JPS6248744B2 - - Google Patents

Info

Publication number
JPS6248744B2
JPS6248744B2 JP58051109A JP5110983A JPS6248744B2 JP S6248744 B2 JPS6248744 B2 JP S6248744B2 JP 58051109 A JP58051109 A JP 58051109A JP 5110983 A JP5110983 A JP 5110983A JP S6248744 B2 JPS6248744 B2 JP S6248744B2
Authority
JP
Japan
Prior art keywords
alloy
rare earth
magnet
less
impurities
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58051109A
Other languages
Japanese (ja)
Other versions
JPS59177346A (en
Inventor
Masao Togawa
Masato Sagawa
Setsuo Fujimura
Yutaka Matsura
Hitoshi Yamamoto
Atsushi Hamamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP58051109A priority Critical patent/JPS59177346A/en
Publication of JPS59177346A publication Critical patent/JPS59177346A/en
Publication of JPS6248744B2 publication Critical patent/JPS6248744B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

利用産業分野 この発明は、Fe−B−R系、Fe−Co−B−R
系(RはYを含む希土類元素)永久磁石、特に磁
気特性のすぐれたFe−B−Nd系、Fe−Co−B−
Nd系永久磁石を製造する際に用いる磁石素材溶
製時の配合合金に係り、最終成品の磁気特性を劣
化させる不純物の少ない希土類磁石素材用配合合
金に関する。 背景技術 永久磁石材料は、一般家庭の各種電気製品か
ら、大型コンピユータの周辺端末器まで、幅広い
分野で使用される極めて重要な電気・電子材料の
一つである。近年の電気・電子機器の小形化、高
効率化の要求にともない、永久磁石材料は益々高
性能化が求められるようになつた。 現在の代表的な永久磁石材料は、アルニコ、ハ
ードフエライトおよび希土類コバルト磁石であ
る。近年のコバルトの原料事情の不安定化に伴な
い、コバルトを20〜30wt%含むアルニコ磁石の
需要は減り、鉄の酸化物を主成分とする安価なハ
ードフエライトが磁石材料の主流を占めるように
なつた。 一方、希土類コバルト磁石はコバルトを50〜
60wt%も含む上、希土類鉱石中にあまり含まれ
ていないSmを使用するため大変高価であるが、
他の磁石に比べて、磁気特性が格段に高いため、
主として小型で付加価値の高い磁気回路に多用さ
れるようになつた。 そこで、本発明者は先に、高価なSmやCoを含
有しない新しい高性能永久磁石としてFe−B−
R系(RはYを含む希土類元素)の磁気異方性焼
結体からなる永久磁石を提案した(特願昭57−
145072号)。 また、さらに、Fe−B−R系の磁気異方性焼
結体からなる永久磁石の温度特性を改良するため
に、Feの一部をCoで置換することにより、生成
合金のキユリー点を上昇させて温度特性を改善し
たFe−Co−B−R系異方性焼結体からなる永久
磁石を提案した(特願昭57−166663号)。 上記の新規な永久磁石は次の工程により製造さ
れる。 (1) 出発原料として、純度99.9%の電解鉄、
B19.4%を含有し残部はFe及びAl、Si、C等の
不純物からなるフエロボロン合金、純度97%以
上の希土類金属、あるいはさらに、純度99.9%
の電解Coを高周波溶解し、その後水冷銅鋳
造、 (2) スタンプミルにより35メツシユスルーまでに
粗紛砕し、次にボールミルにより3時間粉砕
(3〜10μm)、 (3) 磁界(10kOe)中配向、成形(1.5t/cm2にて
加圧)、 (4) 焼結、1000〜1200℃、1時間、Ar中、焼結
後放冷。 上述したFe−B−R系、Fe−Co−B−R系
(RはYを含む希土類元素)永久磁石を製造する
ための出発原料の希土類金属は、一般にCa還元
法、電解法により製造される。 一般に、Ca還元法により製造される希土類金
属は、例えば、Ndの場合、下記(1)式の反応によ
り、Ndの分離精製が行なわれている。 ところが、Ndの溶湯の粘度が高いため、Ndと
CaF2及びCaCl2との分離が悪く、Nd中にCaF2
びCaCl2が混入したり、あるいは炉材、NdF3
CaCl2中不純物のO2が、Ndと固溶してNd2O3生成
物となつてNd中に存在したり、さらには、Ndの
融点が1050℃と高いため、1200℃〜1300℃に加熱
還元する際に反応炉の炉材と反応して純度が低下
し、製造した磁性合金の磁気特性に悪影響を及ぼ
す等の問題があつた。 また、電解法により製造する場合、Ndの融点
が1050℃と高いため、溶湯及び塩浴の温度を1200
℃程度の高温に上げる必要があり、そのため炉耐
火物、弗化物などから不純物の混入が避けられな
い等種々の問題があつた。 発明の目的 この発明は、Fe−B−R系、Fe−Co−B−R
系(RはYを含む希土類元素)永久磁石における
出発原料として使用する希土類金属の純度が、磁
石合金の磁気特性に及ぼす影響が重大であること
に鑑み、純度の高い希土類金属の提供を目的と
し、特に希土類磁石合金の素材となる鋳塊を溶製
する際に希土類金属を純度の高い形態で使用でき
る配合合金を目的としている。 発明の構成 この発明は、 Fe3wt%〜20wt%、Co2wt%〜33wt%の1種ま
たは2種を、但し、2種含有のときは総量で 3wt%〜20wt%を含有し、 さらにBを10wt%以下含有し、 残部は実質的に希土類金属からなり、 前記希土類金属のうち少なくとも50%がNdか
らなることを要旨とする希土類磁石素材用配合合
金である。 この発明による配合合金は、前述した希土類磁
石合金の製造に際し、出発原料である他の金属、
合金とともに所要量を溶解し、目的の磁石合金に
応じた所要組成の磁石合金素材である鋳塊を溶製
するもので、この発明による前記組成の配合合金
を用いることにより、原料として極めて純度の高
い希土類金属の提供を可能となすものであり、得
られた鋳塊を粉砕し、微粉を磁界中配向、加圧成
形、焼結して得られた希土類永久磁石の磁気特性
を高めることができる。 発明の開示 この発明は、希土類金属を得るCa還元の際
に、磁石合金の基本成分となるFeまたはCoある
いはFeとCoとに各々Bを添加溶融させることに
より、Ndの融点、溶湯の粘度及び溶湯温度を低
下させることができ、不純物の少ないNdFeB合
金、NdCoB合金、NdFeCoB合金として、すなわ
ち、磁石素材の溶製時の配合合金として、極めて
すぐれた合金が得られるという知見に基づくもの
である。 NdにFeまたはCoを添加溶融させると、これら
の添加量の増加に伴いNdの融点を低下させるこ
とが可能であり、さらにこれらFe、Coとともに
所定量のBを添加溶融させるとFe、Coの添加効
果を一層増大させることが可能であることを確認
した。 特にFe及びBの添加量が10wt%程度になると
融点は700℃程度まで低下し、またCo及びBの添
加量が20wt%程度になると融点は600℃程度まで
低下し、さらにこれら添加量を増加すると再び融
点が上昇することを確認した。 さらに、具体的に示すと、 希土類弗化物(RF3)あるいは希土類酸化物
(R2O3)をCa還元する際、 すなわち、RF3あるいはR2O3をアルミナ製ル
ツボ内でCaとともにフラツクスとしてCaCl2を用
い、950℃で加熱還元中に、Fe、Bを添加溶融す
ると、RがNdの場合は、下記(2)の反応により、
Ndの融点、溶湯の粘度、温度が低下し、不純物
の少ないNdFeB合金が得られる。 同様に、加熱還元中に、Fe、Co、Bを添加溶
融することにより、不純物の少ないNdFeCoB合
金が得られる。 上記にはCa還元法による場合を説明したが、
溶融塩電解法による場合には、次の工程によつ
て、NdFeB合金を作製することができる。 電解浴として、弗化ネオジム、弗化バリウムお
よび弗化リチウムの混合塩を使用し、原料とし
て、ネオジム酸化物、酸化鉄、鉄片、B酸化物、
フエロボロン等を用い、電解槽を黒鉛と窒化ホウ
素焼結体で作製し、陽極を黒鉛、陰極を鉄板によ
り作製する。 さらに、950℃で電解すると、陰極鉄板に析出
したNdは鉄及びボロンと反応して、低融点
NdFeB合金となり、電解槽底部に沈澱し、連続
生産することができる。 なお、NdCO合金を製造する場合には陰極にCo
を用いるとよい。また、塩浴中にFe酸化物、Co
酸化物を混合し、通常の希土類電解精錬によつて
も、NdFeBなどの合金を得ることができる。 以上のように、この発明の希土類磁石素材用配
合合金は、Ca還元または溶融塩電解の際に希土
類金属の融点を低下させるFe、Co及びBを上記
に示す如く、同時に添加溶融させ、直後、
NdFeB合金、NdCoB合金、NdFeCoB合金として
得ることができる。 また、予めCa還元法や溶融塩電解法等にて、
NdFe合金、NdCo合金、NdFeCo合金を得たの
ち、これら各々の合金に純ボロンまたはフエボロ
ンを添加し、公知の真空溶解法等によつて、
NdFeB合金、NdCoB合金、NdFeCoB合金として
得ることができ、いずれも不純物の少ない希土類
磁石素材用配合合金となる。 このようにして得られたこの発明の希土類磁石
素材用配合合金は、前記焼結永久磁石の他、磁石
合金の素材として鋳塊を使用する樹脂磁石等、い
ずれのFe−B−R系、Fe−Co−B−R系永久磁
石の配合合金として使用することが可能である。 組成限定理由 次に、この発明による希土類磁石素材用配合合
金の組成を限定した理由を説明する。 Feは、3wt%未満、20wt%を越える含有では、
Ndの融点が1000℃以上となり、得られる合金中
に、CaF2及びCaCl2が混入したり、あるいは炉
材、NdF3、CaCl2中不純物のO2が、Ndと固溶し
てNd2O3生成物となつてNd中に存在したり、Nd
の純度が低下し、これを配合合金として用いた磁
石合金の磁気特性を劣化させるため、3wt%〜
20wt%の範囲が好ましい。 Coは、2wt%未満、33wt%を越える含有では、
Feの場合と同様にNdの融点が1000℃以上とな
り、得られる合金中に、CaF2及びCaCl2が混入し
たり、あるいは炉材、NdF3、CaCl2中不純物の
O2が、Ndと固溶してNd2O3生成物となつてNd中
に存在したり、Ndの純度が低下し、これを配合
合金として用いた磁石合金の磁気特性を劣化させ
るため、2wt%〜33wt%の範囲が好ましい。 FeとCoを同時に含有する場合は、3wt%未
満、20wt%を越える含有では、Ndの融点が1000
℃以上となり、Fe、Coの場合と同様に得られる
合金中に、CaF2及びCaCl2が混入したり、あるい
は炉材、NdF3、CaCl2中不純物のO2が、Ndと固
溶してNd2O3生成物となつてNd中に存在した
り、Ndの純度が低下し、これを配合合金として
用いた磁石合金の磁気特性を劣化させるため、
3wt%〜20wt%の範囲が好ましい。 Bは前述の如く、Ndの融点を低下させるFe、
Coの添加効果を一層増大させる効果があり、純
ボロンまたはフエロボロンを用いることができ、
不純物としてAl、Si、Cを含むものも用いること
ができるが10wt%を越えるとFe、Coの添加効果
を阻害し、また前記永久磁石を得るべく磁石素材
の溶製時に組成を調整する際に、必然的に本発明
合金以外の純度の低いNdやNd−Fe合金等を併用
することとなり、実質的な高純度希土類金属の提
供を困難とし、所要の磁気特性を得ることができ
なくなるため、その添加量は10wt%以下とす
る。 これらFe、Co及びBの効果は希土類元素がNd
の場合に限らず、後述のNdを50%以上含む希土
類元素との添加溶融においても同様な効果を有す
る。 希土類元素は、Yを包含し、軽希土類及び重希
土類を包含するもので、Nd、Pr、La、Ce、
Tb、Dy、Ho、Er、Eu、Sm、Gd、Pm、Tm、
Yb、Luを包含し、前記Fe、Co及びB以外の残部
を構成するが、該希土類元素のうち50%以上が軽
希土類金属であるNdから構成され、本発明の配
合合金を用いて製造されるFe−B−R系、Fe−
Co−B−R系磁石は、すぐれた磁気特性を有す
る。 この発明による希土類磁石素材用配合合金を使
用し、すなわち、他の金属、合金とともに所要量
を溶解して所要組成の鋳塊を溶製し、この鋳塊の
微粉を磁界中配向、加圧成形、焼結して得られた
磁気異方性焼結磁石合金は、組成(原子%)が、
8%〜30%R、2%〜28%B、残部Feの場合、
保磁力Hc≧1kOe、残留磁束密度Br>4kG、の磁
気特性を示し、最大エネルギー積(BH)maxは
ハードフエライトと同等以上となり、最も好まし
い組成範囲では、(BH)max≧10MGOeを示し、
最大値は25MGOe以上に達する。 また組成(原子%)が、8%〜30%R、2%〜
28%B、50%以下Co、残部Feの場合、上記磁石
合金と同等の磁気特性を示し、残留磁束密度の温
度係数が0.1%/℃以とすぐれた特性を有する。 また、Rの主成分、すなわち50原子%以上を軽
希土類金属とした磁気異方性磁石合金は、組成
(原子%)が12%〜20%R、4%〜24%B、残部
Feあるいはさらに5%〜45%Co含有の場合、最
もすぐれた磁気特性を示し、特に軽希土類金属が
Ndのときは、(BH)maxはその最大値が33MGOe
以上に達する。 さらに、Fe−B−R系、Fe−Co−B−R系磁
石合金に下記添加元素Mを少なくとも1種を含有
させることができる。なお、2種以上添加する場
合は当該添加元素Mの最大値以下の含有とする。 Ti4.5%以下、Ni4.5%以下、Bi5%以下、V9.5
%以下、Nb12.5%以下、Ta10.5%以下、Cr8.5%
以下、Mo9.5%以下、W9.5%以下、Mn3.5%以
下、Al9.5%以下、Sb2.5%以下、Ge7%以下、
Sn3.5%以下、Zr5.5%以下、Hf5.5%以下、 実施例 以下に、この発明による実施例を示しその効果
を明らかにする。 実施例 1 NdF3粉末、フエロボロン粉末、Fe粉末、Ca粉
末をアルミナ製ルツボ内で、フラツクスとして
CaCl2を用い、アルゴンガス雰囲気中で1020℃で
加熱溶融して、17wt%Fe2wt%BNd配合合金を得
た。 得られた17wt%Fe2wt%BNd配合合金中に含ま
れる不純物量を、市販のNd金属中に含まれる不
純物量とともに第1表に示す。 第1表から明らかな如く、不純物量が著しく低
減されていることがわかる。 次に、出発原料として、上記の17wt%Fe2wt%
BNd配合合金、純度99.9%の電解鉄、B19.4%を
含有するフエロボロン合金を高周波溶解し、その
後水冷銅型に鋳造し、1Kgの鋳塊からなる磁石合
金素材を作製した。 この鋳塊を粉砕スタンプミルにより35メツシユ
スルーまでに粗粉砕し、ボールミルにより3時間
粉砕して粒径3〜10μmの微粉となした。つい
で、磁界(10kOe)中配向したのち、1.5t/cm2
て加圧成形し、15mm×15mm×10mmの成形体を得
た。 得られた成形体を、1100℃、1時間、Ar中の
焼結条件で焼結し、焼結後放冷して磁石合金を得
た。 このときの磁石合金の組成は、原子%で15%
Nd、8%B、77%Feであり、保磁力
Hc15.5kOe、残留磁束密度Br12.3kG、の磁気特
性を示し、最大エネルギー積(BH)maxは
34.5MGOeであつた。 比較のため、出発原料のNdとして、第1表に
示す不純物を含有する市販のNd金属を使用した
以外は全く同じ製造条件で作製した同一組成の原
子%で15%Nd、8%B、77%Feの比較磁石合金
は、保磁力Hc10kOe、残留磁束密度Br11.8kG、
の磁気特性を示し、最大エネルギー積(BH)
maxは29MGOeであり、この発明による希土類磁
石素材用配合合金を使用することにより、希土類
金属に含まれる不純物の影響が少なく、磁気特性
が大きく向上することがわかる。 実施例 2 NdF3粉末、フエロボロン粉末、Co粉末、Ca粉
末をアルミナ製ルツボ内で、フラツクスとして
CaCl2を用い、アルゴンガス雰囲気中で950℃で
加熱溶融して、8.0wt%Co2.2wt%BNd配合合金
を得た。 得られた8.0wt%Co2.2wt%BNd配合合金中に
含まれる不純物量を、市販のNd金属中に含まれ
る不純物量とともに第1表に示す。 第1表から明らかな如く、不純物量が著しく低
減されていることがわかる。 次に、出発原料として、上記の8.0wt%
Co2.2wt%BNd配合合金、純度99.9%の電解鉄、
B19.4%を含有するフエロボロン合金を高周波溶
解し、その後水冷銅型に鋳造し、1Kgの鋳塊から
なる磁石合金素材を作製した。 この鉄塊を粉砕スタンプミルにより35メツシユ
スルーまでに粗粉砕し、ボールミルにより3時間
粉砕して粒径3〜10μmの微粉となした。つい
で、磁界(10kOe)中配向したのち、1.5t/cm2
て加圧成形し、15mm×15mm×10mmの成形体を得
た。 得られた成形体を、1100℃、2時間、Ar中の
焼結条件で焼結し、焼結後放冷して磁石合金を得
た。 このときの磁石合金の組成は、原子%で15%
Nd、8%B、20%Co、57%Feであり、保磁力
Hc12kOe、残留磁束密度Br12kG、の磁気特性を
示し、最大エネルギー積(BH)maxは34MGOe
であつた。 比較のため、出発原料のNdとして、第1表に
示す不純物を含有する市販のNd金属を使用した
以外は全く同じ製造条件で作製した同一組成の原
子%で15%Nd、8%B、20%Co、57%Feの比較
磁石合金は、保磁力Hc9kOe、残留磁束密度
Br11.5kG、の磁気特性を示し、最大エネルギー
積(BH)maxは31MGOeであり、この発明によ
る希土類磁石素材用配合合金を使用することによ
り、希土類金属に含まれる不純物の影響が少な
く、磁気特性が大きく向上することがわかる。 実施例 3 NdF3粉末、フエロボロン粉末、Fe粉末、Co粉
末、Ca粉末をアルミナ製ルツボ内で、フラツク
スとしてCaCl2を用い、アルゴンガス雰囲気中で
1020℃で加熱溶融して、10wt%Fe6wt%Co2wt%
BNd配合合金を得た。 得られた10wt%Fe6wt%Co2wt%BNd配合合金
中に含まれる不純物量を、市販のNd金属中に含
まれる不純物量とともに第1表に示す。 第1表から明らかな如く、不純物量が著しく低
減されていることがわかる。 次に、出発原料として、上記の10wt%Fe6wt%
Co2wt%BNd配合合金、純度99.9%の電解鉄、純
度99.9%の電解Co、B19.4%を含有するフエロボ
ロン合金を高周波溶解し、その後水冷銅型に鋳造
し、1Kgの鋳塊からなる磁石合金素材を作製し
た。 この鉄塊を粉砕スタンプミルにより35メツシユ
スルーまでに粗粉砕し、ボールミルにより3時間
粉砕して粒径3〜10μmの微粉となした。つい
で、磁界(10kOe)中配向したのち、1.5t/cm2
て加圧成形し、15mm×15mm×10mmの成形体を得
た。 得られた成形体を、1100℃、1時間、Ar中の
焼結条件で焼結し、焼結後放冷して磁石合金を得
た。 このときの磁石合金の組成は、原子%で15%
Nd、8%B、73%Fe、4%Coであり、保磁力
Hc13.5kOe、残留磁束密度Br12.3kG、の磁気特
性を示し、最大エネルギー積(BH)maxは
34.5MGOeであつた。 比較のため、出発原料のNdとして、第1表に
示す不純物を含有する市販のNd金属を使用した
以外は全く同じ製造条件で作製した同一組成の原
子%で15%Nd、8%B、73%Fe、4%Coの比較
磁石合金は、保磁力Hc11kOe、残留磁束密度
Br11.8kG、の磁気特性を示し、最大エネルギー
積(BH)maxは29MGOeであり、この発明によ
る希土類磁石素材用配合合金を使用することによ
り、希土類金属に含まれる不純物の影響が少な
く、磁気特性が大きく向上することがわかる。
Field of Application This invention is based on Fe-BR system, Fe-Co-B-R
system (R is a rare earth element containing Y) permanent magnets, especially Fe-B-Nd system, Fe-Co-B- system with excellent magnetic properties.
The present invention relates to a blended alloy for magnet materials used in manufacturing Nd-based permanent magnets, and relates to a blended alloy for rare earth magnet materials that contains few impurities that degrade the magnetic properties of the final product. BACKGROUND ART Permanent magnetic materials are one of the extremely important electrical and electronic materials used in a wide range of fields, from various household appliances to peripheral terminals for large computers. With the recent demand for smaller size and higher efficiency of electrical and electronic equipment, permanent magnet materials are required to have increasingly higher performance. Current typical permanent magnet materials are alnico, hard ferrite and rare earth cobalt magnets. As the cobalt raw material situation has become unstable in recent years, the demand for alnico magnets containing 20 to 30 wt% cobalt has decreased, and inexpensive hard ferrite, whose main component is iron oxide, has become the mainstream magnet material. Summer. On the other hand, rare earth cobalt magnets contain cobalt from 50 to
It is very expensive because it contains 60wt% and uses Sm, which is not included in rare earth ores.
Compared to other magnets, the magnetic properties are much higher,
It has come to be used mainly for small, high value-added magnetic circuits. Therefore, the present inventor first developed Fe-B- as a new high-performance permanent magnet that does not contain expensive Sm or Co.
We proposed a permanent magnet consisting of an R-based (R is a rare earth element containing Y) magnetically anisotropic sintered body (patent application 1983-
No. 145072). Furthermore, in order to improve the temperature characteristics of permanent magnets made of Fe-BR-based magnetically anisotropic sintered bodies, some of the Fe is replaced with Co, thereby raising the Curie point of the resulting alloy. We proposed a permanent magnet made of an anisotropic sintered Fe-Co-B-R system with improved temperature characteristics (Japanese Patent Application No. 166663/1982). The novel permanent magnet described above is manufactured by the following steps. (1) As a starting material, electrolytic iron with a purity of 99.9%,
Ferroboron alloy containing 19.4% B and the remainder consisting of Fe and impurities such as Al, Si, and C, rare earth metals with a purity of 97% or more, or furthermore, a purity of 99.9%
of electrolytic Co is high-frequency melted, then water-cooled copper casting, (2) coarsely pulverized with a stamp mill to a thickness of 35 mesh, then pulverized with a ball mill for 3 hours (3 to 10 μm), (3) oriented in a magnetic field (10 kOe) , molding (pressurized at 1.5t/cm 2 ), (4) Sintering, 1000-1200°C for 1 hour in Ar, and allowed to cool after sintering. Rare earth metals, which are the starting materials for producing the above-mentioned Fe-BR-based and Fe-Co-BR-based permanent magnets (R is a rare earth element containing Y), are generally produced by a Ca reduction method or an electrolytic method. Ru. Generally, in the case of rare earth metals produced by the Ca reduction method, for example, Nd, Nd is separated and purified by the reaction of the following formula (1). However, due to the high viscosity of molten Nd,
Separation from CaF 2 and CaCl 2 is poor, and CaF 2 and CaCl 2 may be mixed into Nd, or the furnace material, NdF 3 ,
The impurity O 2 in CaCl 2 dissolves with Nd and becomes a Nd 2 O 3 product that exists in Nd. Furthermore, since the melting point of Nd is as high as 1050°C, the temperature at 1200°C to 1300°C There were problems such as a decrease in purity due to reaction with the reactor material during heating and reduction, and an adverse effect on the magnetic properties of the produced magnetic alloy. In addition, when manufacturing by electrolytic method, the melting point of Nd is as high as 1050°C, so the temperature of the molten metal and salt bath is adjusted to 1200°C.
It was necessary to raise the temperature to a high temperature of approximately 0.9°C, which caused various problems such as the unavoidable contamination of impurities from furnace refractories, fluorides, etc. Purpose of the invention This invention is based on Fe-B-R system, Fe-Co-B-R
In view of the fact that the purity of rare earth metals used as starting materials in permanent magnets (R is a rare earth element containing Y) has a significant effect on the magnetic properties of magnet alloys, we aim to provide rare earth metals with high purity. In particular, the aim is to create a blended alloy in which rare earth metals can be used in a highly pure form when melting ingots, which are raw materials for rare earth magnet alloys. Structure of the invention This invention contains one or two of Fe3wt% to 20wt% and Co2wt% to 33wt%, but when two types are contained, the total amount is 3wt% to 20wt%, and further B is 10wt%. This is a blended alloy for a rare earth magnet material, which contains the following, the remainder being substantially composed of a rare earth metal, and at least 50% of the rare earth metal being composed of Nd. The blended alloy according to the present invention can be used to produce the above-mentioned rare earth magnet alloy by using other metals as starting materials,
This method melts the required amount together with the alloy to produce an ingot, which is a magnet alloy material with the required composition according to the target magnet alloy.By using the blended alloy with the above composition according to the present invention, extremely pure material can be obtained as a raw material. It is possible to provide high quality rare earth metals, and it is possible to improve the magnetic properties of rare earth permanent magnets obtained by crushing the obtained ingot, orienting the fine powder in a magnetic field, press forming, and sintering. . DISCLOSURE OF THE INVENTION This invention enables the melting point of Nd, the viscosity of the molten metal and This is based on the knowledge that the temperature of the molten metal can be lowered and an extremely excellent alloy can be obtained as an NdFeB alloy, NdCoB alloy, or NdFeCoB alloy with few impurities, that is, as a blended alloy when melting magnet materials. When Fe or Co is added and melted to Nd, it is possible to lower the melting point of Nd as the amount of these additions increases.Furthermore, when a predetermined amount of B is added and melted together with Fe and Co, Fe and Co can be melted. It was confirmed that it is possible to further increase the effect of addition. In particular, when the amount of Fe and B added is about 10wt%, the melting point decreases to about 700℃, and when the amount of Co and B added is about 20wt%, the melting point decreases to about 600℃, and when the amount of these additions is further increased. Then, it was confirmed that the melting point rose again. Furthermore, to be more specific, when reducing rare earth fluoride (RF 3 ) or rare earth oxide (R 2 O 3 ) with Ca, RF 3 or R 2 O 3 is mixed with Ca in an alumina crucible as a flux. When Fe and B are added and melted during thermal reduction at 950℃ using CaCl 2 , if R is Nd, the following reaction (2) will occur:
The melting point of Nd, the viscosity of the molten metal, and the temperature are lowered, and an NdFeB alloy with fewer impurities can be obtained. Similarly, by adding and melting Fe, Co, and B during thermal reduction, an NdFeCoB alloy with few impurities can be obtained. The case using the Ca reduction method was explained above, but
When using molten salt electrolysis, an NdFeB alloy can be produced through the following steps. A mixed salt of neodymium fluoride, barium fluoride and lithium fluoride is used as the electrolytic bath, and the raw materials are neodymium oxide, iron oxide, iron pieces, B oxide,
An electrolytic cell is made of graphite and boron nitride sintered body using ferroboron, etc., an anode is made of graphite, and a cathode is made of an iron plate. Furthermore, when electrolyzed at 950℃, the Nd deposited on the cathode iron plate reacts with iron and boron, resulting in a low melting point.
It becomes an NdFeB alloy and settles at the bottom of the electrolytic cell, allowing continuous production. In addition, when manufacturing NdCO alloy, Co is added to the cathode.
It is recommended to use Also, Fe oxide, Co
Alloys such as NdFeB can also be obtained by mixing oxides and performing ordinary rare earth electrolytic refining. As described above, in the compounded alloy for rare earth magnet materials of the present invention, Fe, Co, and B, which lower the melting point of rare earth metals during Ca reduction or molten salt electrolysis, are simultaneously added and melted as shown above, and immediately after,
It can be obtained as NdFeB alloy, NdCoB alloy, and NdFeCoB alloy. In addition, in advance, Ca reduction method, molten salt electrolysis method, etc.
After obtaining NdFe alloy, NdCo alloy, and NdFeCo alloy, pure boron or feboron is added to each of these alloys, and by a known vacuum melting method etc.
It can be obtained as NdFeB alloy, NdCoB alloy, and NdFeCoB alloy, all of which are blended alloys for rare earth magnet materials with few impurities. The blended alloy for rare earth magnet materials of the present invention thus obtained can be applied to any Fe-B-R system, Fe It can be used as a compound alloy for -Co-BR permanent magnets. Reason for limiting the composition Next, the reason for limiting the composition of the blended alloy for rare earth magnet materials according to the present invention will be explained. If the Fe content is less than 3wt% or more than 20wt%,
When the melting point of Nd reaches 1000°C or higher, CaF 2 and CaCl 2 may be mixed into the resulting alloy, or impurity O 2 in the furnace material, NdF 3 , and CaCl 2 may form a solid solution with Nd and become Nd 2 O. 3 exists in Nd as a product, or Nd
3wt%~
A range of 20wt% is preferred. Co content is less than 2wt% and more than 33wt%,
As in the case of Fe, the melting point of Nd is 1000℃ or higher, and CaF 2 and CaCl 2 may be mixed into the resulting alloy, or impurities in the furnace material, NdF 3 and CaCl 2 may be mixed in.
O 2 becomes a solid solution with Nd and becomes an Nd 2 O 3 product that exists in Nd, or the purity of Nd decreases, which deteriorates the magnetic properties of a magnet alloy using this as a blended alloy. A range of 2wt% to 33wt% is preferred. When containing Fe and Co at the same time, the melting point of Nd is less than 3wt%, and when it is more than 20wt%, the melting point of Nd is 1000%.
℃ or higher, CaF 2 and CaCl 2 may be mixed into the alloy obtained in the same way as in the case of Fe and Co, or O 2 as an impurity in the furnace material, NdF 3 and CaCl 2 may be dissolved as a solid solution with Nd. Because it exists in Nd as a Nd 2 O 3 product, the purity of Nd decreases, and the magnetic properties of the magnet alloy using it as a blended alloy deteriorate.
A range of 3wt% to 20wt% is preferred. As mentioned above, B is Fe, which lowers the melting point of Nd;
It has the effect of further increasing the effect of adding Co, and pure boron or ferroboron can be used.
Impurities containing Al, Si, and C can also be used, but if the amount exceeds 10 wt%, the effect of adding Fe and Co will be inhibited, and when adjusting the composition during melting of the magnet material to obtain the above-mentioned permanent magnet. , it is inevitable that low-purity Nd or Nd-Fe alloys other than the alloy of the present invention will be used in combination, making it difficult to provide substantially high-purity rare earth metals and making it impossible to obtain the required magnetic properties. The amount added shall be 10wt% or less. These effects of Fe, Co and B are due to the rare earth elements Nd
The same effect is obtained not only in the case of addition melting with rare earth elements containing 50% or more of Nd, which will be described later. Rare earth elements include Y, light rare earths and heavy rare earths, including Nd, Pr, La, Ce,
Tb, Dy, Ho, Er, Eu, Sm, Gd, Pm, Tm,
It includes Yb and Lu, and constitutes the balance other than Fe, Co and B, but 50% or more of the rare earth elements is composed of Nd, which is a light rare earth metal, and is produced using the blended alloy of the present invention. Fe-B-R system, Fe-
Co-BR magnets have excellent magnetic properties. By using the compounded alloy for rare earth magnet materials according to the present invention, that is, by melting the required amount together with other metals and alloys to produce an ingot with the desired composition, the fine powder of this ingot is oriented in a magnetic field and press-formed. The magnetically anisotropic sintered magnet alloy obtained by sintering has a composition (atomic%) of
In the case of 8% to 30% R, 2% to 28% B, balance Fe,
It exhibits the magnetic properties of coercive force Hc≧1kOe and residual magnetic flux density Br>4kG, and the maximum energy product (BH)max is equal to or higher than hard ferrite, and in the most preferred composition range, (BH)max≧10MGOe,
The maximum value reaches over 25MGOe. In addition, the composition (atomic %) is 8% to 30%R, 2% to
In the case of 28% B, 50% or less Co, and the balance Fe, it exhibits magnetic properties equivalent to those of the above magnet alloy, and has excellent properties with a temperature coefficient of residual magnetic flux density of 0.1%/°C or less. In addition, a magnetically anisotropic magnet alloy in which the main component of R, that is, 50 atomic % or more is a light rare earth metal, has a composition (atomic %) of 12% to 20% R, 4% to 24% B, and the balance.
Fe or even 5% to 45% Co content shows the best magnetic properties, especially light rare earth metals.
When Nd, (BH)max has a maximum value of 33MGOe
reach more than that. Furthermore, the Fe-BR-based and Fe-Co-BR-based magnetic alloys can contain at least one of the following additive elements M. In addition, when two or more types are added, the content is set to be less than the maximum value of the additional element M. Ti4.5% or less, Ni4.5% or less, Bi5% or less, V9.5
% or less, Nb12.5% or less, Ta10.5% or less, Cr8.5%
Below, Mo9.5% or less, W9.5% or less, Mn3.5% or less, Al9.5% or less, Sb2.5% or less, Ge7% or less,
Sn3.5% or less, Zr5.5% or less, Hf5.5% or less, Examples Examples of the present invention will be shown below to clarify its effects. Example 1 NdF3 powder, ferroboron powder, Fe powder, and Ca powder were used as flux in an alumina crucible.
CaCl 2 was heated and melted at 1020°C in an argon gas atmosphere to obtain an alloy containing 17wt%Fe2wt%BNd. The amount of impurities contained in the obtained 17wt%Fe2wt%BNd alloy is shown in Table 1 together with the amount of impurities contained in commercially available Nd metal. As is clear from Table 1, the amount of impurities was significantly reduced. Then, as the starting material, use the above 17wt%Fe2wt%
A BNd alloy, electrolytic iron with a purity of 99.9%, and a feroboron alloy containing 19.4% B were high-frequency melted and then cast into a water-cooled copper mold to produce a magnet alloy material consisting of a 1 kg ingot. This ingot was coarsely pulverized to 35 mesh through using a crushing stamp mill, and pulverized for 3 hours using a ball mill to form a fine powder with a particle size of 3 to 10 μm. Then, after orientation in a magnetic field (10 kOe), pressure molding was performed at 1.5 t/cm 2 to obtain a molded body of 15 mm x 15 mm x 10 mm. The obtained compact was sintered at 1100° C. for 1 hour under sintering conditions in Ar, and after sintering, it was allowed to cool to obtain a magnet alloy. The composition of the magnet alloy at this time is 15% in atomic percent.
Nd, 8% B, 77% Fe, coercive force
The magnetic properties are Hc15.5kOe, residual magnetic flux density Br12.3kG, and the maximum energy product (BH) max is
It was 34.5 MGOe. For comparison, as the starting material Nd, commercially available Nd metal containing impurities shown in Table 1 was used, but the same composition was produced under the same manufacturing conditions, 15% Nd, 8% B, 77 %Fe comparison magnet alloy has coercive force Hc10kOe, residual magnetic flux density Br11.8kG,
shows the magnetic properties of the maximum energy product (BH)
The maximum is 29MGOe, and it can be seen that by using the blended alloy for rare earth magnet materials according to the present invention, the influence of impurities contained in rare earth metals is small and the magnetic properties are greatly improved. Example 2 NdF3 powder, ferroboron powder, Co powder, and Ca powder were used as flux in an alumina crucible.
CaCl 2 was heated and melted at 950°C in an argon gas atmosphere to obtain an alloy containing 8.0wt%Co2.2wt%BNd. The amount of impurities contained in the obtained 8.0wt%Co2.2wt%BNd alloy is shown in Table 1 together with the amount of impurities contained in commercially available Nd metal. As is clear from Table 1, the amount of impurities was significantly reduced. Then, as the starting material, 8.0wt% of the above
Co2.2wt%BNd blended alloy, 99.9% purity electrolytic iron,
A ferroboron alloy containing 19.4% B was high-frequency melted and then cast into a water-cooled copper mold to produce a magnet alloy material consisting of a 1 kg ingot. This iron ingot was coarsely pulverized to 35 mesh through using a crushing stamp mill and pulverized for 3 hours using a ball mill to form a fine powder with a particle size of 3 to 10 μm. Then, after orientation in a magnetic field (10 kOe), pressure molding was performed at 1.5 t/cm 2 to obtain a molded body of 15 mm x 15 mm x 10 mm. The obtained molded body was sintered at 1100° C. for 2 hours under sintering conditions in Ar, and after sintering, it was allowed to cool to obtain a magnet alloy. The composition of the magnet alloy at this time is 15% in atomic percent.
Nd, 8% B, 20% Co, 57% Fe, coercive force
Shows magnetic properties of Hc12kOe, residual magnetic flux density Br12kG, and maximum energy product (BH) max is 34MGOe
It was hot. For comparison, as the starting material Nd, commercially available Nd metal containing the impurities shown in Table 1 was used, but the same composition was produced under the same manufacturing conditions, 15% Nd, 8% B, 20 Comparison magnet alloy of %Co, 57%Fe has coercive force Hc9kOe, residual magnetic flux density
Br11.5kG, and the maximum energy product (BH) max is 31MGOe. By using the blended alloy for rare earth magnet materials according to this invention, the influence of impurities contained in rare earth metals is small, and the magnetic properties are improved. It can be seen that there is a significant improvement in Example 3 NdF 3 powder, ferroboron powder, Fe powder, Co powder, and Ca powder were placed in an alumina crucible in an argon gas atmosphere using CaCl 2 as a flux.
Heat and melt at 1020℃ to obtain 10wt%Fe6wt%Co2wt%
A BNd blended alloy was obtained. The amount of impurities contained in the obtained 10wt%Fe6wt%Co2wt%BNd alloy is shown in Table 1 together with the amount of impurities contained in commercially available Nd metal. As is clear from Table 1, the amount of impurities was significantly reduced. Then, as the starting raw material, use the above 10wt% Fe6wt%
Co2wt% BNd alloy, 99.9% pure electrolytic iron, 99.9% pure electrolytic Co, ferroboron alloy containing 19.4% B is high-frequency melted, then cast into a water-cooled copper mold, and a 1Kg ingot is made into a magnetic alloy. The material was created. This iron ingot was coarsely pulverized to 35 mesh through using a crushing stamp mill and pulverized for 3 hours using a ball mill to form a fine powder with a particle size of 3 to 10 μm. Then, after orientation in a magnetic field (10 kOe), pressure molding was performed at 1.5 t/cm 2 to obtain a molded body of 15 mm x 15 mm x 10 mm. The obtained compact was sintered at 1100° C. for 1 hour under sintering conditions in Ar, and after sintering was allowed to cool to obtain a magnet alloy. The composition of the magnet alloy at this time is 15% in atomic percent.
Nd, 8% B, 73% Fe, 4% Co, coercive force
The magnetic properties are Hc13.5kOe, residual magnetic flux density Br12.3kG, and the maximum energy product (BH) max is
It was 34.5 MGOe. For comparison, as the starting material Nd, commercially available Nd metal containing the impurities shown in Table 1 was used, but the same composition was produced under the same manufacturing conditions, 15% Nd, 8% B, 73 Comparison magnet alloy of %Fe and 4%Co has coercive force Hc11kOe and residual magnetic flux density
Br11.8kG, and the maximum energy product (BH) max is 29MGOe. By using the blended alloy for rare earth magnet materials according to this invention, the influence of impurities contained in rare earth metals is small, and the magnetic properties are improved. It can be seen that there is a significant improvement in

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 Fe3wt%〜20wt%、Co2wt%〜33wt%の1種
または2種を、但し2種含有のときは総量で 3wt%〜20wt%を含有し、 さらにBを10wt%以下含有し、 残部は実質的に希土類金属からなり、 前記希土類金属のうち少なくとも50%がNdか
らなることを特徴とする希土類磁石素材用配合合
金。
[Claims] 1. One or two of Fe3wt% to 20wt% and Co2wt% to 33wt%, but when two types are contained, the total amount is 3wt% to 20wt%, and B is 10wt% or less A blended alloy for a rare earth magnet material, characterized in that the balance is substantially composed of a rare earth metal, and at least 50% of the rare earth metal is composed of Nd.
JP58051109A 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material Granted JPS59177346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58051109A JPS59177346A (en) 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58051109A JPS59177346A (en) 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP21674486A Division JPS6263642A (en) 1986-09-12 1986-09-12 Rare earth alloy for magnet stock and its production

Publications (2)

Publication Number Publication Date
JPS59177346A JPS59177346A (en) 1984-10-08
JPS6248744B2 true JPS6248744B2 (en) 1987-10-15

Family

ID=12877633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58051109A Granted JPS59177346A (en) 1983-03-25 1983-03-25 Alloy of rare earth metal for magnet material

Country Status (1)

Country Link
JP (1) JPS59177346A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1236381A (en) * 1983-08-04 1988-05-10 Robert W. Lee Iron-rare earth-boron permanent magnets by hot working
DE3564451D1 (en) * 1984-07-03 1988-09-22 Gen Motors Corp Metallothermic reduction of rare earth oxides with calcium metal
US4767450A (en) * 1984-11-27 1988-08-30 Sumitomo Special Metals Co., Ltd. Process for producing the rare earth alloy powders
JP2513994B2 (en) * 1985-09-17 1996-07-10 ティーディーケイ株式会社 permanent magnet
US4769063A (en) * 1986-03-06 1988-09-06 Sumitomo Special Metals Co., Ltd. Method for producing rare earth alloy
JPS636808A (en) * 1986-06-26 1988-01-12 Shin Etsu Chem Co Ltd Rare earth permanent magnet
US4837109A (en) * 1986-07-21 1989-06-06 Hitachi Metals, Ltd. Method of producing neodymium-iron-boron permanent magnet

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57210934A (en) * 1981-06-16 1982-12-24 Gen Motors Corp Highly magnetic rare earth-transition metal magnet

Also Published As

Publication number Publication date
JPS59177346A (en) 1984-10-08

Similar Documents

Publication Publication Date Title
JPWO2005123974A1 (en) R-Fe-B rare earth permanent magnet material
JPH0521218A (en) Production of rare-earth permanent magnet
JPWO2002103719A1 (en) Rare earth permanent magnet material
US20120091844A1 (en) Alloy material for r-t-b type rare earth permanent magnet, method for producing r-t-b type rare earth permanent magnet, and motor
Ormerod The physical metallurgy and processing of sintered rare earth permanent magnets
KR900006193B1 (en) Making method for nd-fe-b permanent magnet
JPH0340082B2 (en)
JPH0424401B2 (en)
JP2000234151A (en) Rare earth-iron-boron system rare earth permanent magnet material
JPS6248744B2 (en)
JPH0369981B2 (en)
JPS6263642A (en) Rare earth alloy for magnet stock and its production
JPH0435548B2 (en)
JP2610798B2 (en) Permanent magnet material
JPS59219404A (en) Production of alloy powder for rare earth-iron-boron permanent magnet alloy
JPH0461042B2 (en)
JPH061726B2 (en) Method of manufacturing permanent magnet material
JPH0435549B2 (en)
JPH0617535B2 (en) Method of manufacturing permanent magnet material
JP3178848B2 (en) Manufacturing method of permanent magnet
JPH05267027A (en) Manufacture of raw material powder for r-fe-b group permanent magnet and alloy powder for adjusting raw material powder
JPH0316763B2 (en)
JPS6144155A (en) Permanent magnet alloy
JPS6012707A (en) Permanent magnet material
JPH0521219A (en) Production of rare-earth permanent magnet