JPS6112082A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS6112082A
JPS6112082A JP13236484A JP13236484A JPS6112082A JP S6112082 A JPS6112082 A JP S6112082A JP 13236484 A JP13236484 A JP 13236484A JP 13236484 A JP13236484 A JP 13236484A JP S6112082 A JPS6112082 A JP S6112082A
Authority
JP
Japan
Prior art keywords
gate
photoresist
film
insulating film
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13236484A
Other languages
Japanese (ja)
Inventor
Yuuji Tanaka
優次 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP13236484A priority Critical patent/JPS6112082A/en
Publication of JPS6112082A publication Critical patent/JPS6112082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To reduce contact resistance between source/drain regions and an ohmic metal by a method wherein the regions, doped more densely than a channel layer and whereto source and drain electrodes are to be connected, are formed near a gate electrode and the ohmic metal is formed thereon. CONSTITUTION:To decrease gate resistance, reverse sputtering is accomplished in Ar gas for the cleaning of the top surface of W5Si3 3. As a barrier for Au diffusion and reaction, a 500Angstrom -thick TiN film 8 is formed, also by sputtering. A process follows wherein sputtering results in the formation of a 3,000Angstrom -thick Au 9, ultrasonic washing is accomplished in acetone, TiN film 8 and Au 9 are lifted off with a portion thereof retained on the top of the gate. An AuGe/Ni layer is formed by evaporation using resistance heating on an N<+> layer 6 in an H2 atmosphere, for the formation of an ohmic alloy layer 10. Source/drain electrodes are formed, to be covered by a passivation film 4''.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は化合物半導体装置、特にGaAsメタルシ目ッ
トキットキー接合電界効果トランジスタ方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a compound semiconductor device, and more particularly to a GaAs metal junction field effect transistor method.

(従来の技術) (3aAsメタルシヨツトキ一接合電界効果トランジス
タでは、従来ゲート金属としてTi/kl又はAtが用
いられいる。これらの金属はゲート長を短くして高周波
特性を改善する上で加工性が悪いため歩留が低い。又シ
ョットキー接合を形成するため°に施される合金化処理
は420〜450’Cの極めて短い時間の処理工程であ
るので、ショットキーダイオード特性のバラツキが大き
い。このバラツキは基板ウェハーのサイズが大きくなる
に従って更に大きくなる。素子の信頼度点に関しては特
に高電力素子においでショットキ接合の金属とG a 
A sとの界面での反応が進行しシmyトキーダイオー
ド特性の経時的劣化を生じるという問題がある。本発明
はこれらの問題点に着目したものである。
(Prior art) (In 3aAs metal shot one-junction field effect transistors, Ti/kl or At is conventionally used as the gate metal.These metals have poor processability in order to shorten the gate length and improve high frequency characteristics. In addition, since the alloying treatment performed to form the Schottky junction is an extremely short process at 420 to 450'C, the Schottky diode characteristics vary widely.This variation becomes larger as the size of the substrate wafer increases.In terms of device reliability, especially in high-power devices, the Schottky junction metal and Ga
There is a problem in that the reaction at the interface with As progresses, resulting in deterioration of the characteristics of the Schmytokey diode over time. The present invention focuses on these problems.

W、TiW、Taとこ2れらのミリサイドは高温の熱処
理で安定でG a A sとの反応も極めて少ないこと
が知られている。又、異方性を持つリアクティブイオン
エッチでもサブミクロンのパターンの形成が再現性よく
行なえる等の特徴を有する。しかし、このような金属又
はシリサイドをゲートメタルとして用いたときの欠点と
いえば、通常用いられるAtに比べて、電気抵抗が10
〜100倍位大きいため、ゲート抵抗が大きく、高周波
での動作特性が悪いことである。特にゲート幅が大きく
なると問題となる。そこでゲート抵抗を低減するために
はどうしても電気抵抗の低い金属を積層する必要性が生
じる。例えばAuを積層する場合、イオン注入によ5G
aAs基板にn型導伝性の不純物であるSiイオンを用
いたチャンネル層を形成した後に、Auを積層したゲー
トを形成し、そのチャンネル層を熱処理する事によって
電気的に活性化する。この熱処理工程中に、Auとその
下層の金属との反応が生じ、ショットキ特性を劣化させ
てしまう。そこで、Auを拡散させないように、二層間
にAuの拡散を防ぐバリア層を用いることが重要となる
It is known that W, TiW, Ta, and these two milicides are stable when subjected to high-temperature heat treatment, and their reaction with GaAs is extremely low. Furthermore, reactive ion etching with anisotropy also has the feature that submicron patterns can be formed with good reproducibility. However, the disadvantage of using such metals or silicides as gate metals is that the electrical resistance is 10% lower than the commonly used At.
Since it is about 100 times larger, the gate resistance is large and the operating characteristics at high frequencies are poor. This becomes a problem especially when the gate width becomes large. Therefore, in order to reduce the gate resistance, it is necessary to stack metals with low electrical resistance. For example, when stacking Au, 5G
After forming a channel layer using Si ions, which are n-type conductive impurities, on an aAs substrate, a gate is formed by stacking Au, and the channel layer is electrically activated by heat treatment. During this heat treatment step, a reaction occurs between Au and the underlying metal, resulting in deterioration of the Schottky characteristics. Therefore, it is important to use a barrier layer between the two layers to prevent Au from diffusing.

(発明が解決しようとする問題点) 本発明の目的は、ソースドレイン領域のオーミックメタ
ルとのコンタクト抵抗とFBT特性を改善する上で重要
なソース抵抗を低減した化合物半導体装置の製造方法を
得ることにある。
(Problems to be Solved by the Invention) An object of the present invention is to obtain a method for manufacturing a compound semiconductor device in which the source resistance, which is important for improving the contact resistance with the ohmic metal in the source/drain region and the FBT characteristics, is reduced. It is in.

(問題を解決するための手段) 本発明はチャンネル層よシ濃度の高いソースおよびドレ
イン電極接続用高濃度領域全ゲート電極の脇に近接して
形成した上にオーミックメタルを被着することにより、
よシ安定な再現性のよいオーミ、りを得る工程を採用し
たことが特徴である。
(Means for Solving the Problems) The present invention forms high concentration regions for connecting source and drain electrodes with a high concentration in the channel layer, all of which are formed close to the side of the gate electrode, and then coats an ohmic metal on the high concentration regions for connecting the source and drain electrodes.
It is characterized by the adoption of a process to obtain ohms and ri with good stability and reproducibility.

(実施例) 次に1本発明の製造方法による一実施例を第1図体)〜
(h)の断面図を用いてよシ詳細に説明する。
(Example) Next, an example according to the manufacturing method of the present invention is shown in Figure 1) ~
This will be explained in detail using the cross-sectional view in (h).

まず、半絶縁性Ga A s基板1に将来チャンネル層
となるn型不純物層2 ’t” 70 KeVのエネル
ギードース量4XLO12cIrL−2で8iイオンの
注入を行なう(第1図(a))。次に、RFスパ、クリ
ング法でシロ、トキ金属としてW5 S i 3 ’3
を3000〜5000Xの厚さに被着し、さらに熱分解
によるCVD法で8i02膜4を2000X被着したの
ち、ホトレジストによるリングラフイーによりゲート長
1μmのホトレジストパターン5を形成する(第1図(
b))。
First, 8i ions are implanted into a semi-insulating GaAs substrate 1 at an energy dose of 4XLO12cIrL-2 at an energy dose of 70 KeV (Fig. 1(a)). In, RF spa, Shiloh by Kring method, W5 Si 3 '3 as Toki Metal
was deposited to a thickness of 3,000 to 5,000×, and further an 8i02 film 4 was deposited at 2,000× using a thermal decomposition CVD method, and then a photoresist pattern 5 with a gate length of 1 μm was formed by photoresist ring graphing (see Fig. 1).
b)).

平行平板型のりアクティブイオンエツチャーを用い、 
CF4+ H2(27チ)のガスで圧力、RFパワート
バイアスヲそれぞれ4.5Pa、200W。
Using a parallel plate glue active ion etcher,
CF4 + H2 (27 cm) gas pressure and RF power bias were 4.5 Pa and 200 W, respectively.

350±20Vの条件に設定し、先ずW58 t 3膜
3上の5i02膜4をエツチングによって除去する。
The condition is set to 350±20V, and first, the 5i02 film 4 on the W58 t3 film 3 is removed by etching.

このとき、8i02膜4とホトレジストパターン5のエ
ツチング比は約2で8i02膜4のエツチング速度は3
60A/minであり、エツチング時間はオーバーエツ
チング時間約15秒を含めて5分50秒である。この工
程の後、異方性の強いエツチングに有利なECR型ドラ
ドライエツチャーF6ガスヲ用い、ECR電圧、ガス圧
、マイクロ波パワーとイオン電流のそれぞれを2 Qv
 l 1.2 X I Oo−3Torrtoo、 0
.t 5mA/cm2に設定し、Ws S を膜3をエ
ツチングする。このエツチング条件ではW58 i 3
3.8i0□膜4とホトレジストパターン5のエツチン
グ速度はそれぞれ220久/m in 、 32^/m
in。
At this time, the etching ratio between the 8i02 film 4 and the photoresist pattern 5 is approximately 2, and the etching rate of the 8i02 film 4 is 3.
The etching time was 5 minutes and 50 seconds, including an overetching time of about 15 seconds. After this step, ECR voltage, gas pressure, microwave power, and ion current were each adjusted to 2 Qv using an ECR type doradry etcher F6 gas, which is advantageous for highly anisotropic etching.
l 1.2 X I Oo-3Torrtoo, 0
.. t is set at 5 mA/cm2, and the film 3 is etched with Ws S . Under this etching condition, W58 i 3
The etching rates of the 3.8i0□ film 4 and the photoresist pattern 5 are 220 min/min and 32^/m, respectively.
in.

B□X/minとなシホトレジストパターン5及び8、
i02膜4が残った状態でW58 i 3膜3のエツチ
ングが可能で、しかもGaAsの表面はtlとんどエツ
チングされない。ホトレジストパターン50寸法はW5
Si33へ精度よく転写され、ホトレジストパター:1
5C11/JmはW5Si33−1’ 0.9/Jmと
なる(第1図(C))。
B□X/min photoresist patterns 5 and 8,
The W58 i3 film 3 can be etched with the i02 film 4 remaining, and the GaAs surface is hardly etched. Photoresist pattern 50 dimension is W5
Accurately transferred to Si33, photoresist pattern: 1
5C11/Jm becomes W5Si33-1' 0.9/Jm (FIG. 1(C)).

次の工程では、イオン注入によるn 導伝層をゲートメ
タル3に自動的に形成するため% CVDIc L b
 S s 02膜4’t−1000〜2000 X被着
し8iイオンを注入エネルギー200KeV 、ドース
1xlOcIIL の注入を膜を通して行なう。このと
きゲートメタル3の下部とゲートメタル3の側壁下部の
GaAsにはイオン注入はされず、ゲートメタル3から
Oo」〜0.2μm外側にn+注入層が形成されること
になる。この状態でs H2雰囲気中で850℃、20
分の熱処理を施し、n型チャンネル層2とn+型層6の
イオン注入層の電気的活性化を行なう(第1図(d))
In the next step, % CVDIc L b is used to automatically form an n conductive layer on the gate metal 3 by ion implantation.
A S s 02 film 4't-1000-2000X is deposited and 8i ions are implanted through the film at an energy of 200 KeV and a dose of 1xlOcIIL. At this time, ions are not implanted into the GaAs under the gate metal 3 and the lower sidewalls of the gate metal 3, and an n+ implanted layer is formed outside the gate metal 3 by 0.2 μm. In this state, 850℃, 20℃ in s H2 atmosphere.
The ion-implanted layers of the n-type channel layer 2 and the n+-type layer 6 are electrically activated by heat treatment for several minutes (Fig. 1(d)).
.

次に、ホトレジスト7を2μm厚で塗布し、80℃、2
0分の仮焼篩めとそれに続く180℃60分の焼きなま
しによってゲート凸起部のレジスト膜厚を減少させる(
第1図(e))。
Next, photoresist 7 was applied to a thickness of 2 μm and heated at 80°C for 2
The resist film thickness at the gate protrusion is reduced by 0 minutes of calcining and subsequent annealing at 180°C for 60 minutes (
Figure 1(e)).

続いて、平行平板型のりアクティブイオンエ。Next, the parallel plate type glue active ion.

チャーを用い、CF4+02(5チ)のガスで圧力。Using char, pressurize with CF4+02 (5 chi) gas.

RFパワーとバイアスをそれぞれ4.5Pa、200W
、350±20Vの条件で18分エツチングを行なうと
、ゲート3の頭部のS i02膜4′が露出する。
RF power and bias are 4.5Pa and 200W respectively.
, 350±20V for 18 minutes, the Si02 film 4' at the top of the gate 3 is exposed.

次に、ドライエツチングガスのみをCF4+H2(27
チ)に切換え、他の条件は同一のまま11分間エツチン
グすると、w5Si33の頭部が露出する(第1図(f
))。
Next, use only dry etching gas as CF4+H2 (27
When etching was performed for 11 minutes under the same conditions, the head of w5Si33 was exposed (Fig.
)).

初めのドライエ、テンプではレジストアと8 i02膜
4′のエツチング速度比はl:o、73であり、レジス
ト7のエツチングが主に行なわれるが、二度目のドライ
エツチングでのそれは1:2で8i02のエツチングが
主に行なわれる。
In the first dry etching, the etching speed ratio between the resist and the 8i02 film 4' was 1:0, 73, and the resist 7 was mainly etched, but in the second dry etching, it was 1:2. 8i02 etching is mainly performed.

第1図(glは、ゲート抵抗を低減させるための工程で
、同図(f)のままで逆スバ、タリングをArガスで行
ない、W58i33の表面を若干側ることでW58i3
3の頭部の表面を清浄にし、同一スバ。
Figure 1 (gl is a process for reducing gate resistance. Reverse stripping and taring are performed using Ar gas while maintaining the same shape as shown in figure (f), and the surface of W58i33 is slightly lateralized to reduce the gate resistance.
Clean the surface of the head in step 3 and use the same scrubber.

夕装置でAnの拡散及び反応のバリアとしてTiN膜s
を5ooX厚スバ、タリングにより被着し、さらに続け
てAu9を同様に3000X厚被着せしめられ、この基
板をアセトン液中に浸し、超音波洗浄するとゲート頭部
以外のTiNg及びAu9がり7トオフ法により除去さ
れ、ゲート頭部のみのTiN3とAu 9が残る工程で
ある。
A TiN film is used as a barrier for diffusion and reaction of An in the evening equipment.
The substrate was deposited with a thickness of 500X and talling, and then Au9 was similarly deposited with a thickness of 3000X. When this substrate was immersed in an acetone solution and ultrasonically cleaned, the TiNg and Au9 other than the gate head were removed by the 7-off method. In this process, TiN3 and Au 9 are removed only at the top of the gate.

この工程以外は従来の工程と同様にオーミックメタルで
あるAuGe/Ni層を通常のリングラフィでN十層6
上に抵抗加熱蒸着しH2雰囲気中で′420℃1分間の
熱処理でオーミックアロイ層lOを形成し、ソースとド
レインの電極形成を行なうと共にパ、シペーシ目ン膜と
してCVD5i02膜4”で表面を覆う(第1図(h)
)。
Other than this step, the AuGe/Ni layer, which is an ohmic metal, is formed in a N0 layer by normal phosphorography in the same way as in the conventional process.
An ohmic alloy layer 1O is formed by resistive heating evaporation and heat treatment at 420°C for 1 minute in an H2 atmosphere, and the source and drain electrodes are formed, and the surface is covered with a CVD 5i02 film 4'' as a spacer film. (Figure 1 (h)
).

(発明の効果) このような製造方法で得られるFETは従来のAt又は
T iAtゲートで作られるFETよりゲート長の均一
性もよく素子の歩留も向上させることができ、ソース抵
抗も減少し、高周波特性のよいFETを提供できる。又
ICに適用したときも同様に歩留の向上が期待できる。
(Effects of the invention) The FET obtained by this manufacturing method has better gate length uniformity than FETs made with conventional At or TiAt gates, can improve device yield, and has reduced source resistance. , it is possible to provide an FET with good high frequency characteristics. Furthermore, when applied to ICs, a similar improvement in yield can be expected.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(h)は本発明の一実施例をその整造工
程順に示す素子断面図である。 l・・・・・・G a 、A s基板、2・・・・・・
n導伝型不純物層、3・・・・・・W58 i 3膜、
4,4’#4“・・・・・・8i02膜、5・・・・・
・・・・ホトレジスト膜% 6・・・・・・n 導伝型
不純物層、7・・・・・・ホトレジスト膜、8・・・・
・・T i N 膜% 9・・・・・・Au111.I
O・・・・・・オーミックアロイ層。 (α) (b) (C) (’=’) 第 l 図 <h (&)
FIGS. 1(a) to 1(h) are sectional views showing an embodiment of the present invention in the order of its preparation steps. l...G a , A s substrate, 2...
n conduction type impurity layer, 3...W58 i 3 film,
4,4'#4"...8i02 membrane, 5...
...Photoresist film% 6...n Conductive impurity layer, 7... Photoresist film, 8...
...T i N film% 9...Au111. I
O...Ohmic alloy layer. (α) (b) (C) ('=') Figure l <h (&)

Claims (1)

【特許請求の範囲】[Claims] 半絶縁性の化合物半導体基板を用い、メタルショットキ
ーゲートを持つ電界効果トランジスタの製造において、
該基板の一表面側にトランジスタのチャンネルとなるn
型導伝層を形成する工程と、該表面側にゲート電極パタ
ーンの耐熱性金属を形成し、その上に気相成長法による
絶縁膜を被着する工程と、それに続くイオン注入により
ゲート幅より広い間隔で自動的に、将来高濃度n型導伝
層となる領域に不純物イオンを前記絶縁膜を通して注入
する工程、高温で注入不純物を電気的に活性化したのち
、ホトレジスト膜を該絶縁膜上に塗布し、該ホトレジス
トの焼締めと同時にゲート部の突出部のホトレジスト厚
を減少させる工程と、リアクティブイオンエッチングを
施すことにより前記ゲート部の前記ホトレジスト及び前
記絶縁膜を除去したのち低抵抗金属を被着し、リフトオ
フ法によってゲート部以外の前記低抵抗金属を除去する
工程とを含むことを特徴とする化合物半導体装置の製造
方法。
In the production of field effect transistors with metal Schottky gates using semi-insulating compound semiconductor substrates,
On one surface side of the substrate, there is an n
A process of forming a type conductive layer, a process of forming a heat-resistant metal for a gate electrode pattern on the surface side, and a process of depositing an insulating film on it by vapor phase growth, followed by ion implantation to increase the gate width. A process of automatically implanting impurity ions at wide intervals through the insulating film into regions that will become high-concentration n-type conductive layers in the future. After electrically activating the implanted impurities at high temperature, a photoresist film is placed on the insulating film. A step of reducing the thickness of the photoresist on the protruding portion of the gate portion at the same time as baking and tightening the photoresist, and removing the photoresist and the insulating film on the gate portion by performing reactive ion etching. 1. A method of manufacturing a compound semiconductor device, comprising the steps of: depositing a low-resistance metal on a portion other than a gate portion using a lift-off method;
JP13236484A 1984-06-27 1984-06-27 Manufacture of compound semiconductor device Pending JPS6112082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13236484A JPS6112082A (en) 1984-06-27 1984-06-27 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13236484A JPS6112082A (en) 1984-06-27 1984-06-27 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS6112082A true JPS6112082A (en) 1986-01-20

Family

ID=15079637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13236484A Pending JPS6112082A (en) 1984-06-27 1984-06-27 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS6112082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632803U (en) * 1986-06-24 1988-01-09
US10662785B2 (en) 2012-09-21 2020-05-26 Mitsubishi Hitachi Power Systems, Ltd. Method of welding erosion resistance metallic material and turbine blade

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS632803U (en) * 1986-06-24 1988-01-09
US10662785B2 (en) 2012-09-21 2020-05-26 Mitsubishi Hitachi Power Systems, Ltd. Method of welding erosion resistance metallic material and turbine blade

Similar Documents

Publication Publication Date Title
US4466176A (en) Process for manufacturing insulated-gate semiconductor devices with integral shorts
JP4179492B2 (en) Ohmic electrode structure, manufacturing method thereof, and semiconductor device using ohmic electrode
US4561168A (en) Method of making shadow isolated metal DMOS FET device
JP2019534553A (en) Method for manufacturing insulating layer on silicon carbide and semiconductor device
JPS6112082A (en) Manufacture of compound semiconductor device
CN115312605A (en) Gallium oxide Schottky diode for improving terminal edge peak value electric field and preparation method thereof
CN114171584A (en) Based on Ga2O3Heterojunction field effect transistor and preparation method thereof
CN113871488A (en) Vertical gallium oxide heterojunction diode with composite structure and manufacturing method thereof
CN113871454A (en) Gallium oxide Schottky barrier diode based on silicon dioxide edge terminal and preparation method thereof
CN110808292A (en) GaN-based completely vertical Schottky varactor based on metal eave structure and preparation method thereof
JPS60136263A (en) Manufacture of semiconductor device
JPH046089B2 (en)
JP4708722B2 (en) Method for manufacturing silicon carbide semiconductor device
CN110752185B (en) Wide-swing bidirectional amplitude limiting circuit based on gallium nitride and preparation method thereof
CN115566077A (en) High-thermal-stability silicon carbide Schottky diode and preparation method thereof
JPS59127874A (en) Manufacture of field effect transistor
JPS6142963A (en) Manufacture of semiconductor device
JPS6258154B2 (en)
KR20200016585A (en) SiC semiconductor device and making method
JPS59127875A (en) Manufacture of schottky barrier gate type field effect transistor
JPS5925273A (en) Semiconductor device and manufacture thereof
CN112466943A (en) GaN HEMT based on p-type diamond-doped heat dissipation layer and preparation method
JP2001351926A (en) High-frequency semiconductor device and its manufacturing method
JPS6122872B2 (en)
JPS61203672A (en) Formation of electrode