JPS6111724A - Liquid crystal element - Google Patents

Liquid crystal element

Info

Publication number
JPS6111724A
JPS6111724A JP59131971A JP13197184A JPS6111724A JP S6111724 A JPS6111724 A JP S6111724A JP 59131971 A JP59131971 A JP 59131971A JP 13197184 A JP13197184 A JP 13197184A JP S6111724 A JPS6111724 A JP S6111724A
Authority
JP
Japan
Prior art keywords
liquid crystal
liq
adsorbent
crystal
films
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59131971A
Other languages
Japanese (ja)
Inventor
Akio Yoshida
明雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP59131971A priority Critical patent/JPS6111724A/en
Priority to US06/747,030 priority patent/US4666253A/en
Publication of JPS6111724A publication Critical patent/JPS6111724A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/582Electrically active dopants, e.g. charge transfer agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • G02F1/13392Gaskets; Spacers; Sealing of cells spacers dispersed on the cell substrate, e.g. spherical particles, microfibres
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133337Layers preventing ion diffusion, e.g. by ion absorption

Abstract

PURPOSE:To prevent reduction in the resistance of a liq. crystal layer in a liq. crystal element provided with TFT and to stabilize the working characteristics by incorporating an adsorbent for adsorbing an ionic substance dissolved in the liq. crystal into liq. crystal orienting films and by fixing the adsorbent on the surfaces of the films contacting with the liq. crystal. CONSTITUTION:A material forming liq. crystal orienting films such as polyimide resin is applied to LCD substrates 1, 2 with a spinner, a roll coater or the like in the form of a soln. having a prescribed concn. A liq. contg. fine particles of an adsorbent dispersed by ultrasonic waves is applied to the resulting film in a semihardened state with a spinner or the like, and it is dried and baked. The adsorbent for adsorbing an ionic substance is alumina, carbon or a metal such as Al or Ni, and it is used by 0.1-2pts.wt. per 100pts.wt. liq. crystal orienting film in the form of fine particles of 1-0.005mum particle size. Part of the fine particles 10 of the adsorbent are embedded in the liq. crystal orienting films 9, and the remaining particles are firmly fixed on the surfaces of the films 9 contacting with a liq. crystal 11.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、液晶素子(以下LCDと略す)のうち、表示
電極のON/ OFFの制御を薄膜トランジスタ(以下
TPTと略す)で行わせるものに関し、詳しくは、液晶
のイオン性物質を減少せしめて、TPT駆動における動
作特性を安定化した液晶素子に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a liquid crystal device (hereinafter abbreviated as LCD) in which ON/OFF control of a display electrode is performed by a thin film transistor (hereinafter abbreviated as TPT). Specifically, the present invention relates to a liquid crystal element whose operating characteristics in TPT driving are stabilized by reducing the amount of ionic substances in the liquid crystal.

[従来の技術] 従来の薄膜トランジスタ(TPT)アレイを備えた液晶
素子について、一画素分の断面図例を第1図に示す。ガ
ラス等の基板2上にゲート電極8を付け、絶縁膜7を介
して半導体層6を付ける。この上にソース線(信号線)
5とドレイン線4を配置し、かつドレイン4は画素電極
3の一方と接触している。これらの上に液晶配向膜9を
全面に塗布し、片側基板を形成している。他方の基板1
上には画素電極3と配向膜9を配置し、これらを対向さ
せてLCD周辺をエポキシ接着剤等でシーリングし液晶
11を封入しである。
[Prior Art] FIG. 1 shows an example of a cross-sectional view of one pixel of a liquid crystal element including a conventional thin film transistor (TPT) array. A gate electrode 8 is attached on a substrate 2 made of glass or the like, and a semiconductor layer 6 is attached with an insulating film 7 interposed therebetween. Above this is the source line (signal line)
5 and a drain line 4 are arranged, and the drain 4 is in contact with one of the pixel electrodes 3. A liquid crystal alignment film 9 is applied over the entire surface of these to form a one-sided substrate. Other board 1
A pixel electrode 3 and an alignment film 9 are arranged on top, and the liquid crystal 11 is sealed by sealing the area around the LCD with an epoxy adhesive or the like with these facing each other.

第2図は上記液晶素子の等価回路である。ここでR又は
R6FFはTFTのON又はOFF抵抗、ON C1□’ Ci2” Ic:はそれぞれ配向膜と液晶の
コンデンサ容量、Ril’ Ri2’ RLCは同じく
抵抗を示す。
FIG. 2 is an equivalent circuit of the above liquid crystal element. Here, R or R6FF is the ON or OFF resistance of the TFT, ON C1□'Ci2'' Ic: is the capacitance of the alignment film and liquid crystal, respectively, and Ril'Ri2' RLC is the resistance.

第3図にはTPT駆動させた時の電圧波形の一例を示す
。第1図のゲート電極8に第3図のV の様なゲートパ
ルスが印加され、同時にソース線5に+vsボルト印加
されたとする。この時画素電極3の上下間に生ずる電圧
VL6゜は急速に+VSに達する。(充電過程)この後
V。が下がった時に液晶層に蓄えられた電化で逃げる事
によってVsより電圧が下がってくる。(放電過程)こ
の放電過程の時定数で。□は τOFF ” RLC” LC:  ・・・・・・(1
)で示され、液晶層の抵抗RLCに依存する。
FIG. 3 shows an example of a voltage waveform when TPT is driven. Assume that a gate pulse such as V 2 in FIG. 3 is applied to the gate electrode 8 in FIG. 1, and at the same time +vs volt is applied to the source line 5. At this time, the voltage VL6° generated between the upper and lower sides of the pixel electrode 3 rapidly reaches +VS. (Charging process) After this, V. When the voltage drops, the electricity stored in the liquid crystal layer escapes, causing the voltage to drop below Vs. (Discharge process) The time constant of this discharge process. □ is τOFF "RLC" LC: ......(1
) and depends on the resistance RLC of the liquid crystal layer.

実際に液晶層に印加される実効電圧は、第3図の斜線部
で示される面積であり、1=1.ではVL6(0)で示
される。またV、は配向膜部分にかかる電圧であり、液
晶層には寄与しない。
The effective voltage actually applied to the liquid crystal layer is the area shown by the shaded area in FIG. 3, where 1=1. In this case, it is indicated by VL6(0). Further, V is a voltage applied to the alignment film portion and does not contribute to the liquid crystal layer.

この時vL6(O)は次式で示される。At this time, vL6(O) is expressed by the following equation.

・・・・・・(2) vLcDは上下電極にかかる電圧であり、VLc(0)
 or (t)はこのうち液晶部分にかかる電圧である
......(2) vLcD is the voltage applied to the upper and lower electrodes, and VLc(0)
or (t) is the voltage applied to the liquid crystal portion.

また液晶層の抵抗RLCが小さくなると必然的に斜線部
の面積が小さくなり、液晶層にかかる実効電圧が小さく
なる。よって誘電異方性が正のネマチック液晶を用い、
水平配向させたLCDの場合、TPT駆動させた時のV
−7曲線は矩形波駆動させた時よりも高電圧側にシフト
する。いまBDH社製液晶液晶7での例を第4図の曲線
(a)に示す。
Furthermore, when the resistance RLC of the liquid crystal layer becomes smaller, the area of the shaded portion inevitably becomes smaller, and the effective voltage applied to the liquid crystal layer becomes smaller. Therefore, using a nematic liquid crystal with positive dielectric anisotropy,
In the case of horizontally aligned LCD, V when driven by TPT
The −7 curve shifts to a higher voltage side than when driven by a square wave. An example of liquid crystal 7 manufactured by BDH is shown in curve (a) in FIG.

LCDは配向膜にポリイミド1000人、セルギャップ
lQpm、ツイスト角80°である。
The LCD has an alignment film of 1000 polyimide, a cell gap of 1Qpm, and a twist angle of 80°.

また第5図にはV  =6Vの時のVLCD波形の例を
示す。液晶テレビなどでは通常線順次駆動によって画面
を表示するが、各走査線が選択されていない時間は情報
を保持していなければならない。60Hzノンインター
レスモードの場合この時間は約16.7m5ecとなり
、この時間内にvLc(t)が液晶のvth以下になる
と画像表示ができなくなる。
Further, FIG. 5 shows an example of the VLCD waveform when V=6V. In LCD televisions and the like, the screen is normally displayed by line sequential driving, but information must be retained during the time when each scanning line is not selected. In the case of 60 Hz non-interlace mode, this time is approximately 16.7 m5ec, and if vLc(t) becomes less than vth of the liquid crystal within this time, image display will no longer be possible.

E−7の未処理の場合V、。。の大幅な低下が見られる
(第5図(a))。これは液晶層の抵抗RLCが小さい
ためである。
V for untreated E-7. . A significant decrease is seen (Figure 5(a)). This is because the resistance RLC of the liquid crystal layer is small.

以上の様にTPT駆動の場合、液晶の抵抗が低下すると (イ)V−7曲線が高電圧側にシフトし、駆動電圧が上
がる、 (ロ)極端な場合絵が出なくなる、 という欠点があった。
As mentioned above, in the case of TPT drive, when the resistance of the liquid crystal decreases, (a) the V-7 curve shifts to the high voltage side and the drive voltage increases, and (b) in extreme cases, the picture does not come out. Ta.

[発明が解決しようとする問題点] 本発明は、上記のように従来問題となっていた、液晶層
の抵抗が経時的に低下するために起こる欠点をなくすた
めになされたものである。
[Problems to be Solved by the Invention] The present invention has been made in order to eliminate the conventional problems as described above, which occur because the resistance of the liquid crystal layer decreases over time.

[問題点を解決するための手段及び作用]本発明は、上
記液晶層の抵抗の低下が液晶と接触している物質から液
晶内へ溶出したイオンによりひき起させること、また、
このイオンを吸着剤によって吸着させて液晶中のイオン
濃度が増大しないようにすれば、TPT駆動の液晶素子
における液晶の抵抗の低下、それに基づく駆動電圧の上
昇や画像が出なくなる現象を抑制することができること
を見いだしたことに基づきなされたものである。
[Means and effects for solving the problems] The present invention provides that the reduction in the resistance of the liquid crystal layer is caused by ions eluted into the liquid crystal from a substance in contact with the liquid crystal, and
By adsorbing these ions with an adsorbent to prevent the ion concentration in the liquid crystal from increasing, it is possible to suppress the decrease in the resistance of the liquid crystal in a TPT-driven liquid crystal element, the resulting increase in the driving voltage, and the phenomenon in which images do not appear. This was done based on the discovery that it could be done.

しかして、本発明によれば薄膜トランジスタを備えた液
晶素子や液晶シャッタ素子などであって、液晶配向膜の
中及び液晶と接する面上にイオン性物質の吸着剤を含有
せしめてなることを特徴とする液晶素子が提供される。
According to the present invention, there is provided a liquid crystal element, a liquid crystal shutter element, etc. equipped with a thin film transistor, characterized in that an adsorbent of an ionic substance is contained in the liquid crystal alignment film and on the surface in contact with the liquid crystal. A liquid crystal element is provided.

(1)式中の液晶層抵抗RLCを大にすれば、τ。□が
大になり、情報の保持時間が長くなる。
(1) If the liquid crystal layer resistance RLC in equation (1) is increased, τ. □ becomes larger, and the information retention time becomes longer.

一方液晶層の比抵抗ρは次式でR5゜と関係付けられる
On the other hand, the specific resistance ρ of the liquid crystal layer is related to R5° using the following equation.

ρ・d RLC=3   ・・・・・・(3) ここでSは電極面積、dは電極間隔である。ρ・d RLC=3 (3) Here, S is the electrode area and d is the electrode spacing.

液晶組成物の製造段階では精製をくり返し、ρ≧lXl
0“1ΩC11lを得る車は十分可能であるが、LCD
に注入された後にセル内の不純物を溶かしこみ、ρは低
下する。経験的にρのレベルは5×109〜5×10“
0Ωcmであり、別の実験から、この時溶けこんだ不純
物濃度は数ppm以下と推定できる。換言すれば、数p
pm以下の不純物が溶は込む事でρは一桁低下し、RL
Cも同様に低下する。逆に数ppm程度の不純物を取除
けばRLCの低下もない訳である。そこで液晶配向膜に
液晶と接するようにイオン性物質の吸着剤を含有せしめ
、RLcのアップを回ったものである。
At the manufacturing stage of the liquid crystal composition, purification is repeated until ρ≧lXl
It is quite possible for a car to obtain 0"1ΩC11l, but the LCD
After being injected into the cell, the impurities in the cell are dissolved and ρ is lowered. Empirically, the level of ρ is 5×109 to 5×10”
0 Ωcm, and from another experiment, it can be estimated that the concentration of impurities dissolved at this time is several ppm or less. In other words, the number p
As impurities below pm dissolve in, ρ decreases by an order of magnitude, and RL
C similarly decreases. On the contrary, if several ppm of impurities are removed, there is no decrease in RLC. Therefore, an adsorbent of an ionic substance is contained in the liquid crystal alignment film so as to be in contact with the liquid crystal, thereby increasing the RLc.

本発明の液晶素子における液晶配向膜の材料としては、
ポリイミド樹脂、ポリアミド樹脂、ポリビニルアルコー
ル、フェノール樹脂等の合成樹脂や、シリコン系カップ
リング剤、チタン系カップリング剤、ジルコニウム系カ
ップリング剤等のカップリング剤等が用いられる。
Materials for the liquid crystal alignment film in the liquid crystal element of the present invention include:
Synthetic resins such as polyimide resin, polyamide resin, polyvinyl alcohol, and phenol resin, and coupling agents such as silicone coupling agents, titanium coupling agents, and zirconium coupling agents are used.

これらの材料は、所定の濃度の溶液状あるいは液状でス
ピンナー、ロールコータ−等でLCD基板上に塗布する
ことにより成膜される。
These materials are formed into a film by applying the solution or liquid at a predetermined concentration onto the LCD substrate using a spinner, roll coater, or the like.

本発明におけるイオン性物質の吸着剤としては、アルミ
ナ、ゼオライト、イオ、ン交換樹脂、カーホンの他、金
属アルミニウム、金属ニッケル、鉄−コバルト合金等の
金属が用いられる。
As the adsorbent for ionic substances in the present invention, metals such as alumina, zeolite, ion exchange resins, carphone, metal aluminum, metal nickel, iron-cobalt alloy, etc. are used.

吸着剤の粒径はスペーサー粒径(約10ルl11)以下
である必要があり、lルI11〜0.005 m rr
+の範囲であるのが好ましい。
The particle size of the adsorbent must be less than or equal to the spacer particle size (approximately 10 l l11), l l l l11 ~ 0.005 mrr
A range of + is preferable.

吸着剤の使用量としては、液晶配向膜100重量部に対
し、0.05〜5重量部が好ましく、0.1〜2重量部
がより好ましい。
The amount of adsorbent used is preferably 0.05 to 5 parts by weight, more preferably 0.1 to 2 parts by weight, based on 100 parts by weight of the liquid crystal alignment film.

液晶配向膜の中及び液晶と接する面状にイオン性物質の
吸着剤を含有せしめるには、液晶配向膜を形成する材料
を所定の濃度の溶液状あるいは液状でスピンナー、ロー
ルコータ−等でLCD基板上に塗布し、溶媒の蒸発ある
いは硬化反応により、塗膜が半硬化した状態(ある程度
の硬さはあるが、吸着剤の粒子を固着できる程度の粘着
性を示す状態)において、吸着剤の微粉末粒子を超音波
等を用いて分散媒中に分散させた分散液を、前記半硬化
の膜上にスピンナー等で塗布した後、溶剤の乾燥、次い
で焼成する方法をとるのが好ましい。このような方法に
よれば、吸着剤の微粒子は液晶配向膜の表面に強固に固
着し固定されるので、この後のラビング処理によっても
膜面から除去され難い。第4図に本発明に係る液晶素子
の一実施例の断面を示す。10は吸着剤の粒子であり、
粒子の一部は液晶配向膜中に埋入し、残部が液晶配向膜
面から露出して液晶と接している。
In order to contain an adsorbent of an ionic substance in the liquid crystal alignment film and on the surface in contact with the liquid crystal, the material forming the liquid crystal alignment film is applied to the LCD substrate in a solution or liquid state at a predetermined concentration using a spinner, roll coater, etc. When the paint film is semi-cured (somewhat hard, but sticky enough to stick adsorbent particles) due to evaporation of the solvent or curing reaction, fine particles of the adsorbent It is preferable to use a method in which a dispersion liquid in which powder particles are dispersed in a dispersion medium using ultrasonic waves or the like is applied onto the semi-cured film using a spinner or the like, followed by drying the solvent and then baking. According to such a method, the fine particles of the adsorbent firmly adhere and are fixed to the surface of the liquid crystal alignment film, so that they are difficult to be removed from the film surface even by the subsequent rubbing treatment. FIG. 4 shows a cross section of an embodiment of a liquid crystal element according to the present invention. 10 is an adsorbent particle;
A part of the particles is embedded in the liquid crystal alignment film, and the remaining part is exposed from the surface of the liquid crystal alignment film and is in contact with the liquid crystal.

ゲート電極8にゲートパルスV を印加し、同時にソー
ス線5に+■sポルト印加すると、画素電極3の上下間
に■  は急速に+VSに達する。
When a gate pulse V 2 is applied to the gate electrode 8 and +■s port is simultaneously applied to the source line 5, the voltage between the upper and lower sides of the pixel electrode 3 rapidly reaches +VS.

L(10 この後V が下がった時にvLCDがVsなる値から下
がってくる状態を実施例1の場合について第6図(b)
(vS=6vの場合)に示す。液晶配向膜未処理の従来
例の場合[第6図(a)] と比較するど、16.7m
5ec経過後のvしCDの値が大きいことがわかる。
L(10 After this, when V decreases, vLCD decreases from the value of Vs as shown in FIG. 6(b) for the case of Example 1.
(When vS=6v). In comparison with the conventional example without liquid crystal alignment film treatment [Fig. 6 (a)], it is 16.7 m.
It can be seen that the value of v and CD after 5 ec has passed is large.

液晶中にアルミナ等のイオン性物質の吸着剤を分散させ
て液晶中のイオン性物質を吸着除去する方法もあり得る
が、この方法では微粉末を分散させるため、イオンの吸
着等で粒子の表面電荷が小さくなると、凝集して大きな
粒子となり黒点不良の原因となりやすい。よっと吸着剤
を液晶中に浮遊させておくよりも、何らかの形で固定し
た本発明の方が好ましい結果を与える。
There is also a method of adsorbing and removing ionic substances in the liquid crystal by dispersing an adsorbent of an ionic substance such as alumina in the liquid crystal, but this method disperses fine powder, so the surface of the particles is absorbed by the adsorption of ions, etc. When the electric charge becomes small, particles tend to aggregate and become large particles, which can easily cause sunspot defects. Rather than leaving the adsorbent floating in the liquid crystal, the present invention in which the adsorbent is fixed in some way gives better results.

液晶を汚す他の汚染源には、シール剤、封口剤が考えら
れる。これらのものにもアルミナ等吸着剤の混合は効果
を示すと考えられる。
Other sources of contamination that contaminate liquid crystals include sealants and sealants. Mixing adsorbents such as alumina is thought to be effective for these materials as well.

[実施例] 次に実施例を挙げて本発明を説明する。[Example] Next, the present invention will be explained with reference to Examples.

実施例1 ポリイミド溶液(東し株制5P−510)をジメチルア
セトアミドを溶媒として所定濃度まで希釈後スピンナー
でLCD基板上に塗布した。その後180℃約1時間焼
成して半硬化の膜とした。一方面品名フレオン、グイフ
ロンなどの低沸点のフッ化炭化水素系溶媒に、平均粒径
500Aのアルミナを一定量超音波をかけながら分散さ
せた分散液を前記配向膜上にスピンナーで塗布した。そ
の後250〜300℃で一時間焼成して表面に吸着剤が
分散されたポリイミド膜を得た。吸着剤は、配向膜10
0重量部に対し、0.5重量部の割合で含有していた。
Example 1 A polyimide solution (Toshi Co., Ltd. 5P-510) was diluted to a predetermined concentration using dimethylacetamide as a solvent, and then applied onto an LCD substrate using a spinner. Thereafter, it was baked at 180° C. for about 1 hour to form a semi-cured film. On the other hand, a dispersion liquid in which a certain amount of alumina having an average particle size of 500 A was dispersed in a low boiling point fluorinated hydrocarbon solvent such as Freon or Guiflon while applying ultrasonic waves was applied onto the alignment film using a spinner. Thereafter, it was baked at 250 to 300° C. for one hour to obtain a polyimide film in which the adsorbent was dispersed on the surface. The adsorbent is the alignment film 10
It was contained in a ratio of 0.5 parts by weight to 0 parts by weight.

これはこの後のラビング処理によっても除去されないも
のであった。よって吸着剤を配向膜表面に固定できたこ
とになる。
This was not removed even by subsequent rubbing treatment. Therefore, the adsorbent could be fixed on the surface of the alignment film.

第5図(b)及び第6図(b)にこの様にして調製した
配向膜を持つ第4図に示した如きLCDに、BDH社製
液晶液晶7を注入した時のV−7曲線、及びvLCD波
形を示す。未処理のものに比べてRLcが大きくなって
いるためV−7曲線が低電圧側にシフトしているのがわ
かる。このため末法による吸着剤の固定方法の効果は明
らかである。
FIGS. 5(b) and 6(b) show the V-7 curves when liquid crystal 7 manufactured by BDH was injected into the LCD shown in FIG. 4 having the alignment film prepared in this way. and vLCD waveforms are shown. It can be seen that the V-7 curve is shifted to the lower voltage side because RLc is larger than that of the untreated one. Therefore, the effect of the method of fixing the adsorbent using the powder method is obvious.

実施例2〜4 実施例1におけるアルミナを下記表1の吸着剤に変えた
以外は、実施例と同様にして吸着剤を含有せしめた配向
膜を有するLCDを作製し、BDH社製液晶液晶7を注
入し、V−7曲線及びvLoD波形を調べたところ、実
施例と略同様の好結果が得られた。
Examples 2 to 4 An LCD having an alignment film containing an adsorbent was produced in the same manner as in Example 1, except that the alumina in Example 1 was changed to the adsorbent shown in Table 1 below. was injected and the V-7 curve and vLoD waveform were examined, and good results substantially similar to those in the example were obtained.

表  1 [発明の効果] 本発明においては、上記のようにTPTを備えた液晶素
子の液晶配向膜の中及び液晶と接する面上にイオン性物
質の吸着剤を含有せしめ、ているので、液晶中に溶出し
たイオン性物質は吸着剤に吸着されるため、液晶層の抵
抗R5゜が低下せず、またV−7曲線が高電圧側にシフ
トするのが防止され、低電圧駆動かつ定電圧駆動が可能
になり、動作特性が安定化する特徴がある。さらにR1
゜が高く保持されるため、放電過程の時定数で  かF
F 大きく、情報の保持時間が長くなり、画像表示について
の品位が上がる。
Table 1 [Effects of the Invention] In the present invention, as described above, an adsorbent of an ionic substance is contained in the liquid crystal alignment film of the liquid crystal element equipped with TPT and on the surface in contact with the liquid crystal. Since the ionic substances eluted into the liquid crystal layer are adsorbed by the adsorbent, the resistance R5° of the liquid crystal layer does not decrease, and the V-7 curve is prevented from shifting to the high voltage side, making it possible to drive at low voltage and at constant voltage. It has the characteristics of enabling drive and stabilizing operating characteristics. Furthermore, R1
Since ° is held high, the time constant of the discharge process is F
F is large, the information retention time is longer, and the quality of image display is improved.

また、τ。□が増大することは画像の単位面積当りの走
査線数を増す車が可能になる事をも意味し、高品位のデ
ィスプレイ化(例え・ば液晶テレビの表示品位の向上)
にもつ連ながる。
Also, τ. An increase in □ also means that it will be possible to increase the number of scanning lines per unit area of the image, leading to higher-quality displays (for example, improving the display quality of LCD TVs).
It is also connected to.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はTPTを備えた従来の液晶素子の例を示す断面
要図、第2図は第1図の素子の等価回路を示す回路図、
第3図は第1図に示した素子をTPT駆動させた時の電
圧波形の一例を示す概略説明図、第4図は本発明に係る
液晶素子の実施例を示す断面要図、第5図は未処理の配
向膜を用いた場合(a)と本発明に係る改良された配向
膜を用いた場合(b)のV−7曲線を示すグラフ、第6
図は未処理の配向膜を用いた場合(a)と本発明に係る
改良された配向膜を用いた場合(b)のV s =6 
V (30Hz+7)場合)のvLCD波形を示す波形
図である。 1.2・・・ガラス基板、  3・・・透明電極、4・
・・ドレイン電極、    5・・・ソース電極、6・
・・半導体層、     7・・・絶縁層、8・・・ゲ
ート電極、    9・・・液晶配向膜、lO・・・吸
着剤の粒子、   11・・・液晶、RoN、RoFF
・・・ON又はOFF時のTFT抵抗Cil”i2・・
・液晶配向膜の容量 C5゜・・・液晶層容量 R11,R12・・・液晶配向膜の抵抗RLC・・・液
晶層の抵抗 ■、・・・ゲート電圧 vS・・・ソース電圧
FIG. 1 is a cross-sectional diagram showing an example of a conventional liquid crystal element equipped with TPT, and FIG. 2 is a circuit diagram showing an equivalent circuit of the element shown in FIG.
3 is a schematic explanatory diagram showing an example of a voltage waveform when the element shown in FIG. 1 is driven by TPT, FIG. 4 is a cross-sectional diagram showing an example of the liquid crystal element according to the present invention, and FIG. is a graph showing the V-7 curves of (a) when an untreated alignment film is used and (b) when an improved alignment film according to the present invention is used;
The figure shows V s = 6 when an untreated alignment film is used (a) and when an improved alignment film according to the present invention is used (b).
FIG. 3 is a waveform diagram showing a vLCD waveform of V (30Hz+7) case). 1.2... Glass substrate, 3... Transparent electrode, 4...
...Drain electrode, 5...Source electrode, 6.
... Semiconductor layer, 7... Insulating layer, 8... Gate electrode, 9... Liquid crystal alignment film, lO... Adsorbent particles, 11... Liquid crystal, RoN, RoFF
...TFT resistance Cil"i2 when ON or OFF...
・Capacitance of liquid crystal alignment film C5゜...Liquid crystal layer capacitance R11, R12...Resistance of liquid crystal alignment film RLC...Resistance of liquid crystal layer■,...Gate voltage vS...Source voltage

Claims (1)

【特許請求の範囲】[Claims] 薄膜トランジスタを備えた液晶素子であって、液晶配向
膜の中及び液晶と接する面上にイオン性物質の吸着剤を
含有せしめてなることを特徴とする液晶素子。
1. A liquid crystal element comprising a thin film transistor, characterized in that an adsorbent of an ionic substance is contained in a liquid crystal alignment film and on a surface in contact with the liquid crystal.
JP59131971A 1984-06-28 1984-06-28 Liquid crystal element Pending JPS6111724A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59131971A JPS6111724A (en) 1984-06-28 1984-06-28 Liquid crystal element
US06/747,030 US4666253A (en) 1984-06-28 1985-06-20 Liquid crystal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59131971A JPS6111724A (en) 1984-06-28 1984-06-28 Liquid crystal element

Publications (1)

Publication Number Publication Date
JPS6111724A true JPS6111724A (en) 1986-01-20

Family

ID=15070506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59131971A Pending JPS6111724A (en) 1984-06-28 1984-06-28 Liquid crystal element

Country Status (1)

Country Link
JP (1) JPS6111724A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278530A (en) * 1985-10-02 1987-04-10 Seiko Epson Corp Liquid crystal display unit
JPH01113733A (en) * 1987-10-27 1989-05-02 Toyota Motor Corp Liquid crystal display element
JPH01281420A (en) * 1988-05-09 1989-11-13 Seiko Epson Corp Liquid crystal panel
US5148300A (en) * 1988-06-01 1992-09-15 Sharp Kabushiki Kaisha Liquid crystal display device
US6462796B1 (en) * 1998-04-23 2002-10-08 Sharp Kabushiki Kaisha Liquid crystal display element and manufacturing method thereof
JP2002365640A (en) * 2001-03-26 2002-12-18 Lg Phillips Lcd Co Ltd Liquid crystal display device and manufacturing method therefor
JP2008009214A (en) * 2006-06-30 2008-01-17 Future Vision:Kk Display device reduced in chromaticity difference of white color and its manufacturing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6278530A (en) * 1985-10-02 1987-04-10 Seiko Epson Corp Liquid crystal display unit
JPH01113733A (en) * 1987-10-27 1989-05-02 Toyota Motor Corp Liquid crystal display element
JPH07113719B2 (en) * 1987-10-27 1995-12-06 トヨタ自動車株式会社 Liquid crystal display element
JPH01281420A (en) * 1988-05-09 1989-11-13 Seiko Epson Corp Liquid crystal panel
US5148300A (en) * 1988-06-01 1992-09-15 Sharp Kabushiki Kaisha Liquid crystal display device
US6462796B1 (en) * 1998-04-23 2002-10-08 Sharp Kabushiki Kaisha Liquid crystal display element and manufacturing method thereof
JP2002365640A (en) * 2001-03-26 2002-12-18 Lg Phillips Lcd Co Ltd Liquid crystal display device and manufacturing method therefor
US7474372B2 (en) 2001-03-26 2009-01-06 Lg Display Co., Ltd. Liquid crystal display having a protective alignment film and fabricating method thereof
JP2008009214A (en) * 2006-06-30 2008-01-17 Future Vision:Kk Display device reduced in chromaticity difference of white color and its manufacturing method

Similar Documents

Publication Publication Date Title
US7771799B2 (en) Liquid crystal-soluble particle, method for manufacturing the same and liquid crystal device element
US4666253A (en) Liquid crystal device
JPS6111724A (en) Liquid crystal element
US5682218A (en) Electrooptical device having specific polymerized columnar spacers and method for forming the same
US5559619A (en) Liquid crystal electro-optical device and manufacturing method for the same
JP5511340B2 (en) Liquid crystal display
JP2638237B2 (en) Liquid crystal element
KR100412482B1 (en) Method of producing FLCD
JPH0264525A (en) Tn type liquid crystal panel
JPS6112787A (en) Liquid crystal element
JPH0854629A (en) Liquid crystal display element and its production
JPS6173131A (en) Manufacture of liquid crystal display element
JPS63163426A (en) Ferroelectric liquid crystal element
KR100433412B1 (en) Method of producing FLCD
JPH03137620A (en) Ferroelectric liquid crystal device
JPH08152654A (en) Liquid crystal device
JP3176079B2 (en) Optical modulator
JP3723109B2 (en) Method for manufacturing liquid crystal display element and liquid crystal display element
JPH06273708A (en) Liquid crystal display element
JPH05232476A (en) Liquid crystal display element
JPH0743695A (en) Liquid crystal electro-optical device and its production
JPH06250190A (en) Liquid crystal display device
JP2001188233A (en) Liquid crystal display device
JPS6238421A (en) Liquid crystal display element
JP2000147512A (en) Liquid crystal element and its manufacture