JPS61127117A - Method for forming polycrystalline semiconductor thin film - Google Patents

Method for forming polycrystalline semiconductor thin film

Info

Publication number
JPS61127117A
JPS61127117A JP59248343A JP24834384A JPS61127117A JP S61127117 A JPS61127117 A JP S61127117A JP 59248343 A JP59248343 A JP 59248343A JP 24834384 A JP24834384 A JP 24834384A JP S61127117 A JPS61127117 A JP S61127117A
Authority
JP
Japan
Prior art keywords
thin film
crystal grains
film
polycrystalline
semiconductor thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59248343A
Other languages
Japanese (ja)
Inventor
Takefumi Ooshima
大嶋 健文
Hisao Hayashi
久雄 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59248343A priority Critical patent/JPS61127117A/en
Publication of JPS61127117A publication Critical patent/JPS61127117A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/0242Crystalline insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02441Group 14 semiconducting materials
    • H01L21/0245Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02488Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02496Layer structure
    • H01L21/02502Layer structure consisting of two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02494Structure
    • H01L21/02513Microstructure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To obtain a polycrystalline thin film having large crystal grains by forming on a predetermined substrate a semiconductor thin film to be divided into crystal grains by heat treatment, heat-treating the thin film, then superposing thereon a second semiconductor thin film, implanting a predetermined ion, and performing heat treatment. CONSTITUTION:A polycrystalline Si thin film 3 of a predetermined shape is formed on the SiO2 film on a quartz substrate 1, annealed in N2 at 1,000 deg.C thereby to be divided into a large number of crystal grins 8. This structure is covered with a resist 9 and lapped to planarize the surface of the crystal grains, thereafter the resist is removed and a polycrystalline film 10 is superposed thereon. Then, Si<+> is implanted to change the film 10 into an amorphous Si layer 11 except the lowermost portion thereof. When annealing is performed at 600 deg.C, the crystal grains 8 become a seed and a polycrystalline Si film 7 recrystrallizes. The size of the crystal grains of this polycrystalline Si thin film is larger than the conventional ones, and with this thin film, a thin film semiconductor device having a good characteristic can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多結晶半導体薄膜の形成方法に関するものであ
って、結晶粒の大きい多結晶シリコン膜を絶縁体基板上
に形成するのに用いて最適なものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for forming a polycrystalline semiconductor thin film, which method is most suitable for forming a polycrystalline silicon film with large crystal grains on an insulating substrate. It is something.

従来の技術 従来、結晶粒の大きい多結晶シリコン膜を絶縁体基板上
に形成するためには次のような方法が用いられている。
2. Description of the Related Art Conventionally, the following method has been used to form a polycrystalline silicon film with large crystal grains on an insulating substrate.

すなわち、第3A図に示すように、まず例えば石英基板
1上に形成されているSiO□膜2上にLPCVD法に
より多結晶シリコン膜3を被着形成し、次いでSt+等
をイオン注入することによりこの多結晶シリコン膜3を
非晶質化させて第3B図に示すように非晶質シリコン膜
4を形成した後、600℃程度の温度でアニールを行う
ことにより固相成長による再結晶化を行う。この再結晶
の際には、第3B図に示すように、まず非晶質シリコン
膜4中に核5が形成され、次いでこの核5を基にして矢
印方向に結晶化が進行する。その結果、第3C図に示す
ように、最初に形成した多結晶シリコン膜3よりも粒径
が大きい結晶粒6を有する多結晶シリコン膜7が形成さ
れる。
That is, as shown in FIG. 3A, a polycrystalline silicon film 3 is first deposited on a SiO□ film 2 formed on a quartz substrate 1 by the LPCVD method, and then St+ or the like is ion-implanted. After amorphizing this polycrystalline silicon film 3 to form an amorphous silicon film 4 as shown in FIG. 3B, recrystallization by solid phase growth is performed by annealing at a temperature of about 600°C. conduct. During this recrystallization, as shown in FIG. 3B, a nucleus 5 is first formed in the amorphous silicon film 4, and then crystallization progresses in the direction of the arrow based on this nucleus 5. As a result, as shown in FIG. 3C, a polycrystalline silicon film 7 having crystal grains 6 having a larger grain size than the initially formed polycrystalline silicon film 3 is formed.

この方法によれば、粒径が比較的大きい結晶粒6を得る
ことができるが、この方法では非晶質シリコン膜4中に
核5がランダムに形成されるので、従来よりも粒径がさ
らに大きい結晶粒6を得ることは難しい。従って、上記
多結晶シリコン膜7を用いて薄膜トランジスタ(TPT
)を構成する場合、移動度をより高くして特性を向上さ
せることは難しい。
According to this method, crystal grains 6 having a relatively large grain size can be obtained, but since the nuclei 5 are randomly formed in the amorphous silicon film 4 in this method, the grain size is even larger than that of the conventional method. It is difficult to obtain large crystal grains 6. Therefore, using the polycrystalline silicon film 7, thin film transistor (TPT)
), it is difficult to improve the characteristics by increasing the mobility.

なおTPTに関する先行文献としては、日本応用物理学
会学術講演会予稿集、14p−A−4〜14p−A−6
(1984)が挙げられる。
Prior literature regarding TPT includes the proceedings of the Japan Society of Applied Physics Academic Conference, 14p-A-4 to 14p-A-6.
(1984).

発明が解決しようとする問題点 本発明は、上述の問題にかんがみ、従来の多結晶半導体
薄膜の形成方法が有する上述のような欠点を是正した多
結晶半導体薄膜の形成方法を提供することを目的とする
Problems to be Solved by the Invention In view of the above-mentioned problems, an object of the present invention is to provide a method for forming a polycrystalline semiconductor thin film that corrects the above-mentioned drawbacks of conventional methods for forming a polycrystalline semiconductor thin film. shall be.

問題点を解決するための手段 本発明に係る多結晶半導体薄膜の形成方法は、熱処理に
より結晶粒に分断可能な第1の半導体薄膜(例えば多結
晶シリコン膜3)を所定の基板(例えば石英基板1)上
に形成する工程と、熱処理を行うことにより上記第1の
半導体薄膜を分断させて結晶粒(例えばシリコンの結晶
粒8)を形成する工程と、上記結晶粒を被覆する第2の
半導体薄膜(例えば多結晶シリコン膜10)を形成する
工程と、上記第2の半導体薄膜に所定のイオン(例えば
Si’ )をイオン注入することにより非晶質の半導体
層(例えば非晶質シリコン層11)を形成する工程と、
熱処理を行うことにより上記非晶質の半導体層を上記結
晶粒を種結晶として同相エピタキシャル成長させる工程
とをそれぞれ具備している。
Means for Solving the Problems The method for forming a polycrystalline semiconductor thin film according to the present invention involves depositing a first semiconductor thin film (for example, a polycrystalline silicon film 3) that can be divided into crystal grains by heat treatment on a predetermined substrate (for example, a quartz substrate). 1) A step of forming a semiconductor thin film on top, a step of dividing the first semiconductor thin film by heat treatment to form crystal grains (for example, silicon crystal grains 8), and a second semiconductor covering the crystal grains. An amorphous semiconductor layer (for example, the amorphous silicon layer 11 ),
and a step of performing in-phase epitaxial growth of the amorphous semiconductor layer using the crystal grains as seed crystals by performing heat treatment.

実施例 実施例を述べる前に本発明を案出するに至った背景を述
べる。すなわち、本発明者等は、石英基板等の上に膜厚
が100〜300人程度の多結晶シリコン膜を形成し、
次いでこの多結晶シリコン膜をエツチングにより所定形
状(アイランド状)とした後、N2雰囲気において10
00℃で数時間アニールを行うと、この多結晶シリコン
膜が微小な結晶粒に分断される現象を観察した。従って
、この結晶粒を種結晶として再結晶を行えば、従来に比
べて結晶粒の粒径が大きい多結晶シリコン膜が得られる
との考えに至ったものである。なお上述のように多結晶
シリコン膜が結晶粒に分断される現象は、一種の二次的
結晶粒成長であり、これは表面エネルギーを最小化する
ために起こるものと考えられる。
Embodiments Before describing embodiments, the background behind the invention of the present invention will be described. That is, the present inventors formed a polycrystalline silicon film with a thickness of about 100 to 300 nm on a quartz substrate or the like,
Next, this polycrystalline silicon film was etched into a predetermined shape (island shape), and then etched for 10 minutes in an N2 atmosphere.
When annealing was performed at 00° C. for several hours, a phenomenon was observed in which this polycrystalline silicon film was divided into minute crystal grains. Therefore, we have come up with the idea that if recrystallization is performed using these crystal grains as seed crystals, a polycrystalline silicon film with larger crystal grain sizes than before can be obtained. Note that the phenomenon in which a polycrystalline silicon film is divided into crystal grains as described above is a type of secondary crystal grain growth, and this is thought to occur in order to minimize surface energy.

以下本発明に係る多結晶半導体薄膜の形成方法を多結晶
シリコンTPTの製造に適用した一実施例につき図面を
参照しながら説明する。なお以下の第1A図〜第1L図
においては、第3A図〜第3C図と同一部分には同一の
符号を付し、必要に応じてその説明を省略する。
An embodiment in which the method for forming a polycrystalline semiconductor thin film according to the present invention is applied to manufacturing a polycrystalline silicon TPT will be described below with reference to the drawings. In the following FIGS. 1A to 1L, the same parts as in FIGS. 3A to 3C are denoted by the same reference numerals, and the explanation thereof will be omitted if necessary.

まず第1A図に示すように、石英基板1上にSing膜
2を被着形成し、次いでこの5iOz膜2上に膜厚が1
00〜300人程度の多結晶シリコン膜3をLPCVD
法により被着形成する。
First, as shown in FIG. 1A, a Sing film 2 is deposited on a quartz substrate 1, and then a film thickness of 1 is deposited on this 5iOz film 2.
LPCVD polycrystalline silicon film 3 of about 00 to 300
Adhesion is formed by the method.

次に上記多結晶シリコン膜3の所定部分をエツチング除
去して、第1B図に示すように所定形状とする。
Next, a predetermined portion of the polycrystalline silicon film 3 is removed by etching to obtain a predetermined shape as shown in FIG. 1B.

次にN2雰囲気中において1000℃で数時間アニール
を行う。このアニールにより、上記多結晶シリコン膜3
は、第1C図に示すように多数の結晶粒8に分断される
Next, annealing is performed at 1000° C. for several hours in an N2 atmosphere. By this annealing, the polycrystalline silicon film 3
is divided into many crystal grains 8 as shown in FIG. 1C.

次に第1D図に示すように、上記結晶粒8を覆うように
してレジスト9を全面に塗布する。
Next, as shown in FIG. 1D, a resist 9 is applied to the entire surface so as to cover the crystal grains 8.

次にレジスト9を所定厚さだけラッピングにより研削し
て、第1E図に示すように、各結晶粒8の表面を平坦化
する。
Next, the resist 9 is ground by lapping to a predetermined thickness to flatten the surface of each crystal grain 8, as shown in FIG. 1E.

次にレジスト9を除去した後、第1F図に示すように全
面に例えば膜厚800人の多結晶シリコン膜10を被着
形成する。
After removing the resist 9, a polycrystalline silicon film 10 having a thickness of, for example, 800 wafers is deposited over the entire surface as shown in FIG. 1F.

次に上記結晶粒8に実質的に損傷を与えないような条件
で上記多結晶シリコン膜10にSio等のイオン注入を
行うことにより、第1G図に示すように、この多結晶シ
リコン膜10をその最下部を除いて非晶質シリコン層1
1とした後、600℃程度の温度でアニールを行う。こ
のアニールにより、上記非晶質シリコン層11は上記結
晶粒8を種結晶として固相エピタキシャル成長により再
結晶し、その結果、第1H図に示すように多結晶シ・リ
コン膜7が形成される。この再結晶の様子を詳述すると
、第1F図に示す状態においては、第2A図に示すよう
に多結晶シリコン膜10中の結晶粒6の粒径は小さいが
、アニールにより、結晶粒8を種結晶として固相エピタ
キシャル成長による再結晶が起きて次第に大きな結晶粒
へと成長するため、第1H図に示す状態においては、第
2B図に示すように、多結晶シリコン膜7中の結晶粒6
の大きさは極めて大きくな る。
Next, by implanting ions such as Sio into the polycrystalline silicon film 10 under conditions that do not substantially damage the crystal grains 8, this polycrystalline silicon film 10 is formed as shown in FIG. 1G. Amorphous silicon layer 1 except for its bottom part
1, and then annealing is performed at a temperature of about 600°C. By this annealing, the amorphous silicon layer 11 is recrystallized by solid phase epitaxial growth using the crystal grains 8 as seed crystals, and as a result, a polycrystalline silicon film 7 is formed as shown in FIG. 1H. To explain this recrystallization in detail, in the state shown in FIG. 1F, the grain size of the crystal grains 6 in the polycrystalline silicon film 10 is small as shown in FIG. 2A, but due to annealing, the crystal grains 8 are Since recrystallization occurs by solid-phase epitaxial growth as a seed crystal and gradually grows into larger crystal grains, in the state shown in FIG. 1H, as shown in FIG. 2B, the crystal grains 6 in the polycrystalline silicon film 7
becomes extremely large.

次に第11図に示すように、この多結晶シリコン膜7を
エツチングにより所定形状とした後、全面ニS i O
2膜12及びDOPO5膜13(不純物をドープした多
結晶シリコン膜)を順次被着形成し、次いでこれらのD
OPO3膜13及びSiO□膜12の所定部分を順次エ
ツチング除去して、第1J図に示すように所定形状のD
OPO3膜から成るゲート電極14及び所定形状のSi
O□膜から成るゲート絶縁膜15を形成する。
Next, as shown in FIG. 11, after etching this polycrystalline silicon film 7 into a predetermined shape, the entire surface is etched with SiO.
2 film 12 and DOPO5 film 13 (polycrystalline silicon film doped with impurities) are deposited in sequence, and then these D
Predetermined portions of the OPO3 film 13 and the SiO□ film 12 are sequentially removed by etching to form a predetermined shape
Gate electrode 14 made of OPO3 film and Si of a predetermined shape
A gate insulating film 15 made of an O□ film is formed.

次に第1K図に示すように、全面にPSG膜16を被着
形成した後、1000°C程度の温度でアニールを行う
ことにより上記PSG膜1膜中6中まれているリン(P
)を多結晶シリコン膜7に拡散させて、n″″型のソー
ス領域17及びドレイン領域18を形成する。
Next, as shown in FIG. 1K, after forming a PSG film 16 on the entire surface, annealing is performed at a temperature of about 1000°C.
) is diffused into the polycrystalline silicon film 7 to form an n″″ type source region 17 and drain region 18.

この後、第1L図に示すように、PSG膜16の所定部
分をエツチング除去して開口16a。
Thereafter, as shown in FIG. 1L, a predetermined portion of the PSG film 16 is removed by etching to form an opening 16a.

16bを形成し、次いでこれらの開口16a。16b and then these openings 16a.

16bを通じて^2から成る電極19.20を被着形成
して、目的とするnチャネル多結晶シリコンTPTを完
成させる。
Electrodes 19 and 20 made of ^2 are deposited through the electrodes 16b to complete the intended n-channel polycrystalline silicon TPT.

上述の実施例によれば、第1B図に示す工程において所
定のアニールを行うことにより多結晶シリコン膜3を分
断させて得られたシリコンの結晶粒8の上部を研削して
平坦化した後、全面に多結晶シリコン膜10を形成し、
次いでこの多結晶シリコン膜lOにSt”をイオン注入
することにより非晶質シリコン層11を形成し、この後
アニールを行うことによりこの非晶質シリコン層11を
上記結晶粒8を種結晶として同相エピタキシャル成長さ
せているので、得られる多結晶シリコン膜7中の結晶粒
6の大きさを既述のように従来に比べて大きくすること
ができる。従って、この多結晶シリコン膜7を用いて形
成された上述の実施例によるTPTは、キャリアの移動
度が高くて特性が極めて良好である。
According to the above-described embodiment, in the step shown in FIG. 1B, after the upper portions of the silicon crystal grains 8 obtained by dividing the polycrystalline silicon film 3 by performing a predetermined annealing are ground and flattened, A polycrystalline silicon film 10 is formed on the entire surface,
Next, an amorphous silicon layer 11 is formed by ion-implanting St'' into this polycrystalline silicon film lO, and then annealing is performed to form this amorphous silicon layer 11 in the same phase using the crystal grains 8 as seed crystals. Since epitaxial growth is performed, the size of the crystal grains 6 in the resulting polycrystalline silicon film 7 can be made larger than in the conventional method, as described above. The TPT according to the above embodiment has high carrier mobility and extremely good characteristics.

以上本発明を実施例につき説明したが、本発明は上述の
実施例に限定されるものではなく、本発明の技術的思想
に基づく種々の変形が可能である。
Although the present invention has been described above with reference to embodiments, the present invention is not limited to the above-described embodiments, and various modifications can be made based on the technical idea of the present invention.

例えば、上述の実施例においては、第1E図に示す工程
において研削により結晶粒8の表面を平坦化したが、第
1C図に示す工程終了後に多結晶シリコン膜10を形成
し、次いで第1F図〜第1H図のいずれかの工程におい
て平坦化を行うことも可能である。また上述の実施例に
おいては、結晶粒8をレジスト9で被覆した後に研削す
ることにより平坦化を行ったが、例えばレジスト9を形
成後にこのレジスト9とシリコンの結晶粒8とのエツチ
ング速度をそろえた後に反応性イオンエツチング(RI
 E)等を行うことにより平坦化することも可能である
。さらに必要に応して多結晶シリコン膜3の代わりに、
熱処理により結晶粒に分断可能な他の種類の半導体薄膜
を用いることも可能である。また石英基板1の代わりに
、ガラス基板等を用いることも可能である。
For example, in the above embodiment, the surface of the crystal grain 8 was flattened by grinding in the step shown in FIG. 1E, but after the step shown in FIG. It is also possible to perform planarization in any of the steps shown in FIGS. Further, in the above-described embodiment, the crystal grains 8 were coated with a resist 9 and then ground to achieve flattening. After that, reactive ion etching (RI)
It is also possible to flatten the surface by performing E) or the like. Furthermore, if necessary, instead of the polycrystalline silicon film 3,
It is also possible to use other types of semiconductor thin films that can be broken into grains by heat treatment. Further, instead of the quartz substrate 1, it is also possible to use a glass substrate or the like.

発明の効果 本発明に係る多結晶半導体薄膜の形成方法によれば、結
晶粒の大きさが従来に比べて大きい多結晶半導体薄膜を
形成することができる。従って、この多結晶半導体薄膜
を用いて、特性が良好な薄膜半導体装置を形成すること
が可能である。
Effects of the Invention According to the method for forming a polycrystalline semiconductor thin film according to the present invention, it is possible to form a polycrystalline semiconductor thin film in which the size of crystal grains is larger than that of the conventional method. Therefore, using this polycrystalline semiconductor thin film, it is possible to form a thin film semiconductor device with good characteristics.

【図面の簡単な説明】[Brief explanation of the drawing]

第1A図〜第1L図は本発明に係る多結晶半導体薄膜の
形成方法を多結晶シリコンTPTの製造に適用した一実
施例を工程順に示す断面図、第2A図及び第2B図は多
結晶シリコン膜の分断により形成された結晶粒を種結晶
として大きな結晶粒が形成される様子を説明するための
第1F図及び第1H図に対応する拡大断面図、第3A図
〜第3C図は従来の多結晶シリコン膜の形成方法を工程
順に示す断面図である。 なお図面に用いた符号において、 1・・=−・・−−−−−m−・−石英基板2−−−−
−・・・−−−−−−−−−−−5i O□膜3 、7
 、10−−−−−−・−・−多結晶シリコン膜5−−
−−−・・・・−・−・−核 6 、8−・−・・−−一一−−−−−結晶粒11−−
−−−−−−−・・・−・−非晶質シリコン層14−−
−−−−−−−−・・−・・ゲート電極15−〜−−−
・・−−一−−−−−−−−−ゲート絶縁膜17・・−
・−−−−−−一・・−・−ソース領域1 B−−−−
−−・−−一−−−−−−−−−ドレイン領域である。
1A to 1L are cross-sectional views showing step-by-step an embodiment in which the method for forming a polycrystalline semiconductor thin film according to the present invention is applied to the production of polycrystalline silicon TPT, and FIGS. 2A and 2B are cross-sectional views of polycrystalline silicon TPT. The enlarged cross-sectional views corresponding to FIGS. 1F and 1H, and FIGS. 3A to 3C are for explaining how large crystal grains are formed using crystal grains formed by dividing the film as seed crystals, and FIGS. 3A to 3C are conventional FIG. 3 is a cross-sectional view showing a method for forming a polycrystalline silicon film in order of steps. In addition, in the symbols used in the drawings, 1..=-..--m-.-quartz substrate 2--
−・・・−−−−−−−−−−5i O□ film 3, 7
, 10-----Polycrystalline silicon film 5--
−−−・・−・−・−Nuclei 6, 8−・−・・−−11−−−−−Crystal grain 11−−
−−−−−−−・・・−・−Amorphous silicon layer 14−−
−−−−−−−−・・−・Gate electrode 15−−−−−
・・−−1−−−−−−−−Gate insulating film 17・・−
・--------1...-- Source region 1 B----
--------------This is the drain region.

Claims (1)

【特許請求の範囲】[Claims]  熱処理により結晶粒に分断可能な第1の半導体薄膜を
所定の基板上に形成する工程と、熱処理を行うことによ
り上記第1の半導体薄膜を分断させて結晶粒を形成する
工程と、上記結晶粒を被覆する第2の半導体薄膜を形成
する工程と、上記第2の半導体薄膜に所定のイオンをイ
オン注入することにより非晶質の半導体層を形成する工
程と、熱処理を行うことにより上記非晶質の半導体層を
上記結晶粒を種結晶として固相エピタキシャル成長させ
る工程とをそれぞれ具備することを特徴とする多結晶半
導体薄膜の形成方法。
a step of forming on a predetermined substrate a first semiconductor thin film that can be divided into crystal grains by heat treatment; a step of dividing the first semiconductor thin film by performing heat treatment to form crystal grains; and a step of forming crystal grains by performing heat treatment. a step of forming a second semiconductor thin film covering the second semiconductor thin film, a step of forming an amorphous semiconductor layer by implanting predetermined ions into the second semiconductor thin film, and a step of forming an amorphous semiconductor layer by performing heat treatment. A method for forming a polycrystalline semiconductor thin film, comprising the steps of solid-phase epitaxial growth of a high-quality semiconductor layer using the crystal grains as seed crystals.
JP59248343A 1984-11-24 1984-11-24 Method for forming polycrystalline semiconductor thin film Pending JPS61127117A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59248343A JPS61127117A (en) 1984-11-24 1984-11-24 Method for forming polycrystalline semiconductor thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59248343A JPS61127117A (en) 1984-11-24 1984-11-24 Method for forming polycrystalline semiconductor thin film

Publications (1)

Publication Number Publication Date
JPS61127117A true JPS61127117A (en) 1986-06-14

Family

ID=17176672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59248343A Pending JPS61127117A (en) 1984-11-24 1984-11-24 Method for forming polycrystalline semiconductor thin film

Country Status (1)

Country Link
JP (1) JPS61127117A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627012A1 (en) * 1988-02-10 1989-08-11 France Etat PROCESS FOR DEPOSITING A LARGE GRAIN POLYCRYSTALLINE LAYER, LAYER OBTAINED AND TRANSISTOR PROVIDED WITH SUCH A LAYER
EP0339741A2 (en) * 1988-04-28 1989-11-02 ENVEC Mess- und Regeltechnik GmbH + Co. Process of manufacturing a polycrystalline semiconductor resistance of silicon on a silicon substrate
JPH01289240A (en) * 1988-05-17 1989-11-21 Seiko Epson Corp Formation of soi
JPH0311618A (en) * 1989-06-08 1991-01-18 Canon Inc Crystalline semiconductor film and forming method thereof
JPH0370123A (en) * 1989-08-10 1991-03-26 Canon Inc Formation of crystalline semiconductor film

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2627012A1 (en) * 1988-02-10 1989-08-11 France Etat PROCESS FOR DEPOSITING A LARGE GRAIN POLYCRYSTALLINE LAYER, LAYER OBTAINED AND TRANSISTOR PROVIDED WITH SUCH A LAYER
EP0339741A2 (en) * 1988-04-28 1989-11-02 ENVEC Mess- und Regeltechnik GmbH + Co. Process of manufacturing a polycrystalline semiconductor resistance of silicon on a silicon substrate
JPH01289240A (en) * 1988-05-17 1989-11-21 Seiko Epson Corp Formation of soi
JPH0311618A (en) * 1989-06-08 1991-01-18 Canon Inc Crystalline semiconductor film and forming method thereof
JPH0370123A (en) * 1989-08-10 1991-03-26 Canon Inc Formation of crystalline semiconductor film

Similar Documents

Publication Publication Date Title
JP2002329667A (en) Method for crystallizing silicon thin film and method for manufacturing thin film transistor
KR970006723B1 (en) Formation of polycrystalline silicon thin films with large grain
JP3240719B2 (en) Semiconductor thin film crystal growth method
JPH08102543A (en) Crystallization method and manufacture of thin film transistor using its method
JPS61127117A (en) Method for forming polycrystalline semiconductor thin film
JP3220864B2 (en) Method for manufacturing semiconductor device
JPS61119079A (en) Manufacture of thin film transistor
JPH03104210A (en) Manufacture of semiconductor device
JP2550968B2 (en) Crystallization method of semiconductor thin film
JPH0541519A (en) Thin-film transistor and its manufacture
JPH0468770B2 (en)
JPH0752715B2 (en) Method for forming polycrystalline silicon thin film
JP3141909B2 (en) Semiconductor device manufacturing method
JPS61116821A (en) Formation of single crystal thin film
JPH0360043A (en) Manufacture of semiconductor thin film and manufacture of thin film transistor using the semiconductor thin film
JPH02283073A (en) Semiconductor device and manufacture thereof
JPS6248015A (en) Solid phase growth of semiconductor layer
JPS63307776A (en) Thin-film semiconductor device and manufacture thereof
JPH0488643A (en) Manufacture of polycrystalline silicon semiconductor device
JPH0547660A (en) Solid growth method for semiconductor thin film
JP2592984B2 (en) Manufacturing method of silicon thin film
JPH03200319A (en) Formation of poly-crystalline silicon
JPS60176241A (en) Manufacture of semiconductor substrate
JPH05144730A (en) Manufacture of semiconductor device
JPS6248014A (en) Solid phase growth of semiconductor layer