JPS61111511A - Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof - Google Patents

Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof

Info

Publication number
JPS61111511A
JPS61111511A JP23377684A JP23377684A JPS61111511A JP S61111511 A JPS61111511 A JP S61111511A JP 23377684 A JP23377684 A JP 23377684A JP 23377684 A JP23377684 A JP 23377684A JP S61111511 A JPS61111511 A JP S61111511A
Authority
JP
Japan
Prior art keywords
film
ferrite
polycrystalline
substrate
film element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23377684A
Other languages
Japanese (ja)
Inventor
Manabu Gomi
学 五味
Masanori Abe
正紀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP23377684A priority Critical patent/JPS61111511A/en
Publication of JPS61111511A publication Critical patent/JPS61111511A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To obtain a Co ferrite magnetized film showing vertically magnetized characteristics irrespective of a polycrystal by using Co ferrite provided with a properly small spontaneous magnetizing MS and utilizing a stress based on difference between coefficients of thermal expansion of a substrate and the magnetized film. CONSTITUTION:Making a spontaneous magnetizing MS properly small can be achieved by substituting CO<2+> in CoFe2O4 and/or Fe<3+> with a proper metal ion. In other words, a ploycrystalline Co ferrite film shown by CO1-xFe2-yMx +yO4 [M is a metal ion except Fe<3+>, 0.5<=(x+y)] is provided on a substrate. If, in this time, an amount of substitution (x+y) is smaller than 0.5, a vertically magnetized film can not be obtained because the spontaneous magnetizing MS is too large. However, since increase in an amount of substitution (x) of M ion for Co causes decrease in magneto-optical effect of the Co ferrite magnet ized film, it is preferable to make the amount of substitution zero by devising decrease in spontaneous magnetization with only an amount of substitution (y) for Fe. An amount of replacement (x) is used in the range of x<=0.5.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気記録材料として好適な多結晶C。[Detailed description of the invention] [Industrial application field] The present invention relates to polycrystalline C suitable as a magnetic recording material.

7エライト垂直磁化膜素子およびその製造方法に関する
The present invention relates to a 7-elite perpendicular magnetization film element and a method of manufacturing the same.

〔従来の技術〕[Conventional technology]

X ヒ’*k 型QO7zフィトCQ 2 +li’ 
C3+ 2−x M 3 + 、 04(M−Mn *
AltOr等)は、可視光に対して比較的大きな磁気光
学効果を有すると共に光熱磁気書き込みに適当なキ1−
り温度及び光吸収係数を有し、また耐蝕性及び機械的強
度等が優れているため、光磁気メモリー材料として注目
されている。しかしながら、上述のスピネル7エライト
は、MgO等の単結晶基板上に膜をエピタキシャル成長
させる場合を除いて一般に垂直磁化膜を得るのが難しく
、これが光磁気メモリー材料としてスピネル7エライト
を用いる際の障害となっていた。
X Hi'*k type QO7z phytoCQ 2 +li'
C3+ 2-x M3+, 04(M-Mn*
AltOr etc.) have a relatively large magneto-optic effect on visible light and are suitable for photothermal magnetic writing.
It is attracting attention as a magneto-optical memory material because it has a low temperature and light absorption coefficient, and also has excellent corrosion resistance and mechanical strength. However, it is generally difficult to obtain a perpendicularly magnetized film with the above-mentioned spinel 7 elite, except when the film is epitaxially grown on a single crystal substrate such as MgO, and this is an obstacle when using spinel 7 elite as a magneto-optical memory material. It had become.

事実、第3ψ回応用物理学関係連合講演会講演予稿集3
tIワ頁λ9p−J−iに示されている様に、本発明者
等はスパッタリング法を用いて石英基板上K Oo F
e2O4の多結晶垂直磁化膜を作成することを試みてい
る。しかしながら得られた膜の磁化容易軸は膜面に平行
であり、垂直磁化膜にはなっていなかった。
In fact, the 3rd ψ Applied Physics Related Conference Lecture Proceedings 3
As shown on page λ9p-J-i, the present inventors deposited KOoF on a quartz substrate using a sputtering method.
We are trying to create a polycrystalline perpendicular magnetization film of e2O4. However, the axis of easy magnetization of the obtained film was parallel to the film surface, and the film was not a perpendicularly magnetized film.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ここで従来の単結晶Coフェライト垂直磁化膜素子では
基板としてMgO等の単結晶を用いているため■大型、
大面積のものが得られにくい。■基板材質が潮解性を持
っており実用性がない。■全体として高価なものとなっ
てしまう。などの問題点があった。
Here, since conventional single crystal Co ferrite perpendicular magnetization film elements use a single crystal such as MgO as a substrate,
It is difficult to obtain one with a large area. ■The substrate material has deliquescent properties, making it impractical. ■It ends up being expensive as a whole. There were problems such as:

本発明は上記従来の単結晶Coフェライト垂直磁化腰槽
暦素子の欠点を解決するもので、基板として単結晶を用
いる必要がない多結晶Cpフェライト垂直磁化膜素子お
よびその製造方法を提供するものである。
The present invention solves the drawbacks of the conventional single-crystal Co ferrite perpendicular magnetization film element, and provides a polycrystalline Cp ferrite perpendicular magnetization film element that does not require the use of a single crystal as a substrate, and a method for manufacturing the same. be.

本発明者等は先に所定の基板上K (j02” 1−J
:Fe” 2−yMx+y 04 (M=Fe” Fe
除< 71g金73イオン、 0.;≦J4−31≦八
j、Jc(/、y≧0.5)から成る薄膜を気相成長法
により形成し、次いで熱処理を行うことにより上記薄膜
を結晶化または再結晶rヒさせるようにしたことを特徴
とする007エライト垂直磁化膜の製造方法を示した。
The inventors of the present invention first installed K (j02" 1-J
:Fe" 2-yMx+y 04 (M=Fe" Fe
Excluding < 71g gold 73 ions, 0. ;≦J4-31≦8j, Jc (/, y≧0.5) is formed by a vapor phase growth method, and then heat treatment is performed to crystallize or recrystallize the thin film. A method for manufacturing a 007 elite perpendicular magnetization film is described.

(特願昭39−本発明は上記発明に係り上記発明をさら
に発展させたものである。
(Japanese Patent Application No. 1983-The present invention relates to the above invention and is a further development of the above invention.

〔間珀点を解決するための手段〕[Means for resolving the gap]

本発明は上記問題点を解決するために、Qol−xFe
2−y Mx+yO+  (M=Fe  を除く金属イ
オン、O0!≦(Jc+y) )で示される多結晶Co
フェライト膜が基板上に設けられている多結晶Coフェ
ライト垂直磁化膜素子および100−500℃に加熱さ
れた基板上KOO1−xFe2−yMx+ych (M
=Fe”を除く金属イオン、 0.1≦(、xay))
で示される被護を気相成長法により設ける多結晶CQ7
エライト垂電磁化膜素子の製造方法を提供する。
In order to solve the above problems, the present invention provides Qol-xFe
2-y Mx+yO+ (M=metal ion excluding Fe, O0!≦(Jc+y)) Polycrystalline Co
A polycrystalline Co ferrite perpendicular magnetization film element in which a ferrite film is provided on a substrate and a substrate heated to 100-500°C KOO1-xFe2-yMx+ych (M
=Metal ions excluding “Fe”, 0.1≦(,xay))
Polycrystalline CQ7 is provided with the protection shown by the vapor phase growth method.
A method of manufacturing an elite vertical electromagnetic film element is provided.

本発明は、C0Fe2O4の#膜を石英ガラス基板上に
設けた際に垂直磁化膜が得られない原因がaoye2o
4の自発磁化Msが大きすぎたためであるという知見に
よりなされたものである。すなわち本発明は自発磁化M
Sが適度に小さいCpフェライトを用いることによって
、基板と磁性膜との熱膨張率差に基づく応力を利用して
多結晶であるにもかかわらす乗置磁化特性を示すC!0
7エライト磁性膜を得るものである。
The present invention shows that aoye2o
This was made based on the knowledge that this was due to the spontaneous magnetization Ms of No. 4 being too large. That is, the present invention deals with spontaneous magnetization M
By using Cp ferrite with a moderately small S value, the C! 0
A 7-elite magnetic film is obtained.

自発磁化Isを適度に小さくすることはGOFe204
のQQ2+おヨヒ/またはFe3+ヲ適当な金属イオン
で置換することで達成される。
GOFe204 can reduce the spontaneous magnetization Is appropriately.
This is achieved by replacing QQ2+ and/or Fe3+ with an appropriate metal ion.

本発明で使用されるCoフェライトをCo1−x Fe
2−yMx+y Oaと表わした際、「C02+の置換
量X」と11’63+の置換量y」との合計(ray)
はO,3以上であることが必要である。置換量(ray
)がC3よりも小さいと自発磁化MSが大きすぎるため
垂直磁化膜が得られない。
The Co ferrite used in the present invention is Co1-x Fe
When expressed as 2-yMx+y Oa, the sum of "C02+ substitution amount X" and 11'63+ substitution amount y" (ray)
must be O,3 or more. Substitution amount (ray
) is smaller than C3, the spontaneous magnetization MS is too large and a perpendicularly magnetized film cannot be obtained.

しかしながらここでCOに対するMイオンの置換fix
の増加は自発磁化Isを小さくするものの得られるQo
 7エライト磁性膜の磁気光学効果の減少をも引きおこ
す。従ってXの値は小さいことが好ましくxFeに対す
る置換yのみで自発磁化の減少をはかり置換量Xをゼロ
とすることが最も好ましい。すなわち置換量Xはxく/
の範囲、好ましくはX≦O0j の範囲で使用される。
However, here the substitution fix of M ions for CO
Although the increase in Qo decreases the spontaneous magnetization Is, the obtained Qo
This also causes a decrease in the magneto-optical effect of the 7-elite magnetic film. Therefore, it is preferable that the value of X is small, and it is most preferable that the spontaneous magnetization is reduced only by substitution y for xFe, and the substitution amount X is set to zero. In other words, the amount of substitution X is x/
, preferably within the range of X≦O0j.

又ここでGo2+およびF193+の他種金属イオンで
の置換はキュリ一温度TOの低下も引き起こす。
In addition, the substitution of Go2+ and F193+ with other metal ions also causes a decrease in the Curie temperature TO.

キュリ一温度の低下は熱磁気書き込み材料としての特性
上好ましいことであるが、■置換用イオンとしてA13
+を用いた場合には(ray)の値が/Jよりも大きく
なると、又■置換用イオンとしてMn  および/また
はCrs+を用いた場合には、(ray)の値が八7よ
りも大きくなるとキュリ一温度が室温以下となってしま
う場合が多いのでそれぞれ■(、r+ y )≦へj、
■(xary)≦/、7であることが好まれる。
A reduction in the Curie temperature is favorable in terms of properties as a thermomagnetic writing material;
When + is used, the value of (ray) becomes larger than /J, and when Mn and/or Crs+ are used as the replacement ion, the value of (ray) becomes larger than 87. Since the Curie temperature is often below room temperature,
(2) It is preferable that (xary)≦/, 7.

ここでQQ2+および1P63+イオンと置換可能な金
属イオンとしてはxFe3+を除く金属イオン、即ち例
えばNi2+、GO2+13+、%n3+、Cr3+J
l!3+。
Here, metal ions that can replace QQ2+ and 1P63+ ions include metal ions other than xFe3+, such as Ni2+, GO2+13+, %n3+, Cr3+J
l! 3+.

C””+Zn”+Mg2+、Pkl”、cd2+、■3
+、4+、5+、Tj−4+。
C””+Zn”+Mg2+, Pkl”, cd2+, ■3
+, 4+, 5+, Tj-4+.

No何5+1Sn2+14+、In3+、Rh3+1R
u3+1Zr4+1G64+。
No.5+1Sn2+14+, In3+, Rh3+1R
u3+1Zr4+1G64+.

Si4+、Sb5+、Li”+Na”+に+等またはこ
れらの金属イオンの組み合わせ、即ち例えばM−(CO
3++14:s+)/コ、(コ002++ Sb5+)
/J  等があげられる。上記金属イオン中AJ3+は
置換を行なうことKよって多結晶磁歪定数が負の大きな
値となる傾向があり、Mn3+およびCr3+は置換に
よって多結晶磁歪定数を正とする傾向がある。
Si4+, Sb5+, Li"+Na"+, etc. or a combination of these metal ions, i.e., for example, M-(CO
3++14:s+)/ko, (ko002++ Sb5+)
/J etc. Among the metal ions, AJ3+ tends to have a large negative polycrystalline magnetostriction constant due to substitution, while Mn3+ and Cr3+ tend to have a positive polycrystalline magnetostriction constant due to substitution.

基板材料としては、■その上く形成されるCoフェライ
ト磁性膜の熱膨張率とある程度の差のある熱膨張率を持
った基板であり、かつ■例えばpro℃程度の基板温度
や熱処理温度でCpフェライト磁性膜と反応を起こさな
い材質の基板であれば使用可能である。ここで基板は「
基板の熱膨張率」とro07Coフェライト磁性膜張率
」との差がmIIE張係数としてJOX10″!7/℃
以上あるものが垂直磁化膜が得られやすいので好まれる
。通常Co7エライト磁性膜の線膨張係数はtooxt
o−’t /’c程度であるので、たとえば線膨張係数
ψN70×10−7/Cのガラス板、線膨張係数/30
−コ0Ox10−7/”Cのステンレス板、貴金属板又
はそれらの積層板などが例示できる。又基板材料とし5
←遼産性および耐候性などの面で単結晶以外の基板が好
まれる。
As for the substrate material, (1) the substrate has a coefficient of thermal expansion that is somewhat different from that of the Co ferrite magnetic film formed thereon, and (2) it has a thermal expansion coefficient that is somewhat different from that of the Co ferrite magnetic film formed thereon, and Any substrate can be used as long as it does not react with the ferrite magnetic film. Here, the board is “
The difference between the thermal expansion coefficient of the substrate and the ro07Co ferrite magnetic film tensile modulus is JOX10''!7/℃ as mIIE tensile coefficient.
Those having the above are preferred because a perpendicularly magnetized film can be easily obtained. Normally, the coefficient of linear expansion of Co7 elite magnetic film is tooxt
Since it is about o-'t/'c, for example, a glass plate with a linear expansion coefficient ψN70×10-7/C, a linear expansion coefficient/30
Examples include stainless steel plates, precious metal plates, and laminates thereof.
←Substrates other than single crystal are preferred in terms of productivity and weather resistance.

ここで上記多結晶Coフェライト垂直磁化膜素子の得ら
れる条件をさらに詳しく述べると、まず■上記多結晶G
Oフェライト膜が多結晶磁歪定数負の多結晶GOフェラ
イト膜であり、かつ基板が該多結晶COフェライト膜の
熱膨張率よりも小さな熱膨張率の基板である場合。およ
び■上記多結晶Coフェライト膜が多結晶磁歪定数正の
多結晶Coフェライト膜であり、かつ基板が該多結晶C
oフェライト膜の熱膨張率よりも大きな熱膨張率の基板
である場合。02通りの場合となっている。
Here, the conditions for obtaining the above polycrystalline Co ferrite perpendicular magnetization film element will be described in more detail.
When the O ferrite film is a polycrystalline GO ferrite film with a negative polycrystalline magnetostriction constant, and the substrate has a coefficient of thermal expansion smaller than that of the polycrystalline CO ferrite film. and (2) the polycrystalline Co ferrite film is a polycrystalline Co ferrite film with a positive polycrystalline magnetostriction constant, and the substrate is the polycrystalline Co ferrite film, and
o When the substrate has a coefficient of thermal expansion larger than that of the ferrite film. There are 02 cases.

ここでの自発磁化MSが適度に小さいこと。The spontaneous magnetization MS here should be appropriately small.

(Cjo2+ オヨU/またはFe3+をFe3+以外
の金属イオンと置換することにより小さくされる)およ
び■「多結晶磁歪定数の符号」および「(基板の熱膨張
率)−(磁性膜の熱膨張率)の符号」の組合せ。によっ
て多結晶GOフェライト膜であるにもかかわらず垂直磁
化膜素子が得られる。
(Reduced by replacing Cjo2+ or Fe3+ with metal ions other than Fe3+) and ■ "Sign of polycrystalline magnetostriction constant" and "(Coefficient of thermal expansion of substrate) - (Coefficient of thermal expansion of magnetic film) A combination of 'signs'. Thus, a perpendicular magnetization film element can be obtained even though it is a polycrystalline GO ferrite film.

次に上記多結晶Coフェライト垂直磁化膜素子の製造方
法について述べる。本製造方法に使用する気相成長法と
しては蒸着法、 CVD法、イオンブレーティング法、
スパッタ法、クラスタ・イオンビーム法、プラズマ溶射
法(溶融スプレー法)等の気相成長法が使用可能である
。内でもスパッタ法が成膜組成に対する適用範囲が広い
ので好ましい。
Next, a method for manufacturing the polycrystalline Co ferrite perpendicular magnetization film element will be described. The vapor phase growth methods used in this manufacturing method include evaporation method, CVD method, ion blating method,
Vapor phase growth methods such as a sputtering method, a cluster ion beam method, and a plasma spray method (melt spray method) can be used. Among them, the sputtering method is preferable because it can be applied to a wide range of film formation compositions.

気相成長を行なう際の基板温度は100−500’cで
あることが必要とされる。基板温度が100’Cより低
いと気相成長法としてスパッタ法を用いた場合、基板と
007エライト磁性膜との付着力が弱いため磁性膜が@
離しやすく、又基板温度がroo’cよりも高いとCo
フェライト磁性膜として(///)配向膜(磁化困難軸
が膜面に垂直であり以後の熱処理を行なっても垂直磁化
膜が得られない膜)が直接形成されやすい。
The substrate temperature during vapor phase growth is required to be 100-500'C. When the substrate temperature is lower than 100'C, when sputtering is used as a vapor phase growth method, the adhesion between the substrate and the 007 elite magnetic film is weak, so the magnetic film is
It is easy to separate, and if the substrate temperature is higher than roo'c, Co
As a ferrite magnetic film, a (///) oriented film (a film in which the axis of hard magnetization is perpendicular to the film surface and a perpendicular magnetization film cannot be obtained even after subsequent heat treatment) is easily formed.

上記気相成長くよる被膜形成によって(被膜作成時の基
板温度から室温までの冷却によって)垂直磁化膜の作成
も可能であるが、一般的に言えば冷却時に熱膨張率の差
によって生じる応力の大きさが小さいので垂直磁化膜は
得られにくい。又上記冷却によって垂直磁化膜が得られ
た場合においてもその後に熱処理を行なうことで磁気特
性がさいので好まれず、又900℃より高い熱処理は基
板と被膜とが反応を起こしたりするので好ましくない。
It is also possible to create a perpendicularly magnetized film by forming a film by vapor phase growth (by cooling from the substrate temperature at the time of film formation to room temperature), but generally speaking, it is possible to create a film with perpendicular magnetization due to the difference in thermal expansion coefficient during cooling. Since the size is small, it is difficult to obtain a perpendicularly magnetized film. Furthermore, even if a perpendicularly magnetized film is obtained by the cooling described above, subsequent heat treatment is not preferred because the magnetic properties are poor, and heat treatment at a temperature higher than 900°C is not preferred because the substrate and film may react. .

上記気相成長法により被膜作成を行なった後熱処理を行
なって垂直硼化膜を得る場合、気相成長法によって得る
被膜は結晶膜であってもアモルファスの膜であっても(
///)配向膜以外の前記組成の被膜であれば、熱処理
により結晶化又は再結晶化して多結晶垂直磁化膜となる
When a vertical boride film is obtained by heat treatment after forming a film by the above vapor phase growth method, the film obtained by the vapor phase growth method may be a crystalline film or an amorphous film (
///) If the film has the above composition other than the alignment film, it will be crystallized or recrystallized by heat treatment to become a polycrystalline perpendicular magnetization film.

又上記Coフェライト垂直磁化膜積暦板の製造方法にお
いては前記理由により、■基板がQO7zO7上磁性膜
の熱膨張率よりも小さな熱膨張率を有する基板である場
合には、被膜組成が結晶化によりて多結晶磁歪定数量の
磁性膜となる組成であること〔例えば、C01−xFe
2−yAl”04 (0≦X≦0.3゜O1j≦(xa
y)≦へj)で示される被膜〕、■基板がCoフェライ
ト磁性磁性熱膨張率よりも大きな熱膨張率を有する基板
である場合には、被膜組成が結晶化によって多結晶磁歪
定数正の磁性膜となる組成であること〔例えばcal−
x Fe2−、 椴:y04(M3+、 Kn3+およ
び/または(3r3+、 0≦X≦O0!(7,5≦(
、xay)≦へ7)で示される被膜〕がそれぞれ必要と
される。
In addition, in the above-mentioned method for manufacturing the Co ferrite perpendicular magnetization film calendar plate, for the reasons mentioned above, (1) If the substrate is a substrate having a coefficient of thermal expansion smaller than that of the magnetic film on QO7zO7, the film composition may be crystallized. [For example, C01-xFe
2-yAl”04 (0≦X≦0.3゜O1j≦(xa
If the substrate has a coefficient of thermal expansion larger than that of Co ferrite magnetism, the film composition becomes polycrystalline with a positive magnetostriction constant due to crystallization. The composition should be such that it forms a film [e.g. cal-
x Fe2−, 椴:y04(M3+, Kn3+ and/or (3r3+, 0≦X≦O0!(7,5≦(
, xay)≦7) are required.

又それぞれ上記組成で示される被膜はターゲット材料と
してCOl−x Fe2− y AJ x+ y O4
(OダX≦(11,! 、 0.3≦(xay)≦へj
)又はCOトx F e 2− y Mfy O4(M
 3”M n 3+および/またはCr3+、Q≦X≦
o、s 、 o、s≦(、z:+y)≦へ7)をターゲ
ット材料としたスパッター法で作成することが好まれる
。又上記ターゲット材料は焼結体からなる事がその取扱
いが容易であるので好まれるが、多結晶焼結体の外上記
組成式で示される元素を含む混合物等であっても良い。
In addition, the coatings having the above compositions each have COl-x Fe2- y AJ x+ y O4 as a target material.
(OdaX≦(11,!, 0.3≦(xay)≦j
) or COtx F e 2- y Mfy O4 (M
3”M n 3+ and/or Cr3+, Q≦X≦
It is preferable to use a sputtering method using o, s, o, s≦(,z:+y)≦7) as the target material. Although it is preferred that the target material be a sintered body because it is easy to handle, it may be a mixture containing the elements represented by the above compositional formula in addition to a polycrystalline sintered body.

〔作  用〕[For production]

本発明によれば、自発磁化Isが適度に小さいcoフェ
ライトを用いているためにCOフェライト磁性膜と基板
との熱膨張率の差に基づく応力を利用して他IYr磁化
膜が得られる。
According to the present invention, since a co ferrite having a suitably small spontaneous magnetization Is is used, an IYr magnetized film can be obtained by utilizing stress based on the difference in coefficient of thermal expansion between the CO ferrite magnetic film and the substrate.

QO7zO7上磁性膜と基板との熱膨張率の差に基づく
応力により垂直磁化膜を得るためには、上記自発磁化M
Sが小さいこと以外にも前記組合せ■多結晶磁歪定数負
の磁性膜でかつ「Coフェライト磁性膜の熱膨張率」〉
「基板の熱膨張率jの組合せ。
In order to obtain a perpendicular magnetization film using stress based on the difference in thermal expansion coefficient between the QO7zO7 upper magnetic film and the substrate, the spontaneous magnetization M
In addition to the fact that S is small, the above combination ■ A magnetic film with a negative polycrystalline magnetostriction constant and a "coefficient of thermal expansion of a Co ferrite magnetic film"
``Combination of thermal expansion coefficients j of substrates.

■多結晶磁歪定数正の磁性膜でかつ「Coフェライト磁
性膜の熱膨張率」<「基板の熱膨張率」の組合せの条件
が必要である。
(2) A magnetic film with a positive polycrystalline magnetostriction constant and a combination of "coefficient of thermal expansion of Co ferrite magnetic film"<"coefficient of thermal expansion of substrate" are required.

ここで例えば「基板の熱膨張率」<「磁性膜の熱膨張率
」の組合せを設けると、気相成長時又は熱処理時の基板
温度から室温への温度低下によりてCoフェライト磁性
膜内には膜面方向に引っ張り応力、膜面垂直方向に圧縮
性応力が発生する。一方垂直磁気異方性定数に↓は垂直
方向の引っ張り応力グ、磁性膜の磁歪定数λSとの間に に−LQCグ・λS の関係がある。そこで前記「基板の熱膨張率」く「磁性
膜の熱膨張率」の場合には「磁歪定数負の磁性膜」との
組合せによって垂直磁気異方性定数Ksが正となり垂直
磁化膜が得られる。又「基板の熱膨張率J〉「磁性膜の
熱膨張率」の場合には「磁歪定数圧の磁性膜」との組合
せによって垂直磁気異方性定数に上が正となり垂直磁化
膜が得られる。
For example, if a combination of "coefficient of thermal expansion of the substrate"<"coefficient of thermal expansion of the magnetic film" is provided, the temperature inside the Co ferrite magnetic film decreases from the substrate temperature to room temperature during vapor phase growth or heat treatment. Tensile stress occurs in the direction of the membrane surface, and compressive stress occurs in the direction perpendicular to the membrane surface. On the other hand, the perpendicular magnetic anisotropy constant ↓ indicates the vertical tensile stress G, and the relationship between the magnetostriction constant λS of the magnetic film and -LQCg·λS. Therefore, in the case of the above-mentioned "thermal expansion coefficient of the substrate" and "thermal expansion coefficient of the magnetic film", the perpendicular magnetic anisotropy constant Ks becomes positive by combining with the "magnetic film with a negative magnetostriction constant", and a perpendicularly magnetized film is obtained. . In addition, in the case of ``coefficient of thermal expansion J of the substrate'' and ``coefficient of thermal expansion of the magnetic film'', by combining with ``magnetic film with magnetostrictive constant pressure'', the perpendicular magnetic anisotropy constant becomes positive and a perpendicularly magnetized film is obtained. .

以下に本発明を具体的実施例をあげてさらに詳細に説明
する。
The present invention will be explained in more detail below with reference to specific examples.

〔実 施 例〕〔Example〕

実施例1 第1図に示すような高周波(RF)スパッタリング装置
を用いてCo7エライト垂直磁化膜を作成した。
Example 1 A Co7 elite perpendicular magnetization film was produced using a radio frequency (RF) sputtering apparatus as shown in FIG.

以下にその手順を説明する。The procedure will be explained below.

まずスパッタリング装置のステンレス製の電極υ(試料
台)lの上に石英ガラス基板λを載置すると共に、iw
板3にターゲット弘を取り付ける。
First, place the quartz glass substrate λ on the stainless steel electrode υ (sample stage) l of the sputtering device, and
Attach target Hiro to board 3.

なおこのターゲット弘は、Go Fax−ユAI0.9
04で表される多結晶状のGoフェライトの円盤状の焼
結体から成っている。
This target Hiro has a Go Fax AI of 0.9.
It consists of a disc-shaped sintered body of polycrystalline Go ferrite represented by 04.

次にスパッタリング装置内を所定の真空度に排気した後
、このスパッタリング装置内にArと02との混合ガX
(Ar:02−9:/)を7Pa程度まで導入する。真
空度が安定した状部で、電極板lと電極板3との間に所
定の高周波電圧を印加してグロー放電を開始させる。こ
の放電で生じたAr+イオンはターゲットψの表面をス
パッタし、このスパッタにより上記ターゲットψからG
oxFe、kllo等の原子が離脱する。これらの離脱
した原子は、電極板lを介してヒータjKよりψso’
cに加熱されている石英ガラス基板λ上に被着し、この
石英ガラス基板コ上に多結晶質のCo Fe1. lA
l!Q、 904薄膜(以下薄膜と称する)6が形成さ
れる。ここでスパッタに用いる電力を10OWとし、ま
たスパッタ時間を30分とした場合、得られた薄膜6の
膜厚はOl−μmであった。
Next, after evacuating the inside of the sputtering equipment to a predetermined degree of vacuum, a mixed gas of Ar and 02
(Ar:02-9:/) is introduced to about 7 Pa. In a state where the degree of vacuum is stable, a predetermined high frequency voltage is applied between the electrode plates 1 and 3 to start glow discharge. The Ar+ ions generated by this discharge sputter the surface of the target ψ, and this sputtering causes the G
Atoms such as oxFe and kllo are released. These detached atoms are transferred to ψso' from the heater jK via the electrode plate l.
A polycrystalline Co Fe1. lA
l! Q. 904 thin film (hereinafter referred to as thin film) 6 is formed. Here, when the power used for sputtering was 10 OW and the sputtering time was 30 minutes, the thickness of the obtained thin film 6 was Ol-μm.

ここで石英ガラス基板コの熱膨張率は約4X10−7/
deg薄膜tの熱膨張率は約10OX10−’I/de
gである。
Here, the coefficient of thermal expansion of the quartz glass substrate is approximately 4X10-7/
The coefficient of thermal expansion of the deg thin film t is approximately 10OX10-'I/de
It is g.

上述のスパッタ法により作製された薄膜乙の結晶性をX
#回折により調べたところ、優勢方位のない多結晶であ
ることが判明した。又上記薄膜乙の磁化特性を振動試料
型磁力計で111I定した所上記酵膜6は、面内磁化膜
であることがわかった。
The crystallinity of the thin film B produced by the above sputtering method is expressed as
# When examined by diffraction, it was found to be a polycrystal without a dominant orientation. Further, the magnetization characteristics of the thin film A were determined using a vibrating sample magnetometer, and it was found that the yeast film 6 was an in-plane magnetized film.

つぎに上記薄[4をこの薄膜≦が被着した石英ガラス基
板λと共に、空気中において70σ°C13時間の条件
で熱処理し、薄膜6を再結晶化させた。
Next, the above-mentioned thin film [4] was heat-treated together with the quartz glass substrate λ to which this thin film≦ was adhered in air at 70σ°C for 13 hours to recrystallize the thin film 6.

上記熱処理により再結晶化された薄膜乙の結晶性をX線
回折により調べたところ、上記薄膜形成直後の薄膜同様
優勢方位のない多結晶であることが判明した。しかし、
光学顕微鏡による観察の結果、多結晶であるにもかかわ
らず薄膜6は唐草模様状及びバブル状の磁区構造を有し
、良好な垂直磁化膜であることがわかった。
When the crystallinity of the thin film A recrystallized by the heat treatment was examined by X-ray diffraction, it was found that it was a polycrystalline film with no dominant orientation, similar to the thin film immediately after formation. but,
As a result of observation using an optical microscope, it was found that although the thin film 6 was polycrystalline, it had an arabesque-like and bubble-like magnetic domain structure, and was a good perpendicularly magnetized film.

上記熱処理によって作製された薄膜の磁化特性を振動試
料型磁力計で測定したところ第2図に示すような磁化特
性であった。第一図において上を付した磁化特性は薄膜
乙の膜面に垂直な方向の磁化特性を示しlは膜面に平行
な方向の磁化特性を示す。
The magnetization characteristics of the thin film produced by the above heat treatment were measured using a vibrating sample magnetometer, and the magnetization characteristics were as shown in FIG. 2. In FIG. 1, the magnetization characteristics indicated above are the magnetization characteristics in the direction perpendicular to the film surface of the thin film B, and l represents the magnetization characteristics in the direction parallel to the film surface.

第2図において上方向のループはl方向のループに比べ
て残留磁化Mr及び保磁力)1cが大きく、このことか
らも薄膜6が垂直磁化膜であることがわかる。また、磁
気トルク測定からも薄膜6が垂直磁化膜であることが検
証された。なおこのように特性良好の垂直磁化膜が得ら
れるのはxFeと置換されたAlの八面***置指向性が
小さいために八面***置(に配位) QQR+が多数残
留し、又多結晶磁歪定数が負であり、前基板と磁性膜と
の熱膨張率との関係が「基Fi、J<rm磁性膜となっ
ており、かつ自発磁化Isが適度に小さいためと考えら
れる。
In FIG. 2, the loop in the upward direction has a larger residual magnetization Mr and coercive force (1c) than the loop in the l direction, and this also shows that the thin film 6 is a perpendicularly magnetized film. Furthermore, magnetic torque measurements also verified that the thin film 6 was a perpendicularly magnetized film. The reason why such a perpendicularly magnetized film with good characteristics can be obtained is that the octahedral positional directivity of Al substituted with xFe is small, so a large number of octahedral positions (coordinated) QQR+ remain, and the polycrystalline magnetostriction constant is negative, and this is thought to be because the relationship between the coefficient of thermal expansion of the front substrate and the magnetic film is "Group Fi, J<rm", and the spontaneous magnetization Is is appropriately small.

実施例λ ターゲット弘をco□、60r14F60.904で表
わされる多結晶状のCoフェライトの円盤状の焼結体に
変え、石英基板λをステンレス基板(1g膨張率/60
X10’″7/C)にかえた以外は実施例/と同様の装
置および操作によりステンレス基板上に’:’00.6
Cr1.5 Fe□0g o4の薄膜を作成した。スパ
ッタ電力を10oTN、スパッタ時間を30分とした場
合得られた薄膜の膜厚は0.6λμmであった。
Example λ The target was changed to a disc-shaped sintered body of polycrystalline Co ferrite represented by co□, 60r14F60.904, and the quartz substrate λ was replaced with a stainless steel substrate (1g expansion coefficient/60
x10'''7/C)':'00.6 on a stainless steel substrate using the same equipment and operation as in Example/
A thin film of Cr1.5 Fe□0g o4 was created. The thickness of the thin film obtained when the sputtering power was 10oTN and the sputtering time was 30 minutes was 0.6λμm.

上記実施例により製造された薄膜の結晶性をX線回折に
より調べたところ、優勢方位のない多結晶であることが
判明した。しかし、光学顕@鏡による観察の結果、多結
晶であるにもかかわらず薄膜は唐草模様状及びバブル状
の磁区構造を有し、また次のような優れた特性を有する
極めて良好な垂直磁化膜であることが測定によって明ら
かにされた。
When the crystallinity of the thin film produced in the above example was examined by X-ray diffraction, it was found that it was polycrystalline with no dominant orientation. However, as a result of observation using an optical microscope, the thin film had an arabesque pattern and bubble-like magnetic domain structure despite being polycrystalline, and it was found to be an extremely good perpendicularly magnetized film with the following excellent properties. It was revealed through measurements that

即ち、第3図に示すように、薄膜の膜面に垂直な方向の
磁化特性を光学的に測定したところ(He−Ne L、
−ザ λ−t3xtXを使用)保持力HCが比較的大き
く、角型性のある垂直砒化特性が得られた。
That is, as shown in FIG. 3, the magnetization characteristics in the direction perpendicular to the film surface of the thin film were optically measured (He-Ne L,
(using λ-t3xtX) The holding force HC was relatively large, and vertical arsenization characteristics with squareness were obtained.

又本実施例によれば、気相成長による被膜形成後熱処理
を行なわなくても垂直磁化膜が得られることがわかる。
Further, according to this example, it is understood that a perpendicularly magnetized film can be obtained without performing heat treatment after forming a film by vapor phase growth.

又本実施例ではr GoO−6crt、5 FeO,9
04膜の多結晶磁歪定数が正」、「基板の熱膨張率J>
r磁性膜の熱膨張率」となっており、又自発磁化Isが
適度に小さいためと考えられる。
In addition, in this example, r GoO-6crt, 5 FeO, 9
04 film has a positive polycrystalline magnetostriction constant", "substrate thermal expansion coefficient J>
This is thought to be due to the fact that the coefficient of thermal expansion of the magnetic film is "r" and the spontaneous magnetization Is is appropriately small.

比較例1 基板として石英ガラス板(熱膨張率6×l0−)/de
g )を用い、スパッタ時間を変化させた以外は実施例
コと同様の条件で石英ガラス板上KO,2urpO厚の
coo、6 Orl、5 Feo、904薄膜を形成し
た。
Comparative Example 1 A quartz glass plate (thermal expansion coefficient 6×l0−)/de was used as a substrate.
g), KO, 2urpO thick coo, 6 Orl, 5 Feo, and 904 thin films were formed on a quartz glass plate under the same conditions as in Example A, except that the sputtering time was changed.

実施例コ同様その薄膜の膜面に垂直な方向の磁化特性を
光学的Kfs定したところ第1図に示すような面内磁化
特性となった。
As in Example 1, the magnetization characteristics of the thin film in the direction perpendicular to the film surface were optically determined by Kfs, and the in-plane magnetization characteristics were obtained as shown in FIG.

ここで上記条件で垂直磁化膜が得られないのは、COo
、6Crl、5Fe0.904膜の多結晶磁歪iiu 
l カiEであるのに「基板の熱膨張率」〈「磁性膜の
熱膨張率」となっているためと考えられる。
Here, the reason why a perpendicular magnetization film cannot be obtained under the above conditions is that COo
, 6Crl, 5Fe0.904 film polycrystalline magnetostriction III
This is thought to be because the coefficient of thermal expansion of the substrate is the coefficient of thermal expansion of the magnetic film even though it is 1.

〔発明の効果〕〔Effect of the invention〕

本発明圧よれば、自発磁化Xsが適度に小さいCoフェ
ライトを用いているため、多結晶のCoフェライト膜で
あるKもかかわらず垂直磁化特性を持った被膜が基板と
磁性膜との熱膨張率差に基づく応力によって得られてい
る。本発明は、基板として石英ガラス板、ガラス板、ス
テンレス板などの生産性、耐候性の良好な基板を使用で
きるために1従来にない生産性、耐候性が得られている
According to the present invention, since Co ferrite is used which has a moderately small spontaneous magnetization It is obtained by stress based on the difference. In the present invention, a substrate having good productivity and weather resistance, such as a quartz glass plate, a glass plate, and a stainless steel plate, can be used as a substrate, so that unprecedented productivity and weather resistance can be obtained.

又本発明の製造方法は比較的大面積にわたって均質な被
膜が得られる製造方法である。
Further, the manufacturing method of the present invention is a manufacturing method that allows a uniform coating to be obtained over a relatively large area.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例1に使用したスパッタリング装置の概略
図であり、第一図は実施例1により得られたGoAlo
og Fe1;104薄膜の磁化特性図である。 又第3図は実施例2により得られたGOo、6 Orl
、5Fe0.904薄膜の膜面に垂直な方向の磁化特性
図であり、第v図は比較例/により得られた石英ガラス
板上のcoo、6 Orl、5Fe0.904 ’NJ
膜の8面に垂直な方向の磁化特性図である。 l 電極板(試料台) 2 石英基板 3 電極板 q ターゲット j ヒーター乙薄膜 第3図 第4図
FIG. 1 is a schematic diagram of the sputtering apparatus used in Example 1, and FIG.
og Fe1;104 thin film magnetization characteristic diagram. Moreover, FIG. 3 shows GOo, 6 Orl obtained in Example 2.
, 5Fe0.904 thin film in the direction perpendicular to the film surface, and Figure V is the magnetization characteristic diagram of coo, 6 Orl, 5Fe0.904 'NJ on the quartz glass plate obtained in Comparative Example/.
FIG. 3 is a diagram of magnetization characteristics in a direction perpendicular to eight planes of the film. l Electrode plate (sample stand) 2 Quartz substrate 3 Electrode plate q Target j Heater O thin film Figure 3 Figure 4

Claims (10)

【特許請求の範囲】[Claims] (1)Co_1−xFe_2_−_yM_x_+_yO
_4{M=Fe^3^+を除く金属イオン、0.5≦(
x+y)}で示される多結晶Coフェライト膜が基板上
に設けられている多結晶Coフェライト垂直磁化膜素子
(1) Co_1-xFe_2_-_yM_x_+_yO
_4 {M=Metal ions excluding Fe^3^+, 0.5≦(
A polycrystalline Co ferrite perpendicular magnetization film element in which a polycrystalline Co ferrite film represented by x+y) is provided on a substrate.
(2)該多結晶Coフェライト膜がCo_1_−_xF
e_2_−_yAl^3^+_x_+_yO_4{0≦
x≦0.5、0.5≦(x+y)≦1.5}で示される
多結晶磁歪定数負の多結晶Coフェライト膜であり、か
つ該基板が該多結晶Goフェライト膜の熱膨張率よりも
小さな熱膨張率の基板である特許請求の範囲第1項記載
の多結晶Coフェライト垂直磁化膜素子。
(2) The polycrystalline Co ferrite film is Co_1_-_xF
e_2_−_yAl^3^+_x_+_yO_4{0≦
x≦0.5, 0.5≦(x+y)≦1.5}, and the substrate is a polycrystalline Co ferrite film with a negative polycrystalline magnetostriction constant expressed by The polycrystalline Co ferrite perpendicular magnetization film element according to claim 1, which is a substrate having a small coefficient of thermal expansion.
(3)該基板が熱膨張係数4〜70×10^−^7/C
のガラス板である特許請求の範囲第2項記載のCoフェ
ライト垂直磁化膜素子。
(3) The substrate has a thermal expansion coefficient of 4 to 70 x 10^-^7/C
The Co ferrite perpendicular magnetization film element according to claim 2, which is a glass plate of.
(4)該多結晶Coフェライト膜がCo_1_−_xF
e_2_−_yM^3^+_x_+_yO_4{M=M
n^3^+および/またはCr^3^+、0≦x≦0.
5、0.5≦(x+y)≦1.7}で示される多結晶磁
歪定数正の多結晶Cpフェライト膜であり、かつ該基板
が該多結晶Coフェライト膜の熱膨張率よりも大きな熱
膨張率の基板である特許請求の範囲第1項記載の多結晶
Coフェライト垂直磁化膜素子。
(4) The polycrystalline Co ferrite film is Co_1_-_xF
e_2_−_yM^3^+_x_+_yO_4 {M=M
n^3^+ and/or Cr^3^+, 0≦x≦0.
5, 0.5≦(x+y)≦1.7} is a polycrystalline Cp ferrite film with a positive polycrystalline magnetostriction constant, and the substrate has a thermal expansion coefficient larger than that of the polycrystalline Co ferrite film. A polycrystalline Co ferrite perpendicularly magnetized film element according to claim 1, which is a perpendicularly magnetized polycrystalline Co ferrite substrate.
(5)該基板がステンレス板又は貴金属板である特許請
求の範囲第4項記載の多結晶Coフェライト垂直磁化膜
素子。
(5) The polycrystalline Co ferrite perpendicular magnetization film element according to claim 4, wherein the substrate is a stainless steel plate or a noble metal plate.
(6)100〜500℃に加熱された基板上にCo_1
_−_xFe_2_−_yM_x_+_yO_4(M=
Fe^3^+を除く金属イオン、0.5≦(x+y)}
で示される被膜を気相成長法により設ける多結晶Coフ
ェライト垂直磁化膜素子の製造方法。
(6) Co_1 on the substrate heated to 100-500℃
____xFe_2_-_yM_x_+_yO_4 (M=
Metal ions excluding Fe^3^+, 0.5≦(x+y)}
A method for manufacturing a polycrystalline Co ferrite perpendicular magnetization film element, in which a film shown in the following is provided by a vapor phase growth method.
(7)気相成長法により該被膜を作製した後600℃〜
900℃の温度で熱処理を行なう特許請求の範囲第6項
記載の多結晶Coフェライト垂直磁化膜素子の製造方法
(7) 600℃~ after producing the film by vapor phase growth method
7. The method of manufacturing a polycrystalline Co ferrite perpendicular magnetization film element according to claim 6, wherein the heat treatment is performed at a temperature of 900°C.
(8)該気相成長法がCo_1_−_xFe_2_−_
yM_x_+_yO_4{M=Fe^3^+を除く金属
イオン、0.5≦(x+y)}で示されるターゲット材
料を用いたスパッタ法である特許請求の範囲第6項又は
第7項記載の多結晶Coフェライト垂直磁化膜素子の製
造方法。
(8) The vapor phase growth method is Co_1_-_xFe_2_-_
Polycrystalline Co according to claim 6 or 7, which is a sputtering method using a target material represented by yM_x_+_yO_4 {M=metal ions excluding Fe^3^+, 0.5≦(x+y)} A method for manufacturing a ferrite perpendicular magnetization film element.
(9)該ターゲット材料がCo_1_−_xFe_2_
−_yAl^3^+_x_+_yO_4{0≦x≦0.
5、0.5≦(x+y)≦1.5}で示される特許請求
の範囲第8項記載の多結晶Coフェライト垂直磁化膜素
子の製造方法。
(9) The target material is Co_1_-_xFe_2_
−_yAl^3^+_x_+_yO_4{0≦x≦0.
The method for manufacturing a polycrystalline Co ferrite perpendicularly magnetized film element according to claim 8, wherein 0.5≦(x+y)≦1.5}.
(10)該ターゲット材料がCo_1_−_xFe_2
_−_yM^3^+_x_+_yO_4{M^3^+=
Mn^3^+および/またはCr^3^+、0≦x≦0
.5、0.5≦(x+y)≦1.7}で示される特許請
求の範囲第1項記載の多結晶Coフェライト垂直磁化膜
素子の製造方法。
(10) The target material is Co_1_-_xFe_2
_−_yM^3^+_x_+_yO_4^^3^+=
Mn^3^+ and/or Cr^3^+, 0≦x≦0
.. 5, 0.5≦(x+y)≦1.7} The method for manufacturing a polycrystalline Co ferrite perpendicularly magnetized film element according to claim 1.
JP23377684A 1984-11-06 1984-11-06 Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof Pending JPS61111511A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23377684A JPS61111511A (en) 1984-11-06 1984-11-06 Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23377684A JPS61111511A (en) 1984-11-06 1984-11-06 Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61111511A true JPS61111511A (en) 1986-05-29

Family

ID=16960388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23377684A Pending JPS61111511A (en) 1984-11-06 1984-11-06 Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61111511A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165447A (en) * 1988-12-16 1990-06-26 Matsushita Electric Ind Co Ltd Magneto-optical recording medium and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02165447A (en) * 1988-12-16 1990-06-26 Matsushita Electric Ind Co Ltd Magneto-optical recording medium and production thereof

Similar Documents

Publication Publication Date Title
EP0054269B1 (en) Perpendicular magnetic recording medium, method for producing the same, and sputtering device
Sonnenberg et al. Preparation of biaxially aligned cubic zirconia films on pyrex glass substrates using ion‐beam assisted deposition
Wang et al. Microwave and magnetic properties of double-sided hexaferrite films on (111) magnesium oxide substrates
Naoe et al. Properties of amorphous Co–Ta and Co–W films deposited by rf sputtering
US5607781A (en) Oxide film with preferred crystal orientation, method of manufacturing the same, and magneto-optical recording medium
JPS61111511A (en) Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
Acharya et al. Sputter deposited strontium ferrite films with c‐axis oriented normal to the film plane
JPH0354454B2 (en)
JPS60200887A (en) Manufacture of magnetic film
EP0196332B1 (en) Method of manufacturing photothermomagnetic recording film
Deschanvres et al. Garnet thin film deposited by a new chemical vapour deposition
JPS6276710A (en) Manufacture of magnetic thin film
JPH0558251B2 (en)
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
Hoshi et al. Magnetic properties of zero magnetostriction Co-Ta-Zr amorphous alloy films deposited by RF sputtering
JPS60204691A (en) Production of perpendicularly magnetized co ferrite film
JP3606481B2 (en) Manufacturing method of NiO alignment film
JPS60202914A (en) Garnet thin-film element and manufacture thereof
US3437577A (en) Method of fabricating uniform rare earth iron garnet thin films by sputtering
JPS62204505A (en) Oxide magnetic thin film
KR100270074B1 (en) The thin coating method for epitaxial ba-ferrite
JP2553145B2 (en) Magneto-optical recording medium
JPS6235506A (en) Magnetically soft amorphous material
JPH0377158B2 (en)