JPS6111442B2 - - Google Patents

Info

Publication number
JPS6111442B2
JPS6111442B2 JP54076705A JP7670579A JPS6111442B2 JP S6111442 B2 JPS6111442 B2 JP S6111442B2 JP 54076705 A JP54076705 A JP 54076705A JP 7670579 A JP7670579 A JP 7670579A JP S6111442 B2 JPS6111442 B2 JP S6111442B2
Authority
JP
Japan
Prior art keywords
cerium
metal
cobalt
rare earth
cemm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54076705A
Other languages
Japanese (ja)
Other versions
JPS5617003A (en
Inventor
Keiichi Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP7670579A priority Critical patent/JPS5617003A/en
Publication of JPS5617003A publication Critical patent/JPS5617003A/en
Publication of JPS6111442B2 publication Critical patent/JPS6111442B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、主としてセリウムミツシユメタル、
サマリウムおよびコバルトを含む希土類コバルト
永久磁石、特に希土類をRとしてRCo4.0〜4.8
としてよく知られている組成比の材料に関するも
のである。 代表的な希土類コバルト永久磁石は、サマリウ
ム・コバルト系磁石であるが、サマリウムは高価
であり、資源としても量的に少ないことから、サ
マリウムの一部をサマリウムに比べ安価でかつ豊
富に存在するセリウムミツシユメタルで置換し、
より安価な永久磁石を製造することが種々試みら
れている。 ところで、セリウムミツシユメタルはロツト毎
に希土類組成が変動するため、角形性の良好な磁
気特性を有する永久磁石を再現性よく得ることが
困難である欠点を有していた。 本発明は、上記欠点を解消し、角形性の良好な
磁気特性をもち、かつ工業規模できわめて再現性
よく製造可能な永久磁石材料を提供するものであ
る。 セリウムミツシユメタルとは鉱石から分離され
た軽希土類を表わすものであるが、希土類組成は
一定ではなく、少なくともセリウム45〜55wt
%、ランタン20〜40wt%、ネオジウム5〜15wt
%、プラセオジウム0〜5wt%の範囲で変動す
る。従来、サマリウムの一部をセリウムミツシユ
メタルで置換した希土類コバルト合金作成にあた
り、上記のセリウムミツシユメタルをそのまま用
いていた。 本発明はセリウムミツシユメタル中のセリウム
含有量が著しく磁気特性に影響を及ぼすことを知
見したことに基づくものである。すなわち、セリ
ウムミツシユメタル中のセリウム含有量を55〜
65wt%に制御し、その制御法として希土類コバ
ルト合金作成時にセリウムを添加することによ
り、角形性に優れた磁気特性を有した永久磁石を
再現性よく得ることが可能となつた。この場合サ
マリウムをセリウムミツシユメタルで置換する割
合いxは、何ら限定するものではない。仮にxを
限定するとすれば原料価格面による。すなわちサ
マリウムをセリウムミツシユメタルで置換するこ
とにより、全量コバルトのみから作つたと仮定し
た原料価格よりも低くなるように選べば良い。 次に、本発明の具体的製造法は次の通りであ
る。 合金粉末は振動ミル等の粉砕機で粉末粒径3μ
前後にする。この後この微粉末は10キロエルステ
ツド以上の磁界中で0.5〜1.5t/cm2で成形する。
この後真空中約400〜500℃で2〜3時間脱ガスを
行ない、1020〜1060℃の範囲で焼結後、800℃ま
で徐冷し、その後常温まで急冷され磁石製品に製
造される。 以下実施例によつて本発明を説明する。 実施例 1 Ce、La、Nd、PrおよびSmの5種類の希土類
金属(純度99.9%)をおのおの希土類金属36.0wt
%、金属コバルト(純度99.9%)64.0wt%の割合
で秤量し、これを真空後アルゴン置換した溶解炉
中でアルミナルツボを用い高周波溶解を行ない、
金型に鋳造させて、RCo4.36(ただしR=Ce、
La、Nd、Pr、Sm)なる5種類の合金インゴツト
を作製する。これらの合金から作成する磁石の特
性はRE2O3とコバルト粉末から直接合金粉末を作
成するいわゆる還元拡散法によつても等価な結果
であつた。従つて他の実施例についても溶解法の
場合についてのみ述べる。この合金を個別に鉄乳
鉢で48メツシユ以下に粗粉砕後、振動ミル粉砕機
を用い有機媒体中で粉末粒径3μ前後に細粉砕す
る。この後Ce―Co合金24〜42wt%、La―Co合金
12〜21wt%、Nd―Co合金6〜15wt%、Pr―Co
合金3wt%およびSm―Co合金40wt%の範囲内で
種々混合する。このようにして各希土類の量をこ
まかに制御した粉末ができ上る。この後各混合粉
末は10キロエルステツドの磁界中で1ton/cm2の圧
力で成形する。これらの成形体は真空中500℃で
脱ガスを行ない、1050℃で1時間焼結後、800℃
まで徐冷し、その後常温まで急冷を行う。ここで
得られた数多くの磁石体からCeの含有量に関す
る効果を見るために第1図に磁気特性とCe/Ce
+La+Nd+Prwt%の関係を示す。この図からわ
かるようにCe/Ce+La+Nd+Pr55〜65wt%の
広い範囲で保磁力(BC)と残留磁束密度
(Br)がほぼ同等のものが得られるが、Ceと
CeMMとの合計における全Ceの量が55wt%未満
あるいは65wt%を越えるとBCは劣化する。 実施例 2 Ce48wt%、La32wt%、Nd15wt%、Pr5wt%か
ら成るセリウムミツシユメタル金属15.1wt%、
Sm13.0wt%、Ce4.5wt%およびコバルト67.4wt
%をこの割合で秤量し、真空後アルゴン置換した
溶解炉中でアルミナルツボを用いて高周波溶解を
行ないSm0.4(Ce+CeMM)0.6Co5(ただしCe
とCeMMとの合計における全Ceの量は60wt%)
なる合金Aを作成する。また上記ミツシユメタル
金属18.9wt%、Sm16.4wt%、Ce5.6wt%および
金属コバルト59.1wt%をこの割合で秤量し、高周
波溶解を行ないSm0.4(Ce+CeMM)0.6Co3.5
(ただしCeとCeMMとの合計における全Ceの量は
60wt%)なる合金Bを作成する。以上の2種類
の合金を個別に鉄乳鉢で48メツシユ以下に粗粉砕
後振動ミル粉砕機を用いて有機媒体中で粉末粒径
3μ前後に細粉砕する。この後この2種類の微粉
末を種種の割合で混合後、10キロエルステツドの
磁界中で1ton/cm2の圧力で成形する。これらの成
形体は真空中500℃で脱ガスを行ない1050℃で1
時間焼結後800℃まで徐冷し、この後常温まで急
冷を行なう。第2図に得られた磁気特性をセリウ
ムを添加しない場合と比較して示す。比較のため
にセリウムを添加しない試料は、ミツシユメタル
中のCe量は48%であつた。この図からわかるよ
うにセリウムを添加した場合磁気特性の角形性に
優れているのみならず広い希土類金属/コバルト
組成比率範囲で安定して良好な磁気特性が得られ
ることがわかり、極めて再現性よく製造可能であ
ることを示す。 実施例 3 実施例2と同一ロツトのセリウムミツシユメタ
ル金属20.1wt%、Sm6.5wt%、Ce6.0wt%および
金属コバルト67.4wt%をこの割合で秤量し、真空
後アルゴン置換した溶解炉中でアルミナルツボ中
で高周波溶解を行ない、Sm0.2(Ce+CeMM)0
.8Co5(ただしCeとCeMMとの合計に対する全
Ceの量は60wt%)なる合金Aを作成する。また
上記ミツシユメタル金属25.2wt%、Sm8.2wt%、
Ce7.5wt%および金属コバルト59.1wt%をこの割
合で秤量し、高周波溶解を行ない、Sm0.2(Ce
+CeMM)0.8Co3.5(ただしCeとCeMMとの合
計に対する全Ceの量は60wt%)なる合金Bを作
成する。以上の2種類の合金を個別に鉄乳鉢で48
メツシユ以下に粗粉砕後、振動ミル粉砕機を用い
て有機媒体中で粉末粒径3μ前後に細粉砕する。
この後この2種類の微粉末を種々の割合で混合
後、10キロエルステツドの磁界中で1ton/cm2の圧
力で成形する。これらの成形体は真空中500℃で
脱ガスを行ない1025℃で1時間焼結後、800℃ま
で徐冷し、この後常温まで急冷を行なう。第1表
に得られた磁気特性を示す。この場合も広い希土
類金属/コバルト組成比率範囲で極めて安定した
磁気特性が得られている。
The present invention mainly consists of cerium mitsushi metal,
Rare earth cobalt permanent magnets containing samarium and cobalt, especially RCo 4.0 to 4.8 with rare earth R
This relates to a material with a well-known composition ratio. A typical rare earth cobalt permanent magnet is a samarium-cobalt magnet, but since samarium is expensive and is a scarce resource, some of the samarium is replaced with cerium, which is cheaper and more abundant than samarium. Replace with Mitsushi Metal,
Various attempts have been made to manufacture cheaper permanent magnets. However, since the rare earth composition of cerium metal varies from lot to lot, it has been difficult to obtain permanent magnets with good squareness and magnetic properties with good reproducibility. The present invention eliminates the above-mentioned drawbacks, provides a permanent magnet material that has magnetic properties with good squareness, and can be manufactured on an industrial scale with extremely high reproducibility. Cerium metal refers to light rare earth metals separated from ores, but the rare earth composition is not constant, with at least 45 to 55 wt of cerium.
%, lanthanum 20-40wt%, neodymium 5-15wt
%, Praseodymium varies from 0 to 5 wt%. Conventionally, when producing rare earth cobalt alloys in which a portion of samarium was replaced with cerium metal, the above-mentioned cerium metal was used as is. The present invention is based on the finding that the cerium content in cerium metal significantly affects magnetic properties. In other words, the cerium content in Cerium Mitsushi Metal is 55~
By controlling the amount of cerium to 65 wt% and adding cerium during the production of rare earth cobalt alloys, it has become possible to obtain permanent magnets with excellent squareness and magnetic properties with good reproducibility. In this case, the ratio x of replacing samarium with cerium metal is not limited at all. If x were to be limited, it would depend on raw material prices. In other words, by substituting samarium with cerium metal, the raw material price can be chosen so that it is lower than the raw material price assuming that it is made entirely from cobalt. Next, the specific manufacturing method of the present invention is as follows. The alloy powder is crushed to a powder particle size of 3μ by a crusher such as a vibration mill.
Go back and forth. Thereafter, this fine powder is compacted at 0.5 to 1.5 t/cm 2 in a magnetic field of 10 kOersted or more.
Thereafter, the product is degassed in a vacuum at about 400-500°C for 2-3 hours, sintered at 1020-1060°C, slowly cooled to 800°C, and then rapidly cooled to room temperature to produce a magnetic product. The present invention will be explained below with reference to Examples. Example 1 Five types of rare earth metals (Ce, La, Nd, Pr, and Sm) (purity 99.9%) with 36.0wt of each rare earth metal
%, metallic cobalt (purity 99.9%) at a ratio of 64.0 wt%, and high frequency melting was performed using an alumina crucible in a melting furnace that was vacuumed and replaced with argon.
Cast into a mold, RCo 4.36 (however, R=Ce,
Five types of alloy ingots (La, Nd, Pr, Sm) were prepared. The properties of magnets made from these alloys were equivalent even when the so-called reduction diffusion method was used to directly prepare alloy powder from RE 2 O 3 and cobalt powder. Therefore, regarding the other embodiments, only the case of the dissolution method will be described. This alloy is individually coarsely ground in an iron mortar to a size of 48 mesh or less, and then finely ground to a powder particle size of approximately 3 μm in an organic medium using a vibrating mill. After this, Ce-Co alloy 24~42wt%, La-Co alloy
12-21wt%, Nd-Co alloy 6-15wt%, Pr-Co
Various types are mixed within the range of 3wt% alloy and 40wt% Sm-Co alloy. In this way, a powder is produced in which the amount of each rare earth element is precisely controlled. Thereafter, each mixed powder was compacted under a pressure of 1 ton/cm 2 in a magnetic field of 10 kiloersted. These molded bodies were degassed at 500℃ in vacuum, sintered at 1050℃ for 1 hour, and then heated at 800℃.
Cool slowly to room temperature, then rapidly cool to room temperature. Figure 1 shows the magnetic properties and Ce/Ce content of the many magnets obtained here to see the effect on the Ce content.
The relationship between +La+Nd+Prwt% is shown. As can be seen from this figure, approximately the same coercive force ( B H C ) and residual magnetic flux density (Br) can be obtained in a wide range of Ce/Ce + La + Nd + Pr 55 to 65 wt%, but when Ce
If the total amount of Ce in total with CeMM is less than 55 wt % or exceeds 65 wt%, BHC deteriorates. Example 2 Cerium Mitsushi Metal 15.1wt% consisting of Ce48wt%, La32wt%, Nd15wt%, Pr5wt%,
Sm13.0wt%, Ce4.5wt% and Cobalt 67.4wt
% in this ratio, and high-frequency melting was performed using an alumina crucible in a melting furnace that had been vacuumed and replaced with argon.
The total amount of Ce in the total of and CeMM is 60wt%)
An alloy A is prepared. In addition, the above Mitsushi Metal metal 18.9wt%, Sm16.4wt%, Ce5.6wt% and metal cobalt 59.1wt% were weighed in these proportions, and high frequency melting was performed to obtain Sm 0.4 (Ce+CeMM) 0.6 Co 3.5
(However, the total amount of Ce in the total of Ce and CeMM is
60wt%) is prepared. The above two types of alloys are individually coarsely ground in an iron mortar to a size of 48 mesh or less, and then finely ground to a powder particle size of approximately 3 μm in an organic medium using a vibrating mill. Thereafter, these two types of fine powders are mixed in various proportions and then molded under a pressure of 1 ton/cm 2 in a magnetic field of 10 kiloersted. These compacts are degassed at 500℃ in vacuum and heated to 1050℃.
After sintering for an hour, it is slowly cooled to 800°C, and then rapidly cooled to room temperature. FIG. 2 shows the magnetic properties obtained in comparison with the case where cerium is not added. For comparison, in a sample to which cerium was not added, the amount of Ce in Mitsushi Metal was 48%. As can be seen from this figure, when cerium is added, not only is the squareness of the magnetic properties excellent, but also stable and good magnetic properties can be obtained over a wide range of rare earth metal/cobalt composition ratios, with extremely good reproducibility. Indicates that it can be manufactured. Example 3 The same lot as Example 2 of 20.1 wt% of cerium metal, 6.5 wt% of Sm, 6.0 wt% of Ce, and 67.4 wt% of metal cobalt were weighed in these proportions and placed in a melting furnace that had been vacuumed and replaced with argon. Perform high frequency melting in an aluminum crucible to reduce Sm 0.2 (Ce+CeMM) 0
.. 8 Co 5 (However, the total for the total of Ce and CeMM
Alloy A is prepared (the amount of Ce is 60wt%). In addition, the above Mitsushi Metal metal 25.2wt%, Sm8.2wt%,
Ce 7.5wt% and metallic cobalt 59.1wt% were weighed in these proportions, high-frequency melting was performed, and Sm 0.2 (Ce
+CeMM) 0.8 Co 3.5 (However, the total amount of Ce is 60 wt% with respect to the total of Ce and CeMM). The above two types of alloys were individually mixed in an iron mortar.
After coarsely pulverizing the powder to a mesh size or smaller, it is finely pulverized to a powder particle size of approximately 3 μm in an organic medium using a vibrating mill.
Thereafter, these two kinds of fine powders are mixed in various proportions and then molded under a pressure of 1 ton/cm 2 in a magnetic field of 10 kiloersted. These molded bodies were degassed at 500°C in a vacuum, sintered at 1025°C for 1 hour, slowly cooled to 800°C, and then rapidly cooled to room temperature. Table 1 shows the magnetic properties obtained. In this case as well, extremely stable magnetic properties are obtained over a wide rare earth metal/cobalt composition ratio range.

【表】 以上詳述したように、本発明による永久磁石
は、角形性の良好な磁気特性を有し、安価でかつ
製造を容易とし、再現性の良いこと等、産業上極
めて有効なものである。
[Table] As detailed above, the permanent magnet according to the present invention has magnetic properties with good squareness, is inexpensive, easy to manufacture, and has good reproducibility, making it extremely effective industrially. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCe/Ce+La+Nd+Prwt%と磁気特
性の関係を示す図、第2図は全希土類金属量と磁
気特性の関係を示す図である。
FIG. 1 is a diagram showing the relationship between Ce/Ce+La+Nd+Prwt% and magnetic properties, and FIG. 2 is a diagram showing the relationship between total rare earth metal content and magnetic properties.

Claims (1)

【特許請求の範囲】[Claims] 1 セリウム(Ce)、セリウムミツシユメタル
(CeMM)、サマリウム(Sm)およびコバルト
(Co)からなり一般式(Ce+CeMM)1-XSmXCoA
(但し0<x<1、4.0≦A≦4.8で表わされる永
久磁石材であつて、セリウム(Ce)とセリウム
ミツシユメタル(CeMM)との合量に対して全セ
リウム量が55〜65重量%になるように調整したこ
とを特徴とする永久磁石材料。
1 Consisting of cerium (Ce), cerium metal (CeMM), samarium (Sm) and cobalt (Co), general formula (Ce + CeMM) 1-X Sm X Co A
(However, it is a permanent magnet material expressed by 0<x<1, 4.0≦A≦4.8, and the total amount of cerium is 55 to 65% by weight relative to the total amount of cerium (Ce) and cerium metal (CeMM).) %.
JP7670579A 1979-06-20 1979-06-20 Material for permanent magnet Granted JPS5617003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7670579A JPS5617003A (en) 1979-06-20 1979-06-20 Material for permanent magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7670579A JPS5617003A (en) 1979-06-20 1979-06-20 Material for permanent magnet

Publications (2)

Publication Number Publication Date
JPS5617003A JPS5617003A (en) 1981-02-18
JPS6111442B2 true JPS6111442B2 (en) 1986-04-03

Family

ID=13612925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7670579A Granted JPS5617003A (en) 1979-06-20 1979-06-20 Material for permanent magnet

Country Status (1)

Country Link
JP (1) JPS5617003A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61114502A (en) * 1984-11-09 1986-06-02 Sumitomo Metal Mining Co Ltd Manufacture of samarium-cobalt magnet powder for resin magnet
US4875946A (en) * 1988-02-02 1989-10-24 Industrial Technology Research Institute Process for producing rare earth-cobalt permanent magnet

Also Published As

Publication number Publication date
JPS5617003A (en) 1981-02-18

Similar Documents

Publication Publication Date Title
US4221613A (en) Rare earth-cobalt system permanent magnetic alloys and method of preparing same
US20070240790A1 (en) Rare-earth sintered magnet and method for producing the same
JPH0345885B2 (en)
US20210304933A1 (en) Synthesis of high purity manganese bismuth powder and fabrication of bulk permanent magnet
JPS6111442B2 (en)
JPS6348805A (en) Manufacture of rare-earth magnet
JPS62173704A (en) Manufacture of permanent magnet
JPS6248744B2 (en)
JPS6181607A (en) Preparation of rare earth magnet
JPH0345884B2 (en)
JPS6320411A (en) Production of material for permanent magnet
US3919001A (en) Sintered rare-earth cobalt magnets comprising mischmetal plus cerium-free mischmetal
JP2587617B2 (en) Manufacturing method of rare earth permanent magnet
JP3178848B2 (en) Manufacturing method of permanent magnet
JP2770248B2 (en) Manufacturing method of rare earth cobalt magnet
JP2874392B2 (en) Production method of rare earth cobalt 1-5 permanent magnet alloy
JP2893705B2 (en) Manufacturing method of permanent magnet
JP2571403B2 (en) Manufacturing method of rare earth magnet material
JP3227613B2 (en) Manufacturing method of powder for rare earth sintered magnet
JPS61261448A (en) Production of permanent magnet having high energy product
JPH0568841B2 (en)
JPH0119461B2 (en)
JPH0426524B2 (en)
JPS6236366B2 (en)
JPS6160801A (en) Rare earth alloy powder