JPS61127678A - Manufacture of ceramic porous body - Google Patents

Manufacture of ceramic porous body

Info

Publication number
JPS61127678A
JPS61127678A JP59244632A JP24463284A JPS61127678A JP S61127678 A JPS61127678 A JP S61127678A JP 59244632 A JP59244632 A JP 59244632A JP 24463284 A JP24463284 A JP 24463284A JP S61127678 A JPS61127678 A JP S61127678A
Authority
JP
Japan
Prior art keywords
ceramic
porous body
lithium
slurry
dimensional network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59244632A
Other languages
Japanese (ja)
Other versions
JPH0575717B2 (en
Inventor
文雄 小高
博貴 山崎
山本 慧介
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP59244632A priority Critical patent/JPS61127678A/en
Publication of JPS61127678A publication Critical patent/JPS61127678A/en
Publication of JPH0575717B2 publication Critical patent/JPH0575717B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は自動車排ガス中のノや一ティキュレート捕捉材
、自動車排ガスの浄化触媒担体、その他の触媒担体、通
気性断熱材などに好適に使用される内部連通空間を有す
る三次元網状構造をなした低圧力損失の耐熱衝撃性に優
れたセラ<、り多孔体を製造する方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention has an internal communication space that is suitable for use in a material for capturing nitrates in automobile exhaust gas, a catalyst carrier for purifying automobile exhaust gas, other catalyst carriers, a breathable heat insulating material, etc. The present invention relates to a method for producing a porous material having a three-dimensional network structure, low pressure loss, and excellent thermal shock resistance.

従来より、内部連通空間を有する三次元網状構造の合成
樹脂発泡体、例えば軟質ポリウレタンフォームにセラi
yり泥漿を□付着し、これを乾燥焼成することによシ得
られたセラミック多孔体を1有する熱輻射材(通気性断
熱材)などの用途に用いるととが知られている。しかし
寿から、これらの用途に使用するにあたっては、通気抵
抗性が小さいことと同時に耐熱性及び耐熱衝撃性が重要
な物性として要求される。例えばディーゼル車排ガスの
ノf−ティキュレート捕捉材の場合、捕捉したパーティ
キュレートを燃焼除去するにあたっては、急激な温度上
昇があり、通常のディーゼル車排ガスの温度が約250
℃から1〜2分の間に1200℃あるいはそれ以上の温
度に達する場合がある。
Conventionally, synthetic resin foams with a three-dimensional network structure having internal communication spaces, such as flexible polyurethane foams, have been
It is known that a ceramic porous body obtained by depositing a dry slurry and drying and firing the same can be used for applications such as a heat radiating material (breathable heat insulating material). However, when used in these applications, heat resistance and thermal shock resistance are required as important physical properties, as well as low airflow resistance. For example, in the case of a particulate capture material for diesel vehicle exhaust gas, there is a rapid temperature rise when burning and removing the captured particulates, and the temperature of normal diesel vehicle exhaust gas is approximately 250℃.
The temperature may reach 1200°C or more within 1 to 2 minutes.

またガソリン車排ガスの温度も時として1000℃ある
いはそれ以上に上昇する場合もあシ、十分な耐熱性と耐
熱衝撃性が要求される。
Furthermore, the temperature of gasoline vehicle exhaust gas sometimes rises to 1000°C or more, so sufficient heat resistance and thermal shock resistance are required.

従来、ガソリン車排ガス浄化触媒担体の用途には、コー
ディエライト質セラミックスが耐熱性もあシ、熱膨張係
数が小さく、耐熱衝撃性も良いため利用されてきたが、
ディーゼル車排ガスのパーティキュレート捕捉材等の用
途には耐熱衝撃性不足に基づく割れや剥離が起こシやす
いため、信頼性にかけるという問題がある。即ち、コー
ディエライト質セラミックスは1300℃乃至1350
℃程度の耐熱性はあるにもかかわらず、耐熱衝撃性とし
ては900℃乃至950℃程度が限度であシ、実用上の
最高使用温度をこの付近の温度に制限せざるを得ない。
Traditionally, cordierite ceramics have been used as catalyst carriers for gasoline vehicle exhaust gas purification due to their heat resistance, low coefficient of thermal expansion, and good thermal shock resistance.
When used as a particulate capture material for diesel vehicle exhaust gas, etc., there is a problem with reliability because cracking and peeling tend to occur due to insufficient thermal shock resistance. That is, cordierite ceramics have a temperature of 1300°C to 1350°C.
Although it has a heat resistance of approximately 0.degree. C., its thermal shock resistance is limited to approximately 900.degree. C. to 950.degree. C., and the maximum practical use temperature must be limited to around this temperature.

特に内部連通空間を有する三次元網状構造の合成樹脂発
泡体にセラミック泥漿を付着し、これを乾燥焼成するこ
とによシ得られるセラミック多孔体の場合は、押出し成
形の過程でセラミック粒子を配向させることによシ望ま
しい方向の熱膨張係数を低減するととのできるハニカム
構造品とは異なシ、熱膨張係数が等方性であるため耐熱
衝撃性に及ぼす熱膨張係数の影響は大きい。
In particular, in the case of ceramic porous bodies obtained by adhering ceramic slurry to a synthetic resin foam with a three-dimensional network structure having internal communication spaces and drying and firing it, the ceramic particles are oriented during the extrusion process. Unlike honeycomb structural products, which can reduce the coefficient of thermal expansion particularly in a desired direction, the coefficient of thermal expansion has a large influence on the thermal shock resistance because the coefficient of thermal expansion is isotropic.

ガソリン車排ガス浄化触媒担体としてはコーディエライ
ト質ハニカム構造品がほぼ問題の力い品質レベルにおる
のに対し、三次元網状構造のセラミック多孔体の場合に
は耐熱衝撃性の点でハニカム構造品に比べて劣シ、実用
上問題が残る。
Cordierite honeycomb structured products are of almost questionable quality as exhaust gas purification catalyst carriers for gasoline vehicles, whereas honeycomb structured products are superior in terms of thermal shock resistance in the case of ceramic porous bodies with a three-dimensional network structure. It is inferior to the previous model, and there remain problems in practical use.

この点を改良するため、本発明者らはコーディエライト
よシ熱膨張係数が小さく、耐熱衝撃性が良いと考えられ
るリチウム−アルミノ珪酸塩を原料として内部連通空間
を有する三次元網状構造セラ2ツク多孔体を作成した。
In order to improve this point, the present inventors used lithium-aluminosilicate as a raw material, which has a smaller coefficient of thermal expansion than cordierite and is thought to have good thermal shock resistance, to create a three-dimensional network structure Cera 2 with internal communication spaces. A porous material was created.

しかしながら、リチウム−アルミノ珪酸塩にバインダー
、解膠剤などの副原料を添加し、水を加えて作成したセ
ラミック泥漿に内部連通空間を有する三次元網状構造の
合成樹脂発泡体を浸漬してセラミック泥漿を付着し、余
剰の泥漿を遠心力、あるいは通気によシ除去し、乾燥焼
成する通常のセラミック多孔体作成法では、セラ(ツク
泥漿が合成樹脂発泡体に対し付着むらを起こして目づま
シを生じやすく、同一嵩密度において圧力損失が高く、
機械的強度は低いものしか得られたいという問題点があ
った。
However, ceramic slurry is created by immersing a synthetic resin foam with a three-dimensional network structure with internal communication spaces into a ceramic slurry made by adding auxiliary materials such as a binder and a deflocculant to lithium-aluminosilicate and adding water. In the usual method of making porous ceramic materials, the excess slurry is removed by centrifugal force or aeration, and then dried and fired. The pressure drop is high at the same bulk density.
There was a problem that only low mechanical strength was desired.

発明の概要 本発明者らは、上記事情に鑑み、コーディエライト材質
の内部連通空間を有する三次元網状構造セラミック多孔
体の自動車排ガス中の74−ティキ嘉レート捕捉材や自
動車排ガス浄化触媒担体等への応用について検討した結
果、これら用途の要求特性に対し、耐熱性を多少犠牲に
しても耐熱衝撃性を向上することが製品特性としてバラ
ンスが取れ、a金的な性能向上につながることを見出し
、このため更に前記構造のセラミック多孔体について研
究を重ねた結果、コーディエライトよシ耐熱性は多少劣
るものの、熱膨張係数が小さく、耐熱衝撃性に優れたり
チウム−アルミノ珪酸塩を主原料とするセラミック材料
を用いる場合は耐熱衝撃性を200℃も改良できること
を見出した。
SUMMARY OF THE INVENTION In view of the above circumstances, the present inventors have developed a material for capturing 74-tikilate in automobile exhaust gas, a catalyst carrier for purifying automobile exhaust gas, etc., which is made of a three-dimensional network structure ceramic porous body made of cordierite material and having an internal communication space. As a result of considering the applications for these applications, we found that improving thermal shock resistance, even at the expense of some heat resistance, is a balanced product characteristic and leads to improved performance. Therefore, as a result of further research on ceramic porous bodies with the above structure, it was found that although the heat resistance is somewhat inferior to that of cordierite, it has a small coefficient of thermal expansion and is excellent in thermal shock resistance. It has been found that thermal shock resistance can be improved by as much as 200° C. when using a ceramic material of

また、リチウム−アルz)珪酸塩を原料として前記構造
のセラミック多孔体を製造する場合、合成樹脂発泡体へ
のセライックの付着むらが生成し、内部連通空間部に目
づまシを発生して圧力損失を増大し、一方において機械
的強度も低下するという問題が生じたが、この点を解決
すべく鋭意検討をすすめた結果、カオリナイト、セリサ
イト、モンモリロナイト、トスダイトなどを主原料とす
る粘土をリチウム−アルミノ珪酸塩に添加したセラi、
り泥漿を使用することによシ改良できることを見出し、
本発明をかすに至ったものである。
In addition, when producing a porous ceramic body with the above structure using lithium-alz)silicate as a raw material, uneven adhesion of ceramic to the synthetic resin foam occurs, causing blockages in the internal communication space and causing pressure. The problem arose of increased loss and, on the other hand, a decrease in mechanical strength.As a result of intensive study to solve this problem, we developed clays whose main raw materials are kaolinite, sericite, montmorillonite, and tosudite. Cera i added to lithium-aluminosilicate,
discovered that it could be improved by using a slurry.
This is what led to the inventive concept.

発明の構成 以下、本発明につき更に詳しく説明する。′本発明に係
るセラミック多孔体の製造方法は、内部連通空間を有す
る三次元網状構造の合成樹脂発泡体を基材とし、これを
セラミックの泥漿に浸漬して、前記合成樹脂発泡体にセ
ラミックを付着せしめたのち、乾燥し焼成して三次元網
状構造のセラミック多孔体を製造する方法において、前
記セラミック泥漿の原料としてリチウム−アルミノ珪酸
塩75〜95重量部にカオリナイト、セリサイト、モン
モリロナイト、トスダイトなどから選ばれる少なくとも
1種を主成分とする粘土25〜5重量部を配合したセラ
ミック原料を使用するよりにしたものである。
Structure of the Invention The present invention will be explained in more detail below. 'The method for manufacturing a ceramic porous body according to the present invention uses a synthetic resin foam having a three-dimensional network structure having internal communication spaces as a base material, immersing it in ceramic slurry, and applying ceramic to the synthetic resin foam. In the method of manufacturing a ceramic porous body having a three-dimensional network structure by adhering, drying and firing, 75 to 95 parts by weight of lithium-aluminosilicate, kaolinite, sericite, montmorillonite, and tosudite are added as raw materials for the ceramic slurry. It is preferable to use a ceramic raw material mixed with 25 to 5 parts by weight of clay whose main component is at least one selected from the following.

こζで、セラミック多孔体原料となる合成樹脂発泡体と
しては、内部連通空間を有する三次元網状構造のもので
あれはいずれのものでもよく、例えば軟質ポリウレタン
フォーム、特にセル膜のない軟質ポリウレタンフォーム
を好適に使用し得る。
In this case, the synthetic resin foam used as the raw material for the ceramic porous body may be any one having a three-dimensional network structure with internal communication spaces, such as flexible polyurethane foam, especially flexible polyurethane foam without a cell membrane. can be suitably used.

本発明は、この合成樹脂発泡体をセラミック泥漿に浸漬
し、発泡体にセラミック泥漿を付着させるものであるが
、この場合セラミック泥漿の組成として、リチウム−ア
ルミノ珪酸塩75〜95重量部にカオリナイト、セリサ
イト、モンモリロナイト、トスダイトなどを主成分とす
る粘土25〜5重量部を添加して作成したセラミック原
料土を用いるものである。このセラミック泥漿は、この
セラミック原料土を水に分散させるものであるが、セラ
ばツク泥漿中にはポリビニルアルコール、カルボキシメ
チルセルロースなどのバインダー、ケイ酸ナトリウムな
どの解膠剤を配合することができる。セラミック泥漿の
粘度は、目的とするセラミック多孔体のセルの大きさ等
に応じ、水の添加量を加減して調整することができる。
In the present invention, this synthetic resin foam is immersed in a ceramic slurry to adhere the ceramic slurry to the foam. In this case, the composition of the ceramic slurry is 75 to 95 parts by weight of lithium-aluminosilicate and kaolinite. A ceramic raw material soil prepared by adding 25 to 5 parts by weight of clay whose main components are sericite, montmorillonite, tosudite, etc. is used. This ceramic slurry is made by dispersing this ceramic raw material soil in water, and a binder such as polyvinyl alcohol or carboxymethyl cellulose, or a deflocculant such as sodium silicate may be added to the ceramic slurry. The viscosity of the ceramic slurry can be adjusted by adjusting the amount of water added depending on the size of the cells of the intended ceramic porous body.

次いでこのセラミック泥漿に三次元網状構造の合成樹脂
発泡体を浸漬し引き上げた後、余剰の泥漿を遠心力また
は通気などにより除去し、乾燥する。この場合、所定量
のセラミック泥漿が三次元網状構造の合成樹脂発泡体に
付着するまでこの操作を繰シ返すことができる。次に、
所定量のセラミック泥漿が付着した合成樹脂発泡体を乾
燥した後これを炉に入れ、1220〜1380℃の間の
好適ガ焼成温度で焼成することによシ、前記合成樹脂発
泡体に対応したセル構造の内部連通空間を有する三次元
網状構造のセラミック多孔体を得ることができる。
Next, a synthetic resin foam having a three-dimensional network structure is immersed in this ceramic slurry and pulled up. Excess slurry is then removed by centrifugal force or aeration, and the foam is dried. In this case, this operation can be repeated until a predetermined amount of ceramic slurry adheres to the three-dimensional network-structured synthetic resin foam. next,
After drying the synthetic resin foam to which a predetermined amount of ceramic slurry has adhered, it is placed in a furnace and fired at a suitable firing temperature between 1220 and 1380°C to form cells corresponding to the synthetic resin foam. A ceramic porous body having a three-dimensional network structure having internal communication spaces can be obtained.

とζでリチウム−アルミノ珪酸塩としては、リチウムに
対するアルミニウムの割合が酸化物換算ノ重量比とし”
CAt20./L120 =:13.0〜4.0、また
シリカの量が45饅〜75%のものが好ましく、リチウ
ム−アルミノ珪酸塩としてペタライト、リチウム−フェ
ルスパー、スポジュメンなどが使用できる。
As a lithium-aluminosilicate with and ζ, the ratio of aluminum to lithium is the weight ratio in terms of oxide.
CAt20. /L120 =: 13.0 to 4.0, and the amount of silica is preferably 45 to 75%, and petalite, lithium feldspar, spodumene, etc. can be used as the lithium-aluminosilicate.

また、カオリナイト、セリサイト、モンモリロナイト、
トスダイトなどを主成分とする粘土としては本節粘土、
蛙目粘土、あるいは各種陶石あるいはそれらの水簸物(
水で洗って可溶成分を除去したもの)などが使用できる
Also, kaolinite, sericite, montmorillonite,
Clays whose main ingredients include tosudite are Honbushi clay,
Frog-eye clay or various pottery stones or their elutriated products (
(washed with water to remove soluble components) can be used.

発明の効果 本発明のセラミック多孔体の製造方法によれば、上述し
たようにセラミック泥漿のセラミック原料としてリチウ
ム−アルミノ珪酸塩75〜95重量部に粘土、好適には
カオリナイト、セリサイト、モンモリロナイト、トスダ
イト々どを主原料とする粘土25〜5重量部を添加して
作成したセラミック原料土を用いたことによυ、目づま
シが少なく圧力損失及び機械的強度が改良され、しかも
低熱膨張性で側熱衝撃性に優れたセラミック多孔体を製
造することができ、このため本発明によって得られたセ
ラミック多孔体は、特にディーゼル車排ガス中の7や一
ティキュレート捕捉材あるいはガソリン車排ガス浄化触
媒担体としての用途に好適に使用でき、また同様の温度
変化速度の大きい条件で使用されるその他の触媒担体や
通気性を有する熱輻射材などの用途に用いることができ
る。
Effects of the Invention According to the method for producing a ceramic porous body of the present invention, as described above, 75 to 95 parts by weight of lithium-aluminosilicate and clay, preferably kaolinite, sericite, montmorillonite, By using ceramic raw material soil made by adding 25 to 5 parts by weight of clay whose main raw material is tosudite, it has less blockage, improved pressure loss and mechanical strength, and has low thermal expansion. Therefore, the ceramic porous body obtained by the present invention can be used as a trapping material for 7 and 1 ticulates in diesel vehicle exhaust gas or as a gasoline vehicle exhaust gas purification catalyst. It can be suitably used as a carrier, and can also be used as other catalyst carriers used under similar conditions with a high rate of temperature change, as a heat radiating material with air permeability, and the like.

以下、本発明の実施例と比較例を示すが、本発明は下記
の実施例に制限されるものでは力い。
Examples and comparative examples of the present invention will be shown below, but the present invention is not limited to the following examples.

〔実施例、比較例〕[Example, comparative example]

第1表に示すセラミック原料±100重量部に対し、ポ
リビニルアルコール4.5重量部、珪酸ナトリウム0.
2重量部、シリカダル4.5重量部および適量の水を添
加して低粘性のセラミック泥漿を作成した。1インチあ
たシセル数が20個の−辺が10cInの立方体形状を
有するセル膜のない三次元網状構造の軟質ポリウレタン
フォームをとの泥漿に含浸した。
To ±100 parts by weight of the ceramic raw materials shown in Table 1, 4.5 parts by weight of polyvinyl alcohol and 0.5 parts by weight of sodium silicate.
A low viscosity ceramic slurry was prepared by adding 2 parts by weight, 4.5 parts by weight of silica dal, and an appropriate amount of water. A flexible polyurethane foam having a three-dimensional network structure without a cell membrane and having a cube shape with 20 cells per inch and 10 cIn sides was impregnated with the slurry.

余分な泥漿を遠心分離機によシ除去し、十分に乾燥した
。適量のセラミックが付着するまでこの操作を繰シ返し
た。次いで、上下両面を除く側面にセラミック泥漿を塗
布し、乾燥した。乾燥品は1280℃で1時間焼成を行
なってセラミック多孔体を得た。焼成品から一辺が5c
Inの立方体を切シ出して、風速3m/秒での圧力損失
を測定したのち、圧縮強度を測定した。さらに−辺が1
0cInの焼成品を一定温度に保った電気炉に一時間放
置したのち取り出し、室温に放置する試験法により耐熱
衝撃性試験を実施した。その結果、クラックが入らなか
った場合には温度を50℃引き上げて同様な方法で耐熱
衝撃性試験を行なった。これらの結果を第1表に示す。
Excess slurry was removed using a centrifuge and thoroughly dried. This operation was repeated until the appropriate amount of ceramic was deposited. Ceramic slurry was then applied to the sides except the top and bottom and allowed to dry. The dried product was fired at 1280° C. for 1 hour to obtain a ceramic porous body. 5c per side from fired product
A cube of In was cut out, pressure loss at a wind speed of 3 m/sec was measured, and then compressive strength was measured. Furthermore - side is 1
A thermal shock resistance test was carried out using a test method in which a fired product of 0 cIn was left in an electric furnace kept at a constant temperature for one hour, and then taken out and left at room temperature. As a result, if no cracks were found, the temperature was raised by 50° C. and a thermal shock resistance test was conducted in the same manner. These results are shown in Table 1.

また比較のため、前記と同様にして、セラミック原刺土
としてコーディエライトを用い、試験サンプルを作成し
、同様ガ評価を行なった。結果を第2表に示す。
For comparison, a test sample was prepared using cordierite as the original ceramic clay in the same manner as described above, and the same evaluation was conducted. The results are shown in Table 2.

第1,2表の結果から、リチウム−アルミノ珪酸塩と粘
土を主原料とすることによシ耐熱衝撃性が200℃も向
上することがわかった。また、リチウム−アルミノ珪酸
塩を原料とする場合、セラミック泥漿の付着むらが生じ
やすく、このため所定の嵩比重を得るためにセラミック
泥漿の付着回数を重ねるに従って目づまシが激しくなシ
、圧力損失が増大するが、粘土を添加するととによシ目
づまシが改善され、圧力損失が顕著に改善されることが
わかった。更に、粘土の配合量が多くなると機械的強度
が改善されるが、配合量が多くカシすぎると耐熱衝撃性
が不良になる傾向がみられた。
From the results shown in Tables 1 and 2, it was found that by using lithium-aluminosilicate and clay as the main raw materials, the thermal shock resistance was improved by as much as 200°C. In addition, when lithium-aluminosilicate is used as a raw material, uneven adhesion of ceramic slurry tends to occur, and as a result, as the number of times of adhesion of ceramic slurry increases to obtain a predetermined bulk specific gravity, clogging becomes more severe and pressure loss occurs. However, it was found that the addition of clay improved the problem of crackling and markedly improved the pressure loss. Furthermore, as the amount of clay blended increases, the mechanical strength is improved, but if the amount blended is too large and the clay is too stiff, there is a tendency for the thermal shock resistance to become poor.

Claims (1)

【特許請求の範囲】 1、内部連通空間を有する三次元網状構造の合成樹脂発
泡体を基材とし、これをセラミックの泥漿に浸漬して、
前記合成樹脂発泡体にセラミックを付着せしめたのち、
乾燥し、焼成して、三次元網状構造のセラミック多孔体
を製造する方法において、前記セラミック泥漿の原料と
して、リチウム−アルミノ珪酸塩75〜95重量部に粘
土25〜5重量部を添加して作成したセラミック原料土
を用いることを特徴とする低圧力損失の耐熱衝撃性に優
れたセラミック多孔体の製造方法。 2、リチウム−アルミノ珪酸塩として、リチウムに対す
るアルミニウムの割合がAl_2O_3/Li_2O=
3.0〜4.0であり、かつシリカの含有量が45〜7
5%であるものを用いた特許請求の範囲第1項記載のセ
ラミック多孔体の製造方法。 3、粘土として主成分がカオリナイト、セリサイト、モ
ンモリロナイト、トスダイトから選ばれる少なくとも1
種であるものを用いた特許請求の範囲第1項又は第2項
記載のセラミック多孔体の製造方法。
[Claims] 1. A synthetic resin foam with a three-dimensional network structure having an internal communication space is used as a base material, and this is immersed in a ceramic slurry,
After attaching ceramic to the synthetic resin foam,
In the method of producing a ceramic porous body having a three-dimensional network structure by drying and firing, the ceramic slurry is prepared by adding 25 to 5 parts by weight of clay to 75 to 95 parts by weight of lithium-aluminosilicate as a raw material for the ceramic slurry. A method for producing a ceramic porous body with low pressure loss and excellent thermal shock resistance, characterized by using ceramic raw material soil. 2. As a lithium-aluminosilicate, the ratio of aluminum to lithium is Al_2O_3/Li_2O=
3.0 to 4.0, and the silica content is 45 to 7
5% of the ceramic porous body according to claim 1. 3. At least one clay whose main component is selected from kaolinite, sericite, montmorillonite, and tosudite
A method for producing a porous ceramic body according to claim 1 or 2, using a seed.
JP59244632A 1984-11-21 1984-11-21 Manufacture of ceramic porous body Granted JPS61127678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59244632A JPS61127678A (en) 1984-11-21 1984-11-21 Manufacture of ceramic porous body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59244632A JPS61127678A (en) 1984-11-21 1984-11-21 Manufacture of ceramic porous body

Publications (2)

Publication Number Publication Date
JPS61127678A true JPS61127678A (en) 1986-06-14
JPH0575717B2 JPH0575717B2 (en) 1993-10-21

Family

ID=17121637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59244632A Granted JPS61127678A (en) 1984-11-21 1984-11-21 Manufacture of ceramic porous body

Country Status (1)

Country Link
JP (1) JPS61127678A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210079A (en) * 1987-02-25 1988-08-31 住友化学工業株式会社 Manufacture of ceramic porous body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63210079A (en) * 1987-02-25 1988-08-31 住友化学工業株式会社 Manufacture of ceramic porous body

Also Published As

Publication number Publication date
JPH0575717B2 (en) 1993-10-21

Similar Documents

Publication Publication Date Title
US4399052A (en) Activated carbonaceous honeycomb body and production method thereof
JP2578176B2 (en) Porous ceramic honeycomb filter and method for producing the same
JP4906177B2 (en) Honeycomb monolithic structure of porous ceramic materials and use as a filter for particles
US6238618B1 (en) Production of porous mullite bodies
US6699429B2 (en) Method of making silicon nitride-bonded silicon carbide honeycomb filters
KR930012633A (en) High porosity cordierite body and its manufacturing method
CA2787909C (en) Filter used for filtering molten metal and preparation method thereof
US4921616A (en) Alveolar ceramic filters for high melting metals
JP2010502547A (en) Cordierite honeycomb body having high strength and substantially no microcrack and manufacturing method
US4277376A (en) Process for the manufacture of a monolithic support for catalysts suitable for use in controlling carbon monoxide emissions
JPH058148B2 (en)
US20050146066A1 (en) Porous ceramic and method for production thereof
EP1500637A1 (en) Porous ceramic and method for production thereof
JPS61127678A (en) Manufacture of ceramic porous body
JP2651170B2 (en) Ceramics porous body
JPH0633194B2 (en) Method for producing low thermal expansion ceramic porous body
JPH0212910B2 (en)
JPH09202671A (en) Production of silicon carbide-based honeycomb filter
JPH0254301B2 (en)
JPH0779935B2 (en) Cordierite gas filter and manufacturing method thereof
JPS6153179A (en) Manufacture of ceramic porous body
JPS60241917A (en) Purifying body of exhaust gas
JP3170850B2 (en) Ceramic porous body
JPS5820903B2 (en) Manufacturing method of activated alumina extrusion molded product
JPH0523584A (en) Adsorptive ceramic porous element and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees