JPS61125725A - Electric discharge machine - Google Patents

Electric discharge machine

Info

Publication number
JPS61125725A
JPS61125725A JP24805584A JP24805584A JPS61125725A JP S61125725 A JPS61125725 A JP S61125725A JP 24805584 A JP24805584 A JP 24805584A JP 24805584 A JP24805584 A JP 24805584A JP S61125725 A JPS61125725 A JP S61125725A
Authority
JP
Japan
Prior art keywords
machining
signal
electrode
short
condition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24805584A
Other languages
Japanese (ja)
Inventor
Tetsuro Ito
哲朗 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP24805584A priority Critical patent/JPS61125725A/en
Publication of JPS61125725A publication Critical patent/JPS61125725A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H1/00Electrical discharge machining, i.e. removing metal with a series of rapidly recurring electrical discharges between an electrode and a workpiece in the presence of a fluid dielectric
    • B23H1/02Electric circuits specially adapted therefor, e.g. power supply, control, preventing short circuits or other abnormal discharges
    • B23H1/024Detection of, and response to, abnormal gap conditions, e.g. short circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To prevent damage of electrode and restore interpole to normal condition rapidly by preventing abnormal short-circuiting by removing sludge by controlling speed of separation of electrode from a work to be machined based on output of an interpole condition discriminating means. CONSTITUTION:When short-circuiting occurs, a short-circuiting signal SB becomes 1, and an adding signal of frequency coincident with unstable degree from a pulse generator 106 whose frequency is controlled by an output signal SA of a counter 26 is input through an AND gate 105 out of two gates 104 and 105 into an address counter 101. This signal is high frequency in unstable condition and it is low frequency in stable condition. When short-circuiting is removed and the short-circuiting signal SB becomes zero, a counter 101 starts substraction and when the counter shows zero, that is, the back locus comes to the initial position, substraction is stopped. Therefore, machining content becomes unstable and interpole condition is deteriorated, and when short- circuiting occurs, a wire electrode starts to retire to the machining start point along the machining locus up to the time at a speed corresponding to the machining condition just before, and break of the wire electrode can effectively be prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、電極と被加工物間で放電を発生させ、この
放電エネルギで被加工物を切削加工する放電加工装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an electrical discharge machining device that generates electrical discharge between an electrode and a workpiece, and uses the discharge energy to cut the workpiece.

〔従来の技術〕[Conventional technology]

従来、この種の放電加工装置には、被加工物を棒状電離
で穴加工するものと、被加工物にあらかじめドリルなど
であけた紡孔にワイヤ電極t−X通させ、この被加工物
とワイヤ電極を相対的に移動させて被加工物を切断加工
するものとがある。
Conventionally, this type of electrical discharge machining equipment has two types of electrical discharge machining equipment: one that processes a hole in a workpiece by rod-shaped ionization, and the other that uses a wire electrode t-x to pass through a spindle drilled in the workpiece in advance. There is a method in which a workpiece is cut by relatively moving a wire electrode.

以下、この放′Ml、加工装置の概要を第7図に示すワ
イヤ電極使用の放電加工装置を例に説明する。
Hereinafter, an outline of this electric discharge machining apparatus will be explained by taking as an example an electric discharge machining apparatus using a wire electrode shown in FIG.

第7図において、lは被加工物で、加工開始時、紡孔1
aに通されたワイヤ電極2との間に絶縁性の液3を供給
介在させている。
In Fig. 7, l is the workpiece, and at the start of processing, the spinning hole 1
An insulating liquid 3 is supplied and interposed between the wire electrode 2 passed through a.

上記絶縁性の液3を以下加工液と記述する。加工液は、
タンク4からポンプ5で、被加工′@1とワイヤを也2
の間隙(離間間隙)にノズル6によシ噴射される。
The above-mentioned insulating liquid 3 will be hereinafter referred to as a processing liquid. The processing fluid is
From the tank 4 to the pump 5, the workpiece'@1 and the wire 2
It is sprayed by the nozzle 6 into the gap (separation gap).

被加工物1とワイヤ電極2との間の相対運動は、被加工
物lを載せているテーブル11の移動により行われる。
The relative movement between the workpiece 1 and the wire electrode 2 is performed by moving the table 11 on which the workpiece 1 is placed.

テーブル11Fi、Y軸駆動モータ13とX軸モータ1
2により駆動される。以上の構成により、被加工物1と
電極2の相対運動は前述のX、Y軸平面内に於て2次元
平面の運動となる。
Table 11Fi, Y-axis drive motor 13 and X-axis motor 1
2. With the above configuration, the relative movement between the workpiece 1 and the electrode 2 becomes a two-dimensional plane movement within the aforementioned X and Y axis planes.

ワイヤ1vL極2は、ワイヤ供給リール7により供給さ
れ、下部ワイヤガイド8A、被加工物1中を通過して上
部ガイド8BKiIL、を気エネルギ給竜部9を介して
、ワイヤ巻取り兼テンションローラ10により巻取られ
る。上記X、Y軸の駆動モータ12,13の駆動及び制
御を行う制御装置14は、数値制御装置(NC制鐸装置
)や倣い装置あるいは、tX機を用いた側聞装置が用い
られている。′ル気エネルギを供給する加工電源18は
1例′えば、直流電源15a1スイツチング素子15b
The wire 1vL pole 2 is supplied by the wire supply reel 7, passes through the lower wire guide 8A, the workpiece 1, the upper guide 8BKiIL, and the wire winding/tension roller 10 via the air energy supply dragon part 9. It is wound up by. As the control device 14 that drives and controls the drive motors 12 and 13 for the X and Y axes, a numerical control device (NC control device), a copying device, or a side track device using a tX machine is used. For example, the processing power supply 18 that supplies air energy includes a DC power supply 15a1 and a switching element 15b.
.

電流制限抵抗15c及び前記スイッチング素子15bを
制御する制(財)回路15dによって構成されている。
It is composed of a current limiting resistor 15c and a control circuit 15d that controls the switching element 15b.

次に従来装置の動作について説明する。加工電源15か
らは高周波パルス電圧が被加工物1とワイヤー極2間に
印加され、1つのパルスによる放電爆発により被加工物
1の一部を溶融飛散させる。
Next, the operation of the conventional device will be explained. A high-frequency pulse voltage is applied between the workpiece 1 and the wire pole 2 from the machining power supply 15, and a part of the workpiece 1 is melted and scattered by a discharge explosion caused by one pulse.

この場合、極間は高温のためガス化及びイオン化してい
るため1次のパルス電圧を印加するまでには一定の休止
時間を必要とし、この休止時間が短か過ぎると極間が充
分に絶縁回復していないうちに、再び同一場所に放電が
集中しワイヤ電極2の溶断を発生させる。
In this case, the gap between the electrodes is gasified and ionized due to the high temperature, so a certain pause time is required before applying the primary pulse voltage, and if this pause time is too short, the gap between the electrodes is not sufficiently insulated. Before recovery occurs, the discharge concentrates again at the same location, causing the wire electrode 2 to melt.

従って、通常の加工電源では被加工物の種類、板厚等に
依り加工電源15の休止時間等の電気条件をワイヤ電極
切れを生じさせない程度の充分余裕を持った条件で加工
するのが普通でおる。故に、加工速度は理論的限界値よ
り相当低くならざるを得す、更にワイヤ電極2が均一で
なく太さが変化する場合、もしくはワイヤの一部に突起
やキズ等がわり放電が集中した場合にはワイヤ電極2の
溶断は避けられない。
Therefore, with a normal machining power source, depending on the type of workpiece, plate thickness, etc., it is normal to set the electrical conditions such as the down time of the machining power source 15 with enough margin to prevent the wire electrode from breaking. is. Therefore, the machining speed has to be considerably lower than the theoretical limit value.Furthermore, if the wire electrode 2 is not uniform and its thickness changes, or if there are protrusions or scratches on a part of the wire and the discharge is concentrated. In this case, melting of the wire electrode 2 is unavoidable.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上のように従来のワイヤカット放電加工装置では、ワ
イヤ電極2の断線を引き起さないようにするため、加工
電源15の出力エネルギーを少なくする等して、仮に放
電の集中がワイヤ電極2の一点に集中しても断線しない
ようにしてい友ため、加工速度が著しく低いという問題
点があった。
As described above, in order to prevent the wire electrode 2 from breaking, in the conventional wire-cut electrical discharge machining apparatus, the output energy of the machining power supply 15 is reduced, etc., so that the concentration of electrical discharge is reduced to the wire electrode 2. The problem was that the machining speed was extremely low because the wires were not broken even if they were concentrated on one point.

そこで、従来、加工状態の良否あるいは電極の損傷直前
状態を判別し、この判別結果に基づいて自動的に正常加
工状態に復帰させあるいは電極の損傷を回避させるよう
な安全対策を施して、加工速度を低下させないようKす
ることが行なわれている。
Therefore, in the past, safety measures were taken to determine whether the machining condition was good or not, or whether the electrode was about to be damaged, and based on the results of this determination, automatically return to the normal machining condition or avoid damage to the electrode, thereby increasing the machining speed. K is applied so as not to reduce the value.

この場合、加工状態の良否あるいはワイヤ電極の断線の
直前状態を判別するのに最も一般的な手段は、上記の極
間電圧値の平均値を観測することである。すなわち、平
均電圧値が低い時は、極間インピーダンスが低い場合で
あって、短絡あるいはスラッジとか加工粉の滞留により
、放電のための絶縁破壊が起りやすくなシ放蒐集中(ワ
イヤ切断の最大要因ンが発生していることを示す。
In this case, the most common means for determining whether the machining condition is good or not or whether the wire electrode is about to break is to observe the average value of the voltage between the electrodes. In other words, when the average voltage value is low, the impedance between the electrodes is low, and there is a concentration of discharge (the main cause of wire breakage) where dielectric breakdown due to discharge is likely to occur due to short circuits or accumulation of sludge or machining powder. Indicates that an error is occurring.

しかし、狭ギャップでの加工(精度の良い加工に不可決
)においては、正常な極間状態でも短絡が頻発するので
、この短絡を検知して安全対策を施していたのでは、や
はり加工能率が著しく低下するという問題点があった。
However, when machining with narrow gaps (unnecessary for high-precision machining), short circuits occur frequently even under normal machining conditions, so detecting these short circuits and taking safety measures would still reduce machining efficiency. There was a problem in that it decreased significantly.

この発明はかかる問題点を解決するためになされたもの
で、加工速度を低下させることなく適確に加工状態の良
否を判別し、電極の損傷事故を未然に防止することので
きる放電加工装置を得ることを目的とする。
This invention was made to solve these problems, and provides an electric discharge machining device that can accurately determine whether the machining condition is good or bad without reducing the machining speed, and can prevent electrode damage accidents. The purpose is to obtain.

〔問題点を解決するための手段〕[Means for solving problems]

この発明にかかる放電加工装置は、電極と被加工物間に
パルス電圧を印加してから当該両者の対向する極間に放
電が発生するまでの漏れ電流を検出する検出手段および
この検出出力に基づいて極間状態を判別する極間状態判
別手段を設け、この極間状態判別手段の出力に基づいて
、上記電極が被加工物から離隔する速度を制御する制御
手段を備えたものである。
The electrical discharge machining apparatus according to the present invention is based on a detection means for detecting a leakage current from the time when a pulse voltage is applied between an electrode and a workpiece until a discharge occurs between opposing electrodes, and based on the detection output of the detection means. The apparatus is provided with a gap state determining means for determining a gap state between the machining electrodes and a control means for controlling the speed at which the electrode is separated from the workpiece based on the output of the gap state determining means.

〔作用〕[Effect]

この発8AKおける制御手段は、極間状態判別手段から
異常判別信号を受けたときには、電極を加工位置から高
速度で離隔させて、極間の悪化要因であるスラッジを排
除して異常短絡を解消し、正常判別信号を受けたときに
は低速度で離隔させて、不必要に離隔量が大きくならな
いようKする。
When the control means in this output 8AK receives an abnormality determination signal from the gap state determination means, it moves the electrode away from the processing position at high speed, eliminates the sludge that is a cause of deterioration of the gap, and eliminates the abnormal short circuit. However, when a normality determination signal is received, they are separated at a low speed so that the separation amount does not become unnecessarily large.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示す概要図セあり、符号
1〜15は上記従来装置と全く同一のものである。16
は加工電源15によシ極間に供給されるパルス電流を検
出するための電流検出器、17は制御指令信号発生装置
で、前記電流検出器16からの検出電流工および極間電
圧Vgを入力とし、制御装置14、加工電源15などに
制御指令信号を供給するように構成されている。
FIG. 1 is a schematic diagram showing an embodiment of the present invention, and reference numerals 1 to 15 are the same as those of the conventional device described above. 16
1 is a current detector for detecting the pulse current supplied between the electrodes by the machining power source 15; 17 is a control command signal generator, into which the detected current from the current detector 16 and the voltage Vg between the electrodes are input; It is configured to supply control command signals to the control device 14, processing power source 15, and the like.

第2図は、タイムチャートであって、上記第1図記載の
回路中の電流検出器16より得られた電流波彫工及びこ
れよシ微少電流を含め電流の有無を検出し、1.0のデ
ィジタル信号とした整形信号8r、極間電圧信号Vgを
スレッショルド電圧Voにて、無負荷状態か放電中か(
判別した信号Svおよび上記の信号S*、Svより得た
矢の2信号SU、SDを示している。すなわち、電流が
流れているが、放電していない信号Suは、論理式8U
= Sv −Srとあられされ、漏れ電流がパルス印加
中に存在することを示す。また、信号SDは、論理式 
5D=SV−81とあられされ、パルス印加中に全く無
電流状態であることを示している。
FIG. 2 is a time chart that detects the presence or absence of current, including the current wave carving and minute current obtained from the current detector 16 in the circuit shown in FIG. The shaping signal 8r as a digital signal and the inter-electrode voltage signal Vg are set at the threshold voltage Vo to determine whether it is in a no-load state or during discharging (
Two arrow signals SU and SD obtained from the determined signal Sv and the above-mentioned signals S* and Sv are shown. In other words, the signal Su through which current is flowing but not discharging is expressed by the logical formula 8U.
= Sv - Sr, indicating that leakage current exists during pulse application. In addition, the signal SD is expressed by the logical formula
5D=SV-81, indicating that there is no current at all during pulse application.

第3図は、第2図のタイムチャートに記載した信号群S
!、 Sv、 8u、 SDを得るための漏れ電流検出
手段18としての回路構成例でおる。電流検出器16の
電流信号は波形整形回路19により、整形信号S!とな
って電流の有無を示す信号となる。
Figure 3 shows the signal group S described in the time chart of Figure 2.
! , Sv, 8u, This is an example of a circuit configuration as a leakage current detection means 18 for obtaining SD. The current signal of the current detector 16 is converted into a shaped signal S! by the waveform shaping circuit 19. This becomes a signal indicating the presence or absence of current.

極間電圧Vgは、分圧回路’1 + ’tにより分圧さ
れ、レベルコンパレータ20で基準スレッショルド電圧
vRよシ大か小かが比較され、放電か無負荷状態である
かの判別が行なわれる。
The electrode-to-electrode voltage Vg is divided by a voltage dividing circuit '1 + 't, and compared by a level comparator 20 to see whether it is larger or smaller than a reference threshold voltage vR, and it is determined whether it is in a discharge or no-load state. .

漏れ電流の存在を示す信号Suは、アントゲ−)21に
よシ、前記の論理式 8uMSv−8tのの形で出力さ
れ、無負荷信号SDは、アンドゲート22により論理式
 5D=8y−81の形で出力される。
The signal Su indicating the presence of leakage current is outputted by the AND gate 21 in the form of the above logical formula 8uMSv-8t, and the no-load signal SD is outputted by the AND gate 22 according to the logical formula 5D=8y-81. output in the form

実験によれば、上記信号8u=mlの時すなわち漏れ電
流が無負荷状態で流れていた場合には、以下に記述する
ような極間状態であることが判明した。
According to experiments, it has been found that when the above signal 8u=ml, that is, when the leakage current is flowing in a no-load state, there is a state between the poles as described below.

(1)漏れ電流が流れる時には、極間間隙におけるある
1点において、スラッジ、金属イオン等の濃度が異常に
高くなり、抵抗にして数百Ω以下になっている。
(1) When a leakage current flows, the concentration of sludge, metal ions, etc. becomes abnormally high at one point in the gap between the electrodes, and the resistance becomes less than several hundred ohms.

(2)数μ秒〜1m秒程度連続して信号str = 1
であった場合、何等かの消イオン対策を行えば、極間状
態の回復は行いうるが、数10m秒以上連続した場合は
、回復不能でワイヤ断線にまで至る。
(2) Signal str = 1 continuously for several microseconds to 1 milliseconds
If this occurs, the interelectrode state can be recovered by taking some countermeasures for deionization, but if the condition continues for several tens of milliseconds or more, recovery is impossible and even wire breakage occurs.

(3)  ワイヤ電極上に突起物あるいはパリ等がある
と、その1点における電界強度が極間内部で強くなり、
かつ信号5u=1となシ、しかも、放電の集中はその1
点が引きずったあとに発生する。
(3) If there is a protrusion or a hole on the wire electrode, the electric field strength at that one point will become stronger inside the gap between the electrodes.
And the signal 5u=1, and the concentration of discharge is 1.
Occurs after the point is dragged.

(4)漏れ電流がなく信号So = 1の時には、イオ
ン濃度は低く、極間における状態は良好で、集中放電、
異常アーク放電発生はない。ただし、異常状態になって
いる時でもたまに信号So = 1となる時もある。こ
の場合には持続しない(SD==1が数m秒間連続しな
い)。
(4) When there is no leakage current and the signal So = 1, the ion concentration is low, the condition between the electrodes is good, and concentrated discharge,
No abnormal arc discharge occurred. However, sometimes the signal So=1 even when in an abnormal state. In this case, it does not persist (SD==1 does not continue for several milliseconds).

以上のように、信号SUと信号SDに基づいて。As described above, based on the signal SU and the signal SD.

極間状態の検出を行うことができる。すなわち、上記(
2)、(4)のごとく信号Sυと信号Soの連続量ある
いは発生のしかたを分析できるようKすれば。
It is possible to detect the state between poles. That is, the above (
2) and (4), K should be able to analyze the continuous amount or generation method of the signal Sυ and the signal So.

検出できる。Can be detected.

第4図は上記の信号8u 、 Soをアンドゲート23
゜24を介して入力し、極間状態の良否判別を行う極間
状態判別回路の1例を示すものであって、入力された信
号Su、Soは、その数が可逆カウンタ25により計数
される。よって信号SUが信号SDよシ発生頻度大であ
れば、カウンタ25は積算され、その内容は次第に犬と
なる。
In Figure 4, the above signals 8u and So are connected to an AND gate 23.
24 shows an example of a gap state determination circuit that determines whether the gap condition is good or bad, and the number of input signals Su and So is counted by a reversible counter 25. . Therefore, if the signal SU occurs more frequently than the signal SD, the counter 25 is integrated and its contents gradually become more frequent.

上記カウンタ25.の積算値が、所定値たとえば100
個を越すと、ディジタルコンパレータ26は極間不良判
別信号(以下、8Aと称す)を出力(SA=1)する。
The above counter 25. The integrated value of is set to a predetermined value, for example, 100.
When the value exceeds 1, the digital comparator 26 outputs a gap defect determination signal (hereinafter referred to as 8A) (SA=1).

この信号SAはアンドゲート23の否定入力端子にも供
給印加されて該アンドゲートからの出力をなくシ、それ
以上、カウンタ25の内容が増えすぎてオーバーフロー
あるいは、スケールオーバーしないようにしている。ま
た、上記、信号SAは後記制御手段に供給されて極間回
復制御1に供される。
This signal SA is also applied to the negative input terminal of the AND gate 23 to eliminate the output from the AND gate, thereby preventing the contents of the counter 25 from increasing too much and overflowing or overscaling. Further, the signal SA mentioned above is supplied to a control means to be described later and is subjected to the gap recovery control 1.

極間状態が正常となり、信号SD−1が続くと、カウン
タ25は減算され、fi後には、内容がΣ=0となるの
で、それ以上、減算しないようにディジタルコンパレー
タ27の出力信号SBをアンドゲート24の否定入力端
子に供給印加して該アンドゲートからの出力をなくする
ようにする。
When the state between the poles becomes normal and the signal SD-1 continues, the counter 25 is subtracted, and after fi, the content becomes Σ=0, so the output signal SB of the digital comparator 27 is ANDed to prevent further subtraction. A supply is applied to the negative input terminal of gate 24 to eliminate the output from the AND gate.

従って、上記カウンタ25の内容を、ディジタル−アナ
ログ変換器28でアナログ量Kf換して−j定すれば、
この変換器28の出力信号8Mを用いて連続的に、極間
状態をモニターできる。
Therefore, if the contents of the counter 25 are converted into an analog quantity Kf by the digital-to-analog converter 28 and determined as -j, then
Using the output signal 8M of this converter 28, the state of the gap between poles can be continuously monitored.

第5図は前記第4図に示す極間判別判別回路の各信号S
υ、SD、SM(SMはアナログ出力)、SAと極間状
態を示す極間電圧信号工および極間電圧信号Vgのタイ
ムチャートである。
FIG. 5 shows each signal S of the gap discrimination circuit shown in FIG.
It is a time chart of υ, SD, SM (SM is an analog output), SA, and a voltage signal between electrodes and a voltage signal between electrodes Vg showing the voltage between electrodes.

第6図はワイヤ電極と被加工物に短絡が生じた際、それ
まで、ワイヤ電極によりカッティングされた軌跡を該ワ
イヤ電極が逆行する。いわゆる短絡バック軌跡を戻る際
の速度を変化させる制御手段30の1例を示す回路図で
ある。
FIG. 6 shows that when a short circuit occurs between the wire electrode and the workpiece, the wire electrode moves backward along the locus cut by the wire electrode. FIG. 3 is a circuit diagram showing an example of a control means 30 that changes the speed when returning on a so-called short-circuit back locus.

まず、短絡バンク方法の原理f、i!5!明する、図中
100X、100Yは、各々X、Y軸の送りに伴い発生
するパルス列のメモリで軌跡のX、Y位置関係を記憶し
ている。通常1〜5m程度までの記憶量を有している。
First, the principle of the short-circuit bank method f, i! 5! To be clear, 100X and 100Y in the figure are memories of pulse trains generated with the feeding of the X and Y axes, respectively, and store the X and Y positional relationships of the trajectory. It usually has a storage capacity of about 1 to 5 m.

101は、上記メモリーのアドレスカウンタでアドレス
を加算すると、ワイヤ電極がそれまでの加工軌跡に沿っ
てバックしていく時のX、Y軌跡がメモリ出力xpey
pにあられれ、減算するとバックした軌跡を再び前進方
向に戻るようにメモリ出力xp、ypが発生するようK
なっている。よって、アドレスカウンタ101の加減算
の周波数が、バックと、再前進の速度を決定するととK
なる。
101 is the memory output xpey, which is the X and Y trajectory when the wire electrode moves back along the machining trajectory up to that point when the address is added by the address counter in the memory.
When p is subtracted, memory outputs xp and yp are generated so that the backward trajectory returns to the forward direction again.
It has become. Therefore, if the frequency of addition and subtraction of the address counter 101 determines the backward and forward speeds, then K
Become.

102は、バックメモリ100X、100Yのアドレス
バスで仮に2048μWL(ただし配憶単位1μm)の
容量のバンクメモリが使用されていると、  12bi
tのパスラインとなる。
102 is the address bus of the back memories 100X and 100Y, and if a bank memory with a capacity of 2048μWL (however, the storage unit is 1μm) is used, then 12bi
This becomes the pass line of t.

103はアドレスカウンタ101の内容が減算の末0と
なり、バックの開始位置にあるかどうかを決定するカウ
ンタ内容判別回路で、例えば、ディジタルコンパレータ
を用いて構成される。すなわち、動作としては短絡まで
の間、X、Yの軌跡パルスxp、ypが出力され、順次
その値はメモリ100X、100YK記憶されている。
Reference numeral 103 denotes a counter content determination circuit that determines whether the content of the address counter 101 becomes 0 after subtraction and is at the back start position, and is configured using, for example, a digital comparator. That is, in operation, X and Y locus pulses xp and yp are output until a short circuit occurs, and the values are sequentially stored in memories 100X and 100YK.

短絡が発生すると短絡信号SBが1となシ、アンドゲー
ト104,105のうち105を介し、前記の信号(カ
ウンタ26の出力5A)Kよシ周波数制御されるパルス
発生器106からの不安定度合に合致した周波数の加算
信号が、アドレスカラ/り101に入力される。不安定
時は、高周波で、安定時は、低い周波数である。
When a short circuit occurs, the short circuit signal SB becomes 1, and the instability level from the pulse generator 106 whose frequency is controlled by the signal (output 5A of the counter 26) K is transmitted through the AND gates 105 and 104 and 105. The added signal of the frequency matching is input to the address color/receiver 101. When it is unstable, it is a high frequency, and when it is stable, it is a low frequency.

短絡が解消され、短絡信号Sgが0となると、ゲ−)1
04を介してカウンタ101を減算するようになシカク
ンタがOすなわちバック軌跡が元の位置になると減算を
停止する。
When the short circuit is eliminated and the short circuit signal Sg becomes 0, G)1
When the counter 101 is subtracted through 04, the subtraction is stopped when the counter 101 reaches O, that is, the back trajectory returns to the original position.

従って、この制御手段によれば、加工内容が不安定とな
って極間状態が悪化し、短絡が発生すると、ワイヤ電極
はその直前の加工状態に応じた速度でそれまでの加工軌
跡に沿って加工開始点く向って後退し、その戻る時の速
度量が刻々変化する。
Therefore, according to this control means, when the machining content becomes unstable and the machining gap condition worsens, causing a short circuit, the wire electrode moves along the machining trajectory up to that point at a speed that corresponds to the machining state immediately before. It moves backward toward the processing start point, and the speed at which it returns changes every moment.

すなわち、きわめて悪い加工状態の時は、高速でバック
し、その単位時間あたりにバックする距離は大きく、そ
れほど悪くなければバックする量も少ない。
That is, when the machining conditions are extremely poor, the machining process backs up at a high speed, and the distance traveled per unit time is large; if the conditions are not so bad, the amount of backing up is small.

短絡は実際にワイヤ電極2が被加工物1に接触して起る
以外(、極間にスラッジがたまりインピーダンス低下で
も発生する。また、放電の集中により無負荷時間がほと
んどない状態で放電している時も発生するので、短絡検
出と、ワイヤ電極2の断線直前の状態というのは、きわ
めて深い関連がある。
Short circuits do not occur when the wire electrode 2 actually comes into contact with the workpiece 1 (or when sludge accumulates between the electrodes and the impedance decreases).Also, short circuits occur when the wire electrode 2 is in contact with the workpiece 1 (sludge accumulates between the electrodes and the impedance decreases).In addition, short circuits occur when the wire electrode 2 is actually in contact with the workpiece 1 (sludge accumulates between the electrodes and the impedance decreases). Therefore, there is a very close relationship between short circuit detection and the state immediately before the wire electrode 2 is disconnected.

従って、このような時には、できるだけ早めにバックさ
せて、ワイヤ電極の断線の危険を廻避させるのが望まし
いわけで、第6図の制御手段を用いることKより効果的
にワイヤ11L極の断線を防ぐことができる。
Therefore, in such a case, it is desirable to back the wire as early as possible to avoid the risk of breaking the wire electrode, and using the control means shown in FIG. 6 more effectively prevents the breaking of the wire 11L pole. be able to.

また、本例では、ハードフェアによる構成で示したが、
現在の通常のNCはほとんどCNC(コンピュータライ
ズドNC)であるので、NC指令のF値(速度指令)K
対し、加工状態に応じにバック速度を演算決定して同様
の効果が得られる。
In addition, although this example shows a hardware configuration,
Most of the current normal NCs are CNC (computerized NC), so the F value (speed command) of the NC command is
On the other hand, the same effect can be obtained by calculating and determining the back speed according to the machining state.

ところで上記説明では、この発明をワイヤ電極を用いる
ワイヤカット放電加工装置に利用する場合圧ついて述べ
たが、棒状電極を用いる放電加工装置にも利用できるこ
とはいうまでもない。
Incidentally, in the above description, the present invention has been described as being applied to a wire-cut electric discharge machining apparatus using wire electrodes, but it goes without saying that it can also be applied to an electric discharge machining apparatus using rod-shaped electrodes.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、被加工物と電極間に
パルス電圧を印加した麦、放電圧至るまでの間における
漏れ電流を検出し、この検出結果をもとにして正常放電
と異常放電の判別を行なうものであるから、加工速度を
低下させることなく適確に加工状態の良否を判別するこ
とができる。
As described above, according to the present invention, the leakage current is detected between the time when a pulse voltage is applied between the workpiece and the electrode, and the discharge voltage is reached, and based on this detection result, normal discharge and abnormal discharge are detected. Since the discharge is determined, it is possible to accurately determine whether the machining condition is good or bad without reducing the machining speed.

そして、異常放電が判別されたときは、極間の悪化状態
に対応する速度で電極を被加工物から離隔させるので、
電極の損傷を確実に防止することができるととも(極間
を迅速に正常状態に回復させることができるという効果
がある。
When abnormal discharge is determined, the electrode is separated from the workpiece at a speed corresponding to the worsening state of the gap between the electrodes.
This has the effect of not only being able to reliably prevent damage to the electrodes, but also quickly restoring the gap between the electrodes to a normal state.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例を示す原理説明図、第2図
はその動作説明のためのタイムチャート1第3図は極間
状態検出のための漏れ電流検出回路図、第4図は極間状
態判別回路図、第5図はその動作説明のためのタイ、ム
チヤード、第6図は制御手段の回路構成を示すブロック
図、第7図は従来のワイヤカット放電加工装置を示す原
理図、でおる。 1は被加工物、2は電極(ワイヤ電極)、18は漏れ電
流検出手段、29は極間状態判別手段。 30は制御手段。 なお、図中同一符号は同一または相当部分を示す。
Fig. 1 is a principle explanatory diagram showing one embodiment of the present invention, Fig. 2 is a time chart 1 for explaining its operation, Fig. 3 is a leakage current detection circuit diagram for detecting the gap state, and Fig. 4 is Fig. 5 is a tie and whipyard for explaining its operation; Fig. 6 is a block diagram showing the circuit configuration of the control means; Fig. 7 is a principle diagram showing a conventional wire-cut electrical discharge machining device. , I'm here. Reference numeral 1 denotes a workpiece, 2 an electrode (wire electrode), 18 a leakage current detection means, and 29 a gap state determination means. 30 is a control means. Note that the same reference numerals in the figures indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 電極と被加工物とを絶縁性加工液を介在させて対向させ
、その両者間にパルス電圧を印加して該両者が対向する
極間に放電を発生させ、その放電エネルギで上記被加工
物を加工する放電加工装置において、上記電極と上記被
加工物間に上記パルス電圧を印加した後、放電に至るま
での間における漏れ電流を検出する検出手段と、この検
出手段の検出出力に基づいて極間状態を判別して信号を
出力する極間状態判別手段と、この極間状態判別手段の
出力に基づいて、上記電極が被加工物から離隔する速度
を制御する制御手段とを具備したことを特徴とする放電
加工装置。
An electrode and a workpiece are placed opposite to each other with an insulating machining fluid interposed between them, and a pulse voltage is applied between the two to generate an electric discharge between the opposing poles, and the discharge energy drives the workpiece. In the electrical discharge machining apparatus for machining, a detection means for detecting a leakage current after applying the pulse voltage between the electrode and the workpiece until discharge occurs, and a detection means for detecting a leakage current in the period from the application of the pulse voltage between the electrode and the workpiece to the electric discharge, and a and a control means for controlling the speed at which the electrode separates from the workpiece based on the output of the gap state determining means. Characteristic electrical discharge machining equipment.
JP24805584A 1984-11-26 1984-11-26 Electric discharge machine Pending JPS61125725A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24805584A JPS61125725A (en) 1984-11-26 1984-11-26 Electric discharge machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24805584A JPS61125725A (en) 1984-11-26 1984-11-26 Electric discharge machine

Publications (1)

Publication Number Publication Date
JPS61125725A true JPS61125725A (en) 1986-06-13

Family

ID=17172527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24805584A Pending JPS61125725A (en) 1984-11-26 1984-11-26 Electric discharge machine

Country Status (1)

Country Link
JP (1) JPS61125725A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121124A (en) * 1987-11-06 1989-05-12 Fanuc Ltd Wire electric discharge machining device
CN109465511A (en) * 2018-11-06 2019-03-15 广东工业大学 A kind of multistation Wire EDM timesharing pulse power synchronous processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108696A (en) * 1973-12-11 1974-10-16
JPS53126596A (en) * 1977-04-12 1978-11-04 Inoue Japax Res Inc Work feed means for discharge processing apparatuses
JPS5545328A (en) * 1978-09-25 1980-03-31 Isao Naruse Knife device on bush cutter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49108696A (en) * 1973-12-11 1974-10-16
JPS53126596A (en) * 1977-04-12 1978-11-04 Inoue Japax Res Inc Work feed means for discharge processing apparatuses
JPS5545328A (en) * 1978-09-25 1980-03-31 Isao Naruse Knife device on bush cutter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01121124A (en) * 1987-11-06 1989-05-12 Fanuc Ltd Wire electric discharge machining device
CN109465511A (en) * 2018-11-06 2019-03-15 广东工业大学 A kind of multistation Wire EDM timesharing pulse power synchronous processing method

Similar Documents

Publication Publication Date Title
US4798929A (en) Wire electric discharge machining apparatus
JPS61125725A (en) Electric discharge machine
JPS61125734A (en) Wire cut electric discharge processing device
JP2756962B2 (en) Control device for wire electric discharge machine
JPS63318211A (en) Electric discharge machine
JPS61111814A (en) Spark erosion apparatus
JPS61111813A (en) Spark erosion apparatus
JPS62287919A (en) Electric discharge machine
JPS61125729A (en) Electric discharge machine
JP2587956B2 (en) Control device for wire electric discharge machine
JPS61111841A (en) Wire-cut electric discharge machinine
JPS61125722A (en) Electric discharge machine
JPS61111818A (en) Spark erosion apparatus
JPS62287914A (en) Electric discharge machine
JPS61125728A (en) Electric discharge machine
JPS61125721A (en) Electric discharge machine
JPS61111845A (en) Wire-cut electric discharge machinine
JPS61125726A (en) Electric discharge machine
JPS62287917A (en) Electric discharge machinine
JPS61125731A (en) Electric discharge machine
JPS61111843A (en) Electric discharge machinine
JPS61125736A (en) Wire cut electric discharge processing device
JPS61111812A (en) Spark erosion apparatus
JPS61125723A (en) Electric discharge machine
JPS61111810A (en) Spark erosion apparatus