JPS61121006A - Production of crossing optical waveguide - Google Patents

Production of crossing optical waveguide

Info

Publication number
JPS61121006A
JPS61121006A JP24292284A JP24292284A JPS61121006A JP S61121006 A JPS61121006 A JP S61121006A JP 24292284 A JP24292284 A JP 24292284A JP 24292284 A JP24292284 A JP 24292284A JP S61121006 A JPS61121006 A JP S61121006A
Authority
JP
Japan
Prior art keywords
optical waveguide
thin film
thin
pattern
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24292284A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Hidetaka Tono
秀隆 東野
Osamu Yamazaki
山崎 攻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP24292284A priority Critical patent/JPS61121006A/en
Publication of JPS61121006A publication Critical patent/JPS61121006A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/132Integrated optical circuits characterised by the manufacturing method by deposition of thin films

Abstract

PURPOSE:To produce a crossing optical waveguide with a good yield by a low-temperature and high-speed process. CONSTITUTION:Photosensitive materials 21 are formed like islands as the first pattern on a photoconductive thin film 12, which is provided on a transparent substrate 11 and has a refractive index higher than that of this substrate 11, by the photolithographic method. This band materials 22 having a refractive index lower than that of the photoconductive thin film 12 are vapor-deposited with metallic materials by the reflective ion impact deposition method, and photosensitive materials 21 are removed to form thin band materials 22 as a thin band 13 of a negative pattern of the first pattern. The second thin band 14 is formed similarly so that it crosses the first thin band 13 formed in this manner, and the photoconductive thin film 12 under the first and the second thin bands 13 and 14 is used as the optical waveguide.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は光通信、光制御用の光集積回路に関する。特に
薄膜光導波路で構成した光集積回路用の交叉光導波路の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an optical integrated circuit for optical communication and optical control. In particular, the present invention relates to a method of manufacturing a crossed optical waveguide for an optical integrated circuit composed of a thin film optical waveguide.

従来例の構成とその問題点 光集積回路の集積度を上げるには、光導波路を交叉させ
る必要がある。そのため本発明者らはクロストークの低
い交叉光導波路を提案している。
Conventional configurations and their problems In order to increase the degree of integration of optical integrated circuits, it is necessary to intersect optical waveguides. Therefore, the present inventors have proposed a crossed optical waveguide with low crosstalk.

第1図にその構成を示す。透明基板11上に設けた導波
薄膜12上に、第1.第2薄帯13,14を順次積層し
て構成される。しかし、薄帯13゜14の構成材料を蒸
着して第1.第2薄帯13゜14を形成する場合、通常
高融点材料を用いるため蒸着時に高温となり、有機感光
材料を使用しリフトオフ法で形成することは困難であっ
た。又、スパッタ蒸着法でも蒸着時に高温となるため、
蒸着速度を下げて高温にならないようにして形成しなけ
ればならないという問題点を有していた。
Figure 1 shows its configuration. On the waveguide thin film 12 provided on the transparent substrate 11, the first. It is constructed by sequentially laminating the second ribbons 13 and 14. However, the constituent materials of the thin strips 13 and 14 were vapor deposited and the first. When forming the second ribbon 13.degree. 14, a high melting point material is usually used, which results in a high temperature during vapor deposition, making it difficult to form the second thin strip 13.degree. 14 using an organic photosensitive material using a lift-off method. Also, since the sputter deposition method generates high temperatures during deposition,
There was a problem in that the deposition rate had to be lowered to avoid high temperatures.

発明の目的 本発明の目的は従来の交叉導波路の製造方法の有してい
た高温でパターン形成が困難、あるいは蒸着速度が低い
という問題点を改良し、低温パターン形成を可能とする
交叉光導波路の製造方法を提供するものである。
OBJECTS OF THE INVENTION The purpose of the present invention is to improve the problems of conventional methods for manufacturing crossed waveguides, such as difficulty in pattern formation at high temperatures or low deposition rate, and to provide a crossed optical waveguide that enables low-temperature pattern formation. The present invention provides a method for manufacturing.

発明の構成 本発明は、透明基板上に設けた上記透明基板より高い屈
折率を有する導光薄膜上に、感光材料をホトリソグラフ
法により島状に第1パターンとして形成し、反応性イオ
ン衝撃蒸着法により金属材料を用いて導光薄膜よりも低
い屈折率を有する薄帯材料を上記透明基板上に蒸着し、
感光材料を除去することにより薄帯材料を第1パターン
のネガパターン化する製造方法(1)により形成した第
1薄帯に交叉して、上記製造方法(I)により第2薄帯
を形成し、上記第1.第2薄帯下の上記導光薄膜を光導
波路として交叉光導波路を製造するものである。
Structure of the Invention The present invention is a method of forming a first island-like pattern of a photosensitive material on a light guiding thin film having a higher refractive index than the transparent substrate provided on a transparent substrate by photolithography, and then performing reactive ion bombardment deposition. depositing a ribbon material having a lower refractive index than the light guiding thin film on the transparent substrate using a metal material by a method;
A second ribbon is formed by the manufacturing method (I) above, crossing the first ribbon formed by the manufacturing method (1) in which the ribbon material is made into a negative pattern of the first pattern by removing the photosensitive material. , above No. 1. A crossed optical waveguide is manufactured by using the light guide thin film below the second ribbon as an optical waveguide.

特に上記反応性イオン衝撃蒸着法をマグネトロンスパッ
タ法を用いると良い。
In particular, it is preferable to use magnetron sputtering as the reactive ion bombardment deposition method.

実施例の説明 本発明を第1図および第2図を用いて説明する。Description of examples The present invention will be explained using FIGS. 1 and 2.

第2図中11.12は第1図と同一である。すなわち、
透明基板上11上に設けた透明基板11より高い屈折率
を有する導光薄膜12上に、感光材料21をホ) IJ
ソゲラフ法により島状に第1パターンとして形成しく第
2図a)反応性イオン衝撃蒸着法により金属材料を用い
て導光薄膜12よりも低い屈折率を有する薄帯材料22
を透明基板11上に蒸着しく第2図b)感光材料21を
除去することにより、薄帯材料22を第1パターンのネ
ガパターンの薄帯13として形成する(第2図C)。
11.12 in FIG. 2 are the same as in FIG. That is,
A photosensitive material 21 is placed on a light guiding thin film 12 having a higher refractive index than the transparent substrate 11 provided on the transparent substrate 11.
A thin strip material 22 having a refractive index lower than that of the light guiding thin film 12 is formed by the Sogelaf method as a first pattern in the form of an island, and is made of a metal material by the reactive ion bombardment deposition method.
By depositing the photosensitive material 21 on the transparent substrate 11 and removing the photosensitive material 21 (FIG. 2b), the ribbon material 22 is formed as a ribbon 13 having a negative pattern of the first pattern (FIG. 2C).

このような製造方法(I)により形成した第1薄嘴13
に交叉して、製造方法(I)により第2薄帯14を形成
し、第1.第2薄帯13,14下の導光薄膜12を光導
波路として製造した。
The first thin beak 13 formed by such manufacturing method (I)
A second ribbon 14 is formed by the manufacturing method (I), crossing the first ribbon. The light guide thin film 12 under the second ribbons 13 and 14 was manufactured as an optical waveguide.

上記製造方法によると、従来スパッタ蒸着法の有してい
た高温、低速蒸着の問題点の改善されることを確認した
。すなわち、金属材料を反応性イオン衝撃蒸着法により
薄帯材料を形成するところに特徴がある。この場合、金
属材料は、スパッタリングイールド(蒸着しやすさの示
標)が化合物である薄帯材料より大きく、加えて熱伝導
率が大きいため冷却効果に優れているので、低温・高速
蒸着が本発明により可能となったと考えられる。
According to the above manufacturing method, it has been confirmed that the problems of high temperature and low speed evaporation of conventional sputter deposition methods can be improved. That is, the method is characterized in that a thin ribbon material is formed from a metal material by reactive ion bombardment deposition. In this case, metal materials have a higher sputtering yield (an indicator of ease of vapor deposition) than thin ribbon materials, which are compounds, and also have higher thermal conductivity, which makes them superior in cooling effects, so low-temperature, high-speed vapor deposition is the key. It is thought that this was made possible by the invention.

しだがって、感光材料として有機材料を使用しても可能
であり、効率よく交叉導波路を形成することができる。
Therefore, it is also possible to use an organic material as the photosensitive material, and the crossed waveguide can be formed efficiently.

本発明者らはイオン衝撃蒸着法を詳細に検討し、特に優
れた蒸着法のあることを見い出し、交叉導波路の製造で
きることを発明した。すなわち、イオン衝撃蒸着法にマ
グネトロンスパッタ法を用いると特に低温・高速での製
造が可能であった。これは、マグネトロンスパッタ法で
はスパッタ放電がターゲットとなる金属材料近傍に局在
しており、蒸着基板側に分布していないので、低温高速
に優れていると考えられる。
The present inventors have studied the ion bombardment deposition method in detail, discovered that there is a particularly excellent deposition method, and invented that a crossed waveguide can be manufactured. That is, when magnetron sputtering is used for ion bombardment deposition, production can be performed at low temperatures and high speeds. This is considered to be because in the magnetron sputtering method, the sputter discharge is localized near the target metal material and is not distributed on the deposition substrate side, which is excellent in low temperature and high speed.

以下に具体例を掲げて説明する。透明基板11にサファ
イアC面基板を用い例えばスパッタ蒸着により膜厚0.
6μmのPLZT系薄膜12(屈折率2.6)を設け、
次にポジレジスト例えば人Z140oにて所定のパター
ン21を形成をしたのち、タンタル金属ターゲットを用
いて酸素分圧雰囲気中で反応性マグネトロンスパッタ法
でパターン形成基板上に酸化タンタル薄膜材料22(屈
折率2.1)を蒸着し続いてアセトンによりレジスト除
去により第1薄帯14を形成した。引き続いて同じ方法
により第2薄帯を形成し交叉光導波路を形成した。この
場合、レジストの熱変形が認められず良好な第1.第2
薄膜の形成が出来、交叉角(θ)1° という微小な角
度においてもクロストーク20dB以上を歩止よく良る
ことか出来た。
A specific example will be explained below. A sapphire C-plane substrate is used as the transparent substrate 11, and a film thickness of 0.00 mm is formed by sputter deposition, for example.
A 6 μm PLZT thin film 12 (refractive index 2.6) was provided,
Next, a predetermined pattern 21 is formed using a positive resist such as Z140O, and then a tantalum oxide thin film material 22 (refractive index 2.1) was deposited, and then the resist was removed using acetone to form the first thin ribbon 14. Subsequently, a second ribbon was formed by the same method to form a crossed optical waveguide. In this case, no thermal deformation of the resist was observed and the first resist was good. Second
It was possible to form a thin film, and even at a very small crossing angle (θ) of 1°, it was possible to achieve a crosstalk of 20 dB or more and a good yield.

発明の効果 以上の説明から明らかなように、本発明は従来の交叉光
導波路の製造方法の問題点を改善し、低温高速プロセス
により歩止りよく形成できる製造方法であり、光集積回
路の実用化に与える効果は大きいものである。
Effects of the Invention As is clear from the above explanation, the present invention is a manufacturing method that improves the problems of the conventional method of manufacturing crossed optical waveguides and can be formed with a high yield through a low-temperature, high-speed process, and is useful for the practical application of optical integrated circuits. The effect on this is significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は交叉光導波路の要部構成図、第2図a面図であ
る。 11・・・・・・透明基板、12・・・・・・導光薄膜
、13・・・・・・第1薄帯、14・・・・・・第2薄
膜、21・旧・・感光剤、22・・・・・・薄帯材料。 代理人の氏名 弁理士 中 尾 敏 男 はが1名〜 
FIG. 1 is a block diagram of a main part of a crossed optical waveguide, and a view from side a in FIG. 2. 11...Transparent substrate, 12...Light guiding thin film, 13...First ribbon, 14...Second thin film, 21. Old... Photosensitive agent, 22...thin strip material. Name of agent: Patent attorney Toshi Nakao (1 person)
,

Claims (2)

【特許請求の範囲】[Claims] (1)透明基板上に設けた上記透明基板より高い屈折率
を有する導光薄膜上に、感光材料をホトリソグラフ法に
より島状に第1パターンとして形成し、反応性イオン衝
撃蒸着法により金属材料を用いて上記導光薄膜よりも低
い屈折率を有する薄帯材料を上記透明基板上に蒸着し、
上記感光材料を除去することにより上記薄帯材料を第1
パターンのネガパターン化する製造方法により形成した
第1薄帯に交叉して、上記製造方法により第2薄帯を形
成し上記第1、第2薄帯下の上記導光薄膜を光導波路と
したことを特徴とする交叉光導波路の製造方法。
(1) A photosensitive material is formed as a first pattern in the form of islands by photolithography on a light guiding thin film having a higher refractive index than the transparent substrate provided on a transparent substrate, and a metal material is formed by reactive ion bombardment deposition. depositing a ribbon material having a lower refractive index than the light guide thin film on the transparent substrate using
By removing the photosensitive material, the ribbon material is
A second thin strip was formed by the above manufacturing method to intersect with the first thin strip formed by a manufacturing method of forming a negative pattern, and the light guide thin film under the first and second thin strips was used as an optical waveguide. A method of manufacturing a crossed optical waveguide, characterized in that:
(2)反応性イオン衝撃蒸着法として、マグネトロンス
パッタ法を用いたことを特徴とする特許請求の範囲第1
項記載の交叉光導波路の製造方法。
(2) Claim 1 characterized in that a magnetron sputtering method is used as the reactive ion bombardment deposition method.
2. Method for manufacturing a crossed optical waveguide as described in Section 1.
JP24292284A 1984-11-16 1984-11-16 Production of crossing optical waveguide Pending JPS61121006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24292284A JPS61121006A (en) 1984-11-16 1984-11-16 Production of crossing optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24292284A JPS61121006A (en) 1984-11-16 1984-11-16 Production of crossing optical waveguide

Publications (1)

Publication Number Publication Date
JPS61121006A true JPS61121006A (en) 1986-06-09

Family

ID=17096201

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24292284A Pending JPS61121006A (en) 1984-11-16 1984-11-16 Production of crossing optical waveguide

Country Status (1)

Country Link
JP (1) JPS61121006A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312577B2 (en) 2016-03-16 2019-06-04 Komatsu Ltd. Antenna attachment structure and dump truck

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369053A (en) * 1976-11-30 1978-06-20 Nippon Selfoc Co Ltd Photoconductive wave passage
JPS59121119A (en) * 1982-12-28 1984-07-13 Matsushita Electric Ind Co Ltd Production of thin film of ferroelectric material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5369053A (en) * 1976-11-30 1978-06-20 Nippon Selfoc Co Ltd Photoconductive wave passage
JPS59121119A (en) * 1982-12-28 1984-07-13 Matsushita Electric Ind Co Ltd Production of thin film of ferroelectric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10312577B2 (en) 2016-03-16 2019-06-04 Komatsu Ltd. Antenna attachment structure and dump truck

Similar Documents

Publication Publication Date Title
US5035734A (en) Method of producing optical waveguides
US7220371B2 (en) Wire grid polarizer and method for producing same
EP0467579A2 (en) Method of producing optical waveguides by an ion exchange technique on a glass substrate
JPH11125726A (en) Optical waveguide and its manufacture
JPS5842003A (en) Polarizing plate
JPS61121006A (en) Production of crossing optical waveguide
JPS6112241B2 (en)
JPS6146408B2 (en)
JPS552263A (en) Production of optical guide circuits
JPH0812302B2 (en) Method for producing titanium oxide thin film
JPH0444260A (en) Manufacture of semiconductor device
JPS5917510A (en) Optical waveguide
JPS63303308A (en) Production of light guide
JPH0462644B2 (en)
JPS61188502A (en) Preparation of optical waveguide
KR930010830B1 (en) Wave guide
JPS61245161A (en) Manufacture of x-ray mask
JPH0310206A (en) Optical waveguide of linbo3 and production thereof
JPS62212605A (en) Production of optical waveguide
JPS63250608A (en) Production of flush type light guide
JPS5856841B2 (en) Optical waveguide creation method
JPS6173905A (en) Cross optical waveguide
JPS62247306A (en) Optical waveguide element
JPH0216484B2 (en)
JPH0232305A (en) Production of optical directional coupler of ti-diffused waveguide