溶液(有機)電解質等の液体電解質に
比較して小さく、電池の内部抵抗が非常に大きいという
欠点がある。この点を解決するためにはリチウムイオン
導電性のよい固体電解質が必要であり、鋭意検討された
が、充分満足できる固体電解質は得られていない。
Solid-state batteries also have the advantage of not having to worry about liquid leakage and have excellent storage performance, but the conductivity of solid electrolytes is lower than that of liquid electrolytes such as aqueous solutions and nasal solution (organic) electrolytes. The disadvantage is that the internal resistance of the battery is very high. In order to solve this problem, a solid electrolyte with good lithium ion conductivity is required, and although intensive studies have been made, a fully satisfactory solid electrolyte has not been obtained.

また固体電池は、従来正極活物質粉末に導電剤を混ぜた
ものを正極とし、これに固体電解質粉末を重ねて加圧成
形し、さらにLi箔を重ねて圧着することにより製造し
ている。このため電池光栄要素が全て固体であることに
よる特徴が電池の小型、薄型、軽量化に充分生かされて
いない欠点があった。
Furthermore, solid-state batteries have conventionally been produced by mixing a positive electrode active material powder with a conductive agent as a positive electrode, overlaying a solid electrolyte powder on the positive electrode, press-molding the positive electrode, and then overlapping and press-bonding a Li foil. For this reason, there was a drawback in that the characteristics of all battery elements being solid were not fully utilized to make the battery smaller, thinner, and lighter.

〔発明の概要〕[Summary of the invention]

本発明は上述の点に鑑みなされたものであり、固体電解
質部分の抵抗の低減化および固体電池の小型薄型化を図
った固体電池を提供することを目的とするものである。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a solid-state battery in which the resistance of the solid electrolyte portion is reduced and the solid-state battery is made smaller and thinner.

したがって本発明によるリチウム固体電池は、リチウム
イオンを供給するための負極活物質と、一般式、 Lit c s −x )Znt χGeO 4  (
0.09≦χ≦0.4)で表される化合物のWillか
らなる固体電解質および正極活物質より構成されること
を特徴とするものである。
Therefore, the lithium solid state battery according to the present invention includes a negative electrode active material for supplying lithium ions and a general formula: Lit c s -x )Znt χGeO 4 (
0.09≦χ≦0.4) and a positive electrode active material.

本発明による固体電池によれば、電解質部分を正極材料
の上に薄膜形成することにより、電池の内部抵抗を小さ
くすることができ、電池の厚さも著しく低減できる。さ
らに薄膜形成により電池が構成されることにより、池の
電子デバイスとの組合せも可能となり、その工業的価値
が大きいという利点もある。
According to the solid state battery according to the present invention, by forming the electrolyte portion as a thin film on the positive electrode material, the internal resistance of the battery can be reduced and the thickness of the battery can also be significantly reduced. Furthermore, since the battery is constructed by forming a thin film, it becomes possible to combine it with other electronic devices, which has the advantage of being of great industrial value.

〔発明の詳細な説明〕[Detailed description of the invention]

本発明をさらに詳しく説明する。 The present invention will be explained in more detail.

本発明によるリチウム固体電池は、上述のようにリチウ
ムイオンを供給するための負極活物質と、一般式、 Lia (l −X )Zng χGeO 4  (0
.09≦χ≦0.4)で表される化合物の薄膜からなる
固体電解質および正極活物質より構成されることを特徴
とするものであり、電池構成要素が全て固体である電池
である。
The lithium solid state battery according to the present invention includes a negative electrode active material for supplying lithium ions as described above, and a general formula, Lia (l −X )Zng χGeO 4 (0
.. 09≦χ≦0.4) The battery is characterized by being composed of a solid electrolyte made of a thin film of a compound expressed by the formula 09≦χ≦0.4) and a positive electrode active material, and all of the battery components are solid.

このような本発明のリチウム固体電池に用いた電解質薄
膜の組成は、一般式、 Li4 (1−x )Zn!χGeO 4  (0.0
9≦χ≦0.4)で示される。このLia c x −
x )Zn2 xGeOaはL’ia GeO4とLi
2 ZnGe04との固溶体であり、この中の一般式、
LizaZn (GeOt ) Aは、特にリシコン(
Lithium 5uper−1onic Condu
ctorの頭をとってLISICONと命名された)と
呼ばれ、高いLi導電性を有することが知られている。
The composition of the electrolyte thin film used in the lithium solid battery of the present invention is expressed by the general formula: Li4 (1-x)Zn! χGeO 4 (0.0
9≦χ≦0.4). This Lia c x -
x) Zn2 xGeOa is L'ia GeO4 and Li
2 It is a solid solution with ZnGe04, in which the general formula,
LizaZn (GeOt) A is particularly useful for lisicone (
Lithium 5upper-1onic Condu
It is known to have high Li conductivity.

さらに、この構造はγ−Lia POa構造と同じ構造
であることが知られている。
Furthermore, this structure is known to be the same as the γ-Lia POa structure.

上述のLia c i−x )Zn* χGeO a 
 (0.09≦χ≦0.4)なる組成式で示される範囲
の化合物については高周波スパッタ法や電子ビーム蒸着
法などで薄膜形成し、その後熱処理することによりリシ
コン構造の多結晶薄膜が得られる。基板温度を100℃
以下に、また比較的低電力でのスパッタや蒸着の場合熱
処理を行わなければ、薄膜は非晶質になる。
Lia c i-x ) Zn* χGeO a
For compounds within the range of the composition formula (0.09≦χ≦0.4), a polycrystalline thin film with a lithic structure can be obtained by forming a thin film by high-frequency sputtering, electron beam evaporation, etc., and then heat-treating it. . Set the substrate temperature to 100℃
In the case of sputtering or vapor deposition at relatively low power, the thin film becomes amorphous unless heat treatment is performed.

上記固溶体形薄膜の導電性については、結晶質の薄膜の
方が非晶質薄膜より高い導電率を示すが、本発明におい
ては結晶質および非晶質のいずれもを使用できる。
Regarding the conductivity of the solid solution type thin film, a crystalline thin film exhibits higher conductivity than an amorphous thin film, but both crystalline and amorphous films can be used in the present invention.

また前述の一般式において、χは0.09≦χ≦0゜4
の範囲にあるが、χが0.09より小さいと、熱処理を
行った場合リシコン構造ではなくなり、リシコンが分解
した組成の一つであるLi2 Ge03になって、導電
性が著しく低下するという欠点があり、一方χが0.4
より大きいと、熱処理を行ったとき、Li2 ZnGe
0 を相になってしまい、やはり導電性が低下するから
である。
In addition, in the above general formula, χ is 0.09≦χ≦0゜4
However, if χ is smaller than 0.09, it will no longer have a lisicone structure after heat treatment and will become Li2Ge03, which is one of the compositions in which lisicone decomposed, resulting in a disadvantage that the conductivity will be significantly reduced. Yes, while χ is 0.4
If it is larger, when heat treatment is performed, Li2ZnGe
This is because 0 becomes a phase and the conductivity decreases as well.

非晶質薄膜の場合にあっても、Li濃度の高い方が導電
性が高いが、やはりこの範囲を外れると導電率が低下す
る。
Even in the case of an amorphous thin film, the higher the Li concentration, the higher the conductivity; however, if the Li concentration is outside this range, the conductivity decreases.

次ぎに実施例によって本発明の固体電池を説明する。Next, the solid state battery of the present invention will be explained with reference to Examples.

実施例1 第1図に本発明の一実施例の断面図を示す。Example 1 FIG. 1 shows a sectional view of an embodiment of the present invention.

正極材料として導電性、焼結性が良<、Lf電池として
の正極特性の良好な(Cu(L、1Sc(Ll> t 
V 207を用いた。まずホットプレス法により、この
正極材料の焼結体を作製し、これを0.6鶴の厚さに切
断し、これを鏡面研磨して0.5 m厚の正極基板3と
した。この正極基板3を用いてこの上に高周波スパッタ
法によりLi5Zn(1,5GeOaなる組成の非晶質
電解質薄膜2を3000人の厚さで付着させ、その上に
負極1としてリチウム金属箔を重ねて電池を構成した。
It has good conductivity and sinterability as a positive electrode material, and has good positive electrode characteristics as an Lf battery (Cu(L, 1Sc(Ll> t
V 207 was used. First, a sintered body of this positive electrode material was produced by a hot pressing method, cut to a thickness of 0.6 mm, and mirror-polished to obtain a positive electrode substrate 3 having a thickness of 0.5 m. Using this positive electrode substrate 3, an amorphous electrolyte thin film 2 having a composition of Li5Zn (1,5GeOa) is deposited on the positive electrode substrate 3 to a thickness of 3000 nm by high-frequency sputtering, and a lithium metal foil is layered on top of it as the negative electrode 1. The battery was constructed.

さらに正極側の集電極4として正極基板3の裏面に導電
性ペースト(たとえば金ペースト)を塗布あるいは金の
スパッタ膜4を設け、また負極側の集電極5としてはN
i板をリチウム負極1上に積層した。極板面積は0.2
−とした。
Further, as a collector electrode 4 on the positive electrode side, a conductive paste (for example, gold paste) is applied or a gold sputtered film 4 is provided on the back surface of the positive electrode substrate 3, and as a collector electrode 5 on the negative electrode side, N
The i-plate was laminated on the lithium negative electrode 1. The electrode plate area is 0.2
−.

実施例2 実施例1と同様に(CuasScaz) 2 V 20
7基板上にLia Zn(15Ge04薄膜を高周波ス
パッタ法で形成した後、500℃で2時間熱処理を施す
ことにより電解質薄膜をリシコン層(γ−Lia PO
a構造)の結晶質薄膜に変えた。その他は実施例1と同
様に固体電池を作製した。
Example 2 Same as Example 1 (CuasScaz) 2 V 20
After forming a Lia Zn (15Ge04 thin film on a 7-substrate by high-frequency sputtering method), heat treatment was performed at 500°C for 2 hours to form an electrolyte thin film into a lysicone layer (γ-Lia PO
a structure) was changed to a crystalline thin film. A solid-state battery was otherwise produced in the same manner as in Example 1.

実施例3 電解質薄膜形成方法として高周波スパッタ法の代わりに
電子ビーム蒸着法を用いて、Li3 Zn Ge04非
晶質薄膜を(Cu(L3SCaz) 2 V t 07
基板上に作製し、それ以外は実施例1と同様な方法で固
体電池を作製した。
Example 3 A Li3ZnGe04 amorphous thin film was formed using an electron beam evaporation method instead of a high frequency sputtering method as an electrolyte thin film formation method.
A solid-state battery was produced on a substrate in the same manner as in Example 1 except for the above.

実施例4 第2図に示すような全薄膜型電池を作製した。Example 4 An all-thin film battery as shown in FIG. 2 was fabricated.

石英ガラス基板6上に正極側集電極4としてpt−Pd
のスパッタ膜を形成し、その上にさらに正極3としてC
u2 V 207蒸着膜を形成し、更にその上に高周波
スパッタ法により電解質2としてLi5ZnGeO4薄
膜を形成した。このLi3 Zn6.5 G304 ’
NN膜上上負極薄膜1としてリチウムを蒸着するととも
に、Ni薄膜を負極側集電極5として形成し、電池を形
成した。
PT-Pd is placed on the quartz glass substrate 6 as the positive collector electrode 4.
A sputtered film of C is formed on top of the sputtered film of
A u2V 207 vapor deposited film was formed, and a Li5ZnGeO4 thin film was further formed thereon as electrolyte 2 by high frequency sputtering. This Li3 Zn6.5 G304'
Lithium was deposited on the NN film as the negative electrode thin film 1, and a Ni thin film was formed as the negative electrode side collector electrode 5 to form a battery.

膜厚は正極側集電極4、正極3、電解質薄膜2、負極l
の順にそれぞれ0.1.10SO,3,3μrmとした
The film thickness is positive electrode side collector electrode 4, positive electrode 3, electrolyte thin film 2, negative electrode l
0.1.10SO, 3.3μrm, respectively.

実施例5 固体電解質として高周波スパッタ法によりLi5j4Z
nゆGeOtなる組成の亦品質薄膜を作製し、実施例1
と同様に固体電池を作製した。
Example 5 Li5j4Z was produced as a solid electrolyte by high frequency sputtering method.
A high-quality thin film with a composition of n-GeOt was prepared, and Example 1
A solid-state battery was fabricated in the same manner as above.

実施例1〜実施例5で述べた方法により作製した固体電
池の電池特性を調べた。その放電特性を第3図に示す。
The battery characteristics of the solid-state batteries produced by the methods described in Examples 1 to 5 were investigated. The discharge characteristics are shown in FIG.

放電電流は1μA、電流密度で5#A /cIaとした
。第3図中、a、b+c+d+eはそれぞれ実施例1〜
5の固体電池の放電曲線を示し、fは比較のためLig
 ZnGe04非晶質薄膜を用いて作製した固体電池の
特性を示したものである。
The discharge current was 1 μA, and the current density was 5 #A/cIa. In FIG. 3, a, b+c+d+e are respectively from Example 1 to
The discharge curve of the solid-state battery No. 5 is shown, and f is Lig for comparison.
This figure shows the characteristics of a solid-state battery manufactured using a ZnGe04 amorphous thin film.

本発明による固体電池は内部抵抗がいずれも1〜IOK
Ωの範囲であり、固体電解質部分の抵抗が薄膜化により
小さくなっていることがわかる。
The solid-state battery according to the present invention has an internal resistance of 1 to IOK.
Ω range, and it can be seen that the resistance of the solid electrolyte portion has become smaller due to the thinning of the film.

本実施例の中では、実施例1のLi 3ZnLL5 G
eO4非晶質薄膜を用いたものが最も良好な特性を示し
た。Li5ZnlL5GeOa結晶質薄膜を用いた実施
例2の場合、電解質薄膜の結晶化の際、基板である正極
(CuaaSCc、、z) t V 207が同時に熱
処理サレテ、鏡面仕上げの基板面に正極活物質の結晶粒
の大きさで凹凸ができるため、電解質薄膜に欠陥ができ
やすく、そのため放電途中で短絡したものと考えられる
。これは電池作製における薄膜を厚くするなどの工夫や
、より高温で作製する正極材料を用いることによって解
決される。
In this example, Li3ZnLL5G of Example 1
The one using an eO4 amorphous thin film showed the best characteristics. In the case of Example 2 using the Li5ZnlL5GeOa crystalline thin film, during the crystallization of the electrolyte thin film, the positive electrode (CuaaSCc,,z) t V 207, which is the substrate, was simultaneously heat-treated and crystals of the positive electrode active material were formed on the mirror-finished substrate surface. It is thought that the unevenness caused by the size of the particles tends to cause defects in the electrolyte thin film, leading to short circuits during discharge. This problem can be solved by making the thin film thicker in battery fabrication, or by using cathode materials that are fabricated at higher temperatures.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による固体電池は電解質部分
を正極材料上に薄膜により形成することにより電池の内
部抵抗を小さくすることができ、また電池の大きさも基
板の厚みを加えても0.5 n+m程度と非常に薄型に
なっており、小型軽量であるという利点がある。
As explained above, in the solid state battery according to the present invention, the internal resistance of the battery can be reduced by forming the electrolyte part as a thin film on the positive electrode material, and the size of the battery can be reduced to 0.5 even if the thickness of the substrate is added. It is very thin, about n+m, and has the advantage of being small and lightweight.

また薄膜形成によって電池が構成されることから、他の
電子デバイスとの組み合わせも可能になり、その工業的
価値は大きい。
Furthermore, since a battery is constructed by forming a thin film, it can be combined with other electronic devices, and its industrial value is great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の固体電池の断面図、第
2図は本発明による他の実施例の固体電池の断面図、第
3図は実施例に記載した固体電池の放電特性を示す図で
ある。 1 ・・・負極、 2 ・・・電解質薄膜、3 ・・・
 正極、 4 ・・・正極側集電極、5 ・・・負極側
集電極、 6 ・・・基板。 第3図
FIG. 1 is a cross-sectional view of a solid-state battery according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a solid-state battery according to another embodiment of the present invention, and FIG. 3 shows the discharge characteristics of the solid-state battery described in the example. FIG. 1... Negative electrode, 2... Electrolyte thin film, 3...
Positive electrode, 4... Positive electrode side collector electrode, 5... Negative electrode side collector electrode, 6... Substrate. Figure 3

Claims (1)

【特許請求の範囲】[Claims] (1)リチウムイオンを供給するための負極活物質と、
一般式、 Li_4_(_1_−_χ_)Zn_2χGeO_4(
0.09≦χ≦0.4)で表される化合物の薄膜からな
る固体電解質および正極活物質より構成されることを特
徴とするリチウム固体電池。
(1) A negative electrode active material for supplying lithium ions,
General formula, Li_4_(_1_−_χ_)Zn_2χGeO_4(
A lithium solid state battery comprising a solid electrolyte made of a thin film of a compound represented by the formula 0.09≦χ≦0.4) and a positive electrode active material.
JP59249280A 1984-11-26 1984-11-26 Solid electrolyte battery Pending JPS61128468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59249280A JPS61128468A (en) 1984-11-26 1984-11-26 Solid electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59249280A JPS61128468A (en) 1984-11-26 1984-11-26 Solid electrolyte battery

Publications (1)

Publication Number Publication Date
JPS61128468A true JPS61128468A (en) 1986-06-16

Family

ID=17190611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59249280A Pending JPS61128468A (en) 1984-11-26 1984-11-26 Solid electrolyte battery

Country Status (1)

Country Link
JP (1) JPS61128468A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
JP2009054596A (en) * 2008-10-30 2009-03-12 Ohara Inc Lithium-ion secondary battery, and manufacturing method thereof
JP2016192311A (en) * 2015-03-31 2016-11-10 株式会社デンソー Solid electrolyte material and lithium battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004185862A (en) * 2002-11-29 2004-07-02 Ohara Inc Lithium ion secondary battery and its manufacturing method
US8383268B2 (en) 2002-11-29 2013-02-26 Kabushiki Kaisha Ohara Lithium ion secondary battery and a method for manufacturing the same
JP2009054596A (en) * 2008-10-30 2009-03-12 Ohara Inc Lithium-ion secondary battery, and manufacturing method thereof
JP4575487B2 (en) * 2008-10-30 2010-11-04 株式会社オハラ Lithium ion secondary battery and manufacturing method thereof
JP2016192311A (en) * 2015-03-31 2016-11-10 株式会社デンソー Solid electrolyte material and lithium battery

Similar Documents

Publication Publication Date Title
EP2037527B1 (en) Lithium battery
US7186479B2 (en) Thin film battery and method of manufacture
JP5095412B2 (en) LiCoO2 deposition
KR100389655B1 (en) Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity
US7083877B2 (en) All solid state battery with coated substrate
US7410730B2 (en) Thin film battery and electrolyte therefor
WO2011128976A1 (en) Solid electrolyte material, lithium battery, and manufacturing method for solid electrolyte material
WO2011043267A1 (en) Non-aqueous electrolyte cell
JPS61126770A (en) All solid type lithium cell
JP5129530B2 (en) LiCoO2 deposition
JP2002184455A (en) Method of forming inorganic solid electrolyte thin membrane
JP3677508B2 (en) Solid electrolyte and all solid state battery using the same
WO2014132320A1 (en) All-solid ion secondary cell
Thangadurai et al. Tailoring ceramics for specific applications: a case study of the development of all-solid-state lithium batteries
JP2011108532A (en) Solid electrolyte cell, and positive electrode active material
JP5217455B2 (en) Lithium battery and method for producing lithium battery
TW202118128A (en) All-solid-state cell, positive electrode, and method for manufacturing all-solid-state cell
JP3677509B2 (en) Solid electrolyte and all solid state battery using the same
KR100756804B1 (en) Method of manufacturing electrodes for lithium secondary cell
JP2004127743A (en) Thin film battery
KR101200306B1 (en) Thin film battery having improved anode characteristics and method of manufacturing the same
JPS61128468A (en) Solid electrolyte battery
KR100495674B1 (en) A cathode thin film for all solid state battery, preparation method thereof, and lithium thin film battery using the same
CN110085917B (en) All-solid-state lithium ion battery, preparation method thereof and power utilization equipment
JP2003217580A (en) Electrode for lithium secondary battery and its manufacturing method