JPS60200887A - Manufacture of magnetic film - Google Patents

Manufacture of magnetic film

Info

Publication number
JPS60200887A
JPS60200887A JP5578784A JP5578784A JPS60200887A JP S60200887 A JPS60200887 A JP S60200887A JP 5578784 A JP5578784 A JP 5578784A JP 5578784 A JP5578784 A JP 5578784A JP S60200887 A JPS60200887 A JP S60200887A
Authority
JP
Japan
Prior art keywords
thin film
film
substrate
rare earth
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5578784A
Other languages
Japanese (ja)
Other versions
JPH0457637B2 (en
Inventor
Manabu Gomi
学 五味
Masanori Abe
正紀 阿部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP5578784A priority Critical patent/JPS60200887A/en
Priority to EP19840904169 priority patent/EP0196332B1/en
Priority to DE8484904169T priority patent/DE3482886D1/en
Priority to US06/763,789 priority patent/US4608142A/en
Priority to PCT/JP1984/000547 priority patent/WO1985002292A1/en
Publication of JPS60200887A publication Critical patent/JPS60200887A/en
Publication of JPH0457637B2 publication Critical patent/JPH0457637B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • H01F10/24Garnets
    • H01F10/245Modifications for enhancing interaction with electromagnetic wave energy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/16Layers for recording by changing the magnetic properties, e.g. for Curie-point-writing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • G11B11/10591Details for improving write-in properties, e.g. Curie-point temperature

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Abstract

PURPOSE:To form a magnetic film having excellent vertical magnetizing characteristics on a substrate by growing an amorphous rare earth iron garnet film on the substrate in gaseous phase and crystallizing the film by means of heat treatment. CONSTITUTION:A substrate 2 such as quartz glass is mounted on an electrode plate 1 of a sputtering apparatus and a target 4 consisting of a sintered body of polycrystalline iron garnet shown with Bi2.0Y1.0Fe3.8Al1.2O12 or the like is fitted on an electrode plate 3. The inside of said apparatus is regulated to a prescribed degree of vacuum and high frequency voltage is charged between said electrode plates 1, 3 to cause glow discharge and the surface of said target 4 is sputtered. The atoms of Bi, Y, Fe, Al and O separated from the target 4 are deposited on the substrate 2 heated at about 300-500 deg.C with a heater 5 to form an amorphous film 6 such as (Y.Bi)3(Fe,Al)5O12. The substrate 2 provided with the film 6 is subjected to heat treatment at about 500-900 deg.C to crystallize the magnetic film. The film has less surface roughness and can be utilized as a photothermal magnetic recording material.

Description

【発明の詳細な説明】 a 産業上の利用分野 本発明は、磁性薄膜の製造方法に関し、より詳細には磁
気記録及び光熱磁気記録材料としで用いて好適な希土類
鉄ガーネント薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION a. Field of Industrial Application The present invention relates to a method of manufacturing a magnetic thin film, and more particularly to a method of manufacturing a rare earth iron garnent thin film suitable for use as a magnetic recording and photothermal magnetic recording material.

b 従来技術 近年、希土類鉄ガーネットR3(Fe+M)5’tg 
(R・希土類元素、M : A13+、Ga3+、Sc
3+、T13+。
b Prior art In recent years, rare earth iron garnet R3 (Fe+M) 5'tg
(R, rare earth element, M: A13+, Ga3+, Sc
3+, T13+.

(GO2++ Ti4+)など)のRの一部をB1て置
換した鉄ガーネットR3−X Bix(Fe+M)50
12力光mm%記録材料として注目されている。このB
i置換希土類鉄ガーイ・ノドは、希土類元素の一部をB
iで置換することにより、吸収係数αをあまり大きくす
ることなくファラデー回転角θFを大きくすることがで
きるという性質を有し、一般的に言って光熱磁気記録材
料として優れたものである。
Iron garnet R3-X Bix (Fe+M)50 in which B1 replaces a part of R of (GO2++ Ti4+, etc.)
It is attracting attention as a 12-power optical mm% recording material. This B
I-substituted rare earth iron oxide is a rare earth element with a part of B
By substituting with i, it has the property that the Faraday rotation angle θF can be increased without increasing the absorption coefficient α too much, and is generally an excellent photothermal magnetic recording material.

このような性質を有するB1置換希土類鉄ガーイ、ノド
の光熱磁気記録材料としての性能を高めるためには、B
i置換量Xを大きくしてファラデー回転角θFを大きく
すればよいが、従来の液相エピタキシャル法等の製造方
法ではB1置換量Xが大きいB1置換希土類鉄ガーネッ
ト薄膜を製造することは困難であった。
In order to improve the performance of the B1-substituted rare earth iron oxide, which has such properties, as a photothermal magnetic recording material, it is necessary to add B1.
Although it is possible to increase the Faraday rotation angle θF by increasing the i-substitution amount X, it is difficult to produce a B1-substituted rare earth iron garnet thin film with a large B1 substitution amount Ta.

本発明者等は、特願昭Kg−2/4730号において、
固溶限界(−二量***置のSO%)までB1が固溶して
いる高濃度B1置換希土類鉄ガーネット単結晶薄膜をス
パッタリング法によりGGG基板」二にエピタキシャル
成長させることのできる磁性薄膜の製造方法を提案した
。しかし、この製造方法は、用いることのできる基板が
GGG基板に限定されてしまう点で不利であるため、例
えばガラス基板等の非晶質基板上に高濃度B1置換希土
類鉄ガーネット薄膜を形成することのできる製造方法が
望まれていた。
The present inventors, in Japanese Patent Application No. Sho Kg-2/4730,
A method for manufacturing a magnetic thin film in which a highly concentrated B1-substituted rare earth iron garnet single crystal thin film in which B1 is dissolved in solid solution up to the solid solution limit (-SO% at the dimer position) can be epitaxially grown on a GGG substrate by sputtering. proposed. However, this manufacturing method has the disadvantage that the substrates that can be used are limited to GGG substrates, so it is difficult to form a high concentration B1-substituted rare earth iron garnet thin film on an amorphous substrate such as a glass substrate. A manufacturing method that would allow for this was desired.

このような要求は上記以外の希土類鉄ガーネット薄膜に
ついても従来からあり、種々の試みがなされている。し
かしながら、現在までに得られている薄膜はその面と平
行な方向に磁化が存在する多結晶の面内磁化膜であり、
磁気記録及び光熱磁気記録材料として好ましい垂直磁化
膜は未だ得られていない。また特にBi置換希土類鉄ガ
ーネット垂直磁化膜を非晶質基板上に形成する試みは全
くなされていないのが現状であった。
Such requirements have been present for rare earth iron garnet thin films other than those mentioned above, and various attempts have been made. However, the thin films obtained to date are polycrystalline in-plane magnetized films with magnetization in the direction parallel to the plane.
A perpendicularly magnetized film suitable for magnetic recording and photothermal magnetic recording materials has not yet been obtained. Furthermore, at present, no attempt has been made to form a perpendicularly magnetized Bi-substituted rare earth iron garnet film on an amorphous substrate.

本発明者らは上述の問題にかんがみ、良好な垂直磁化特
性を有するB1置換希土類鉄ガーネット薄膜等の希土類
鉄ガーネット薄膜を非晶質基板等の種々ノ基板上に形成
することのできる磁性薄膜の製造方法を提供することを
目的として気相成長法によって所定の基板上に非晶質の
希土類鉄ガーネット薄膜を形成し、該非晶質の希土類鉄
ガーイ・ノド薄膜上に保護膜を形成し、次いで熱処理を
行うことにより上記非晶質の希土類鉄ガーネット薄膜を
結晶化させる磁性薄膜の製造方法を先の特許出願(特願
昭!;9−A l311 ) K示シタ。
In view of the above-mentioned problems, the present inventors have developed a magnetic thin film that can form a rare earth iron garnet thin film such as a B1-substituted rare earth iron garnet thin film having good perpendicular magnetization characteristics on various substrates such as an amorphous substrate. In order to provide a manufacturing method, an amorphous rare earth iron garnet thin film is formed on a predetermined substrate by a vapor phase growth method, a protective film is formed on the amorphous rare earth iron garnet thin film, and then a protective film is formed on the amorphous rare earth iron garnet thin film. A method for manufacturing a magnetic thin film in which the amorphous rare earth iron garnet thin film is crystallized by heat treatment was disclosed in a previous patent application (Japanese Patent Application No. 9-A1311).

上記方法は、保護膜を磁性薄膜上に設けることにより、
磁性薄膜の結晶化による面荒れおよび磁性薄膜中のBi
の飛散防止など結晶化のための熱処理の悪影響を防止し
て、垂直磁化膜が得られる利点を有するが、保護膜を形
成するという付加的工程を有し、又通常磁性膜表面に設
けられる反射膜を利用した硼気書きこみの際、加熱され
た反射膜の熱の磁性薄膜への伝導が保護膜の存在により
妨げられ書きこみ時の応答が遅くなるという欠点があっ
たO C発明の目的 本発明は、簡単な方法で極めて良好な垂直砒化特性を有
する磁性薄膜を、非晶質基板などの任意の基板に生成す
るのに適した磁性薄膜の製造方法を提供することをその
目的とする。
In the above method, by providing a protective film on the magnetic thin film,
Surface roughness due to crystallization of magnetic thin film and Bi in magnetic thin film
It has the advantage that a perpendicularly magnetized film can be obtained by preventing the harmful effects of heat treatment for crystallization, such as preventing the scattering of When writing using a film, the conduction of heat from the heated reflective film to the magnetic thin film is hindered by the presence of the protective film, resulting in a slow response when writing.Objective of the OC invention An object of the present invention is to provide a method for manufacturing a magnetic thin film suitable for producing a magnetic thin film having extremely good vertical arsenization properties on any substrate such as an amorphous substrate in a simple manner. .

d 発明の構成 本発明は、気相成長法によって基板上に非晶質の希土類
鉄ガーネット薄膜を形成し、次いで熱処理を行なうこと
により該非晶質の希土類鉄カーネット薄膜を結晶化させ
ることを特徴とする磁性薄膜の製造方法である。
d.Structure of the Invention The present invention is characterized in that an amorphous rare earth iron garnet thin film is formed on a substrate by a vapor phase growth method, and then the amorphous rare earth iron garnet thin film is crystallized by heat treatment. This is a method for manufacturing a magnetic thin film.

本発明に使用する基板としては、ガラス基板等の非晶質
基板、金属、半導体、絶縁体等の結晶性基板等700°
C程度の加熱に耐える基板であれば使用出来る。
Substrates used in the present invention include amorphous substrates such as glass substrates, crystalline substrates such as metals, semiconductors, insulators, etc.
Any substrate that can withstand heating at about C can be used.

非晶質の希土類鉄ガーネット薄膜を形成する気、′−v
− 相成長法としては、蒸着法、スノ\ツタ法、 CVD法
Forming an amorphous rare earth iron garnet thin film, ′-v
- Phase growth methods include evaporation method, snow/vine method, and CVD method.

イオンブレーティング法等の気相成長法が用いられる。A vapor phase growth method such as an ion blating method is used.

内でも(Bi203)X(R203)y(FIE!20
3)Z(M2O3)uで表されるような少なくともB1
原子、Fe原子及び希土類原子を含む酸化物又は酸化物
の混合物から成る材料をターゲットとしたスパンター法
が好ましい。上記式中で0くX≦3/2. Qくy≦3
//2゜o<z<s7x、o≦U≦5/、2であり、R
はY、Sm等の希土類元素、MはA 13+ 、 Ga
3+ 、 SC3+、 T 13j(co”+十’rl
”) 等テアル。
Inside (Bi203)X(R203)y(FIE!20
3) at least B1 as represented by Z(M2O3)u
A spunter method targeting materials consisting of oxides or mixtures of oxides containing atoms, Fe atoms and rare earth atoms is preferred. In the above formula, 0x≦3/2. Qkuy≦3
//2゜o<z<s7x, o≦U≦5/, 2, and R
is a rare earth element such as Y or Sm, M is A 13+ , Ga
3+, SC3+, T 13j(co"+10'rl
”) Equal theal.

上記気相成長法で形成された非晶質磁性薄膜は、希土類
鉄ガーネットを作成する組成であれば熱処理によって磁
性薄膜となるが、ガーネット構造の十二面***置の2Q
%以上がBiにより置換されたB1置換希土類鉄ガーイ
・ノド相当の組成であれば、ガーネット構造に結晶化し
た際に磁気異方性が増すので好ましい。この様なり1を
多く含有する非晶質磁性薄膜は、B1を多く含んだクー
ゲットを用いたスパッタリング法により好まれて製造さ
れる。
The amorphous magnetic thin film formed by the above vapor phase growth method becomes a magnetic thin film by heat treatment if it has a composition that creates rare earth iron garnet.
If the composition is equivalent to a B1-substituted rare earth iron oxide in which % or more is substituted with Bi, it is preferable because the magnetic anisotropy increases when crystallized into a garnet structure. As described above, an amorphous magnetic thin film containing a large amount of B1 is preferably manufactured by a sputtering method using a Kuget that contains a large amount of B1.

スパッタリング法により非晶質磁性薄膜を作成する際に
は非晶質磁性薄膜を付着させる基板の温度を300〜S
OO″C1さらに望ましくはttoo〜を夕0°Cと設
定することが光磁気記録材料を得るために好ましい。上
記温度に基板を設定することにより、その後の熱処理に
よって磁化膜の面荒れが少ない光磁気記録材料としても
良好な垂直磁化薄膜を製造出来る。ここで300°C未
満の温度で作成した非晶質磁性薄膜は当初は平滑な非晶
質磁性膜であるが、熱処理を行うと面荒れを起こした磁
性膜しか得られず、又夕OO″Cよりも高い温度では基
板上に非晶質の磁性薄膜が得られずノー接面荒れを起こ
した結晶性の磁性薄膜が作成されてしまう欠点がある。
When creating an amorphous magnetic thin film by the sputtering method, the temperature of the substrate to which the amorphous magnetic thin film is attached is set to 300-S.
It is more preferable to set 0°C to 0°C in order to obtain a magneto-optical recording material. By setting the substrate at the above temperature, the surface of the magnetized film is less roughened by subsequent heat treatment. It is possible to produce a perpendicularly magnetized thin film that is good as a magnetic recording material.The amorphous magnetic thin film prepared here at a temperature below 300°C is initially a smooth amorphous magnetic film, but after heat treatment, the surface becomes rough. However, at a temperature higher than OO''C, an amorphous magnetic thin film cannot be obtained on the substrate, and a crystalline magnetic thin film with no contact surface roughness is produced. There are drawbacks.

300°C未満の基板温度で作成した非晶質膜は熱処理
により面荒れを起こした磁性膜となり、300〜SOO
°Cの基板温度で作成した非晶質膜が熱処理によって平
滑な垂直磁化薄膜となる理由ははっきりしないが、低い
基板湿度で作成した非晶質薄膜中には非常に微細な結晶
が多数あり、これが熱処理によって成長するために面荒
れを起こすが、比較的高い温度で作成した非晶質簿膜で
はこの微細な結晶の大きさが大きく、数が少ないためで
はないかと考えられる。
An amorphous film created at a substrate temperature of less than 300°C becomes a magnetic film with surface roughness due to heat treatment, and the temperature of 300 to SOO
It is not clear why an amorphous film created at a substrate temperature of °C becomes a smooth perpendicularly magnetized thin film after heat treatment, but there are many very fine crystals in the amorphous thin film created at a low substrate humidity. This growth during heat treatment causes surface roughness, and this is thought to be due to the large size and small number of these fine crystals in the amorphous film formed at a relatively high temperature.

面荒れを起こした磁性膜は光磁気記録材料とじ非晶質磁
性膜の熱処理条件としては、夕00°C以上の温度が好
ましい。SOO″Cより低い温度では結晶化が起こりに
くく好ましくない。又900°Cよりも高い温度とする
と磁性膜中からB1の揮発が起こったり、基板の材質が
限定されるなど好ましくない。
The roughened magnetic film is bound to a magneto-optical recording material.The heat treatment conditions for the amorphous magnetic film are preferably at a temperature of 00°C or higher. A temperature lower than SOO''C is undesirable because crystallization is difficult to occur. A temperature higher than 900°C is undesirable because B1 will volatilize from the magnetic film and the material of the substrate will be limited.

e 実施例 以下に本発明の磁性薄膜の製造方法を(Y + Bl)
3(Fe、Al)5(h2で表されるB1置換希土類鉄
ガーネットの薄膜の製造に適用した一実施例につき図面
を参照しながら説明する。なおこの(y、 Bi) 3
(Fe 、 Al )5012は、イツトリウム鉄ガー
ネットY3Fe5012(YIC) において、Yの一
部をB1で置換すると共にFeの一部をAlで置換した
ものであり、前者は吸収係数αをあまり増大することな
く7アラデ一回転角θFを高め、後者は吸収係数αを減
少させると共に飽和磁化を小さくして垂直磁化膜を得ら
れやすくシ、またキュリ一温度も下げることが知られて
いる。
e Example The method for manufacturing a magnetic thin film of the present invention is described below (Y + Bl)
An example applied to the production of a thin film of B1-substituted rare earth iron garnet represented by 3(Fe, Al)5(h2) will be explained with reference to the drawings.
(Fe, Al)5012 is a yttrium iron garnet Y3Fe5012 (YIC) in which part of Y is replaced with B1 and part of Fe is replaced with Al, and the former does not increase the absorption coefficient α too much. It is known that the latter reduces the absorption coefficient α and the saturation magnetization, making it easier to obtain a perpendicularly magnetized film, and also lowers the Curie temperature.

まず第1図に示すように、高周波(RF)スパックリン
グ装置のステンレス製の電極板(試料台)/の上に石英
ガラス基板−を載置すると共に、電極板3に第1のター
ゲットtを取り付ける。なおこの第1のターゲットクは
、組成式B12.OYl、OFe!3−8All−2:
Da2で表される多結晶状の鉄ガーネットの円盤状の焼
結体から成る。
First, as shown in Fig. 1, a quartz glass substrate is placed on a stainless steel electrode plate (sample stage) of a radio frequency (RF) spackle device, and a first target t is placed on the electrode plate 3. Attach. Note that this first target has a composition formula B12. OYl, OFe! 3-8All-2:
It consists of a disc-shaped sintered body of polycrystalline iron garnet expressed by Da2.

次にスパッタリング装置内を所定の真空度にtJ+気し
た後、このスパッタリング装置内KArとo2との混合
ガス(Ar:02=yl)を7Pa程度まで導入する。
Next, after the inside of the sputtering apparatus is evacuated to a predetermined degree of vacuum tJ+, a mixed gas of KAr and O2 (Ar:02=yl) is introduced into the sputtering apparatus to a pressure of about 7 Pa.

真空度が安定した状態で、電極板/と電極板3との間に
所定の高周波電圧を印加してグロー放電を開始させる。
In a state where the degree of vacuum is stable, a predetermined high frequency voltage is applied between the electrode plate / and the electrode plate 3 to start glow discharge.

この放電で生したAr+イメンは第1のターゲノ+1’
の表面をスパッタし、このスパッタにより上記第1のタ
ーゲットtがらBIIY、Fe、A1.O等の原子が離
脱する。これらの離脱した原子は、電極板lを介してヒ
ータjKより例えば1Itto°Cに加熱されている石
英ガラス基板λ上に被着し、この石英ガラス基板λ上に
(Y + B 1 ) 3(Fe、Ai)5012の非
晶質薄膜(以下薄膜と称する)乙が形成される。なおス
パッタに用いる電力をl10Wとし、またスパッタ時間
を2時間30分とした場合、得られた薄膜乙の厚さは0
1gμmであった。
Ar+Imen generated by this discharge is the first target +1'
Sputtering is performed on the surface of the first target t, and by this sputtering, BIIY, Fe, A1. Atoms such as O are released. These detached atoms adhere to the quartz glass substrate λ which is heated to, for example, 1Itto°C by the heater jK via the electrode plate l, and (Y + B 1 ) 3( An amorphous thin film (hereinafter referred to as thin film) B of Fe, Ai) 5012 is formed. Note that when the power used for sputtering is 110 W and the sputtering time is 2 hours and 30 minutes, the thickness of the obtained thin film B is 0.
It was 1 gμm.

次に上述のように形成された薄膜乙つき石英ガラス基板
λを空気中において700°C,3時間熱処理し、磁性
薄膜の結晶化を行なった。
Next, the quartz glass substrate λ with the thin film formed as described above was heat treated in air at 700°C for 3 hours to crystallize the magnetic thin film.

こうして作成された磁性薄膜は比較的面荒れが少なく光
熱磁気記録材として、使用するに耐える表面状態であっ
た。
The magnetic thin film thus produced had a relatively low surface roughness and was in a surface condition suitable for use as a photothermal magnetic recording material.

こうして製造された薄膜乙の結晶性をXi回折により調
べたところ、優勢方位のない多結晶であることが判明し
た。しかし、光学顕微鏡による観察の結果、多結晶であ
るにもかかわらず薄膜乙は唐草模様状及びバブル状の磁
区構造を有し、また次のような優れた特性を有する極め
て良好な垂直磁化膜であることが測定によって明らかに
された。
When the crystallinity of the thus produced thin film A was examined by Xi diffraction, it was found that it was a polycrystal without a dominant orientation. However, as a result of observation using an optical microscope, thin film O has an arabesque pattern and bubble-like magnetic domain structure despite being polycrystalline, and is an extremely perpendicularly magnetized film with the following excellent properties. This was revealed through measurements.

即ち、第2図に示すように、膜面に垂直な方向の♂界H
K対する薄膜乙の7アラデ一回転角θFのヒステリシス
特性を測定したところ、角形性が良好なループが得られ
、磁気トルク測定から垂直磁化膜であることが¥JJ明
した。またファラデー回転角θFは約ハS0と極めて大
きく、また保磁力Hcも約20006と十分に大きい。
That is, as shown in Fig. 2, the male field H in the direction perpendicular to the film surface
When the hysteresis characteristics of the thin film A with respect to K were measured, a loop with good squareness was obtained, and the magnetic torque measurement revealed that it was a perpendicularly magnetized film. Further, the Faraday rotation angle θF is extremely large, approximately S0, and the coercive force Hc is sufficiently large, approximately 20,006.

このように薄膜6は磁気記録材料として極めて好ましい
性質を有していることがわかる。なお第2図に示すよう
な優れた特性を有する垂直磁化膜が得られることから、
薄膜3中にはより大きな垂直磁気異方性を賦ZJ、する
B1が固溶限界程度まで固溶していることが推定される
。なお第2図において、ファラデー回転角θF測定用の
光諒としては、He−Neレーザー(波長t32gA 
)を用いた。また測定は、上記薄膜乙に光を芸過させて
行なった。
It can thus be seen that the thin film 6 has extremely favorable properties as a magnetic recording material. Note that since a perpendicularly magnetized film with excellent properties as shown in FIG. 2 can be obtained,
It is presumed that B1, which imparts larger perpendicular magnetic anisotropy, is dissolved in the thin film 3 up to the solid solution limit. In Fig. 2, a He-Ne laser (wavelength t32gA) is used as the light beam for measuring the Faraday rotation angle θF.
) was used. The measurement was also carried out by shining light through the thin film A.

f 発明の効果 本発明によれば、実施例からも明らかな様に任意の基板
上に7アラデ一回転角θF、保磁力HCが十分に犬きく
、面荒れの少ない磁性薄膜が保護11分などを磁性薄膜
上に付着させることなく作成出来ている。
Effects of the Invention According to the present invention, as is clear from the examples, a magnetic thin film with a sufficiently high coercive force HC, a rotation angle θF of 7 degrees, and a small surface roughness can be formed on any substrate for 11 minutes, etc. can be created without attaching it to a magnetic thin film.

この様に保護膜を持たない磁性薄膜は光熱磁気記録材料
として使用する様、磁性薄膜上に直接反射膜を形成する
ことが出来るため比較的低い強度の光で書きこむことが
出来、非常に早い書きこみ速度が得られる効果を持って
いる。
In this way, a magnetic thin film without a protective film can be used as a photothermal magnetic recording material, and since a reflective film can be formed directly on the magnetic thin film, it is possible to write with relatively low intensity light, and it is very fast. It has the effect of increasing the writing speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の磁性薄膜の製造方法の実施例に用いた
高周波スパッタリング装置の概略を示す断面図、第2図
は本発明の磁性薄膜の製造方法の実施例K 、11: 
’)製造さレタ(Y、Bi)3(Fe、AI)501z
薄膜のヒステリシス特性を示すグラフである。 なお図面に用いた符号において、 / 電極板(試料台) 2 石英ガラス基板 3 電極板 l 第1のターゲハ S ヒータ t (Y、Bi)3(Fe、Al)5012薄膜である
。 第1図 第2図
FIG. 1 is a cross-sectional view schematically showing a high-frequency sputtering apparatus used in an embodiment of the method for manufacturing a magnetic thin film of the present invention, and FIG.
') Manufactured letter (Y, Bi) 3 (Fe, AI) 501z
It is a graph showing hysteresis characteristics of a thin film. Note that the symbols used in the drawings are: / electrode plate (sample stand) 2 quartz glass substrate 3 electrode plate l first target layer S heater t (Y, Bi) 3 (Fe, Al) 5012 thin film. Figure 1 Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)気相成長法によって基板上に非晶質の希土類鉄ガ
ーネット薄膜を形成し、次いで熱処理を行なうことによ
り該非晶質の希土類鉄ガーネント薄膜を結晶化させるこ
とを特徴とする磁性薄膜の製造方法。
(1) Production of a magnetic thin film characterized by forming an amorphous rare earth iron garnet thin film on a substrate by a vapor phase growth method, and then crystallizing the amorphous rare earth iron garnet thin film by performing heat treatment. Method.
(2)該気相成長法による非晶質の希土類鉄ガーネット
薄膜形成時の基板の温度を300〜SOO″Cとし、そ
の後膣非晶質希土類鉄ガーネット薄膜上に保巡膜を形成
することなしに熱処理を行なう儀’ 請求の範囲第1項
記載の磁性薄膜の製造方法。
(2) The temperature of the substrate during formation of the amorphous rare earth iron garnet thin film by the vapor phase growth method is 300 to SOO''C, and no protective film is subsequently formed on the vaginal amorphous rare earth iron garnet thin film. A method for producing a magnetic thin film according to claim 1.
(3)該熱処理を行なう湿度が800〜900°Cであ
る特許請求の範囲第1項又は第2項記載の磁性薄膜の製
造方法。
(3) The method for manufacturing a magnetic thin film according to claim 1 or 2, wherein the heat treatment is performed at a humidity of 800 to 900°C.
JP5578784A 1983-11-17 1984-03-23 Manufacture of magnetic film Granted JPS60200887A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP5578784A JPS60200887A (en) 1984-03-23 1984-03-23 Manufacture of magnetic film
EP19840904169 EP0196332B1 (en) 1983-11-17 1984-11-15 Method of manufacturing photothermomagnetic recording film
DE8484904169T DE3482886D1 (en) 1983-11-17 1984-11-15 METHOD FOR PRODUCING PHOTOTHERMOMAGNETIC RECORDING FILMS.
US06/763,789 US4608142A (en) 1983-11-17 1984-11-15 Method of manufacturing magneto-optic recording film
PCT/JP1984/000547 WO1985002292A1 (en) 1983-11-17 1984-11-15 Method of manufacturing photothermomagnetic recording film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5578784A JPS60200887A (en) 1984-03-23 1984-03-23 Manufacture of magnetic film

Publications (2)

Publication Number Publication Date
JPS60200887A true JPS60200887A (en) 1985-10-11
JPH0457637B2 JPH0457637B2 (en) 1992-09-14

Family

ID=13008613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5578784A Granted JPS60200887A (en) 1983-11-17 1984-03-23 Manufacture of magnetic film

Country Status (1)

Country Link
JP (1) JPS60200887A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPH01110715A (en) * 1987-10-23 1989-04-27 Yaskawa Electric Mfg Co Ltd Formation of ferromagnetic thin film
US6759137B1 (en) 1998-08-28 2004-07-06 Centre National De La Recherche Scientifique, Inc. Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033114A (en) * 1973-07-27 1975-03-31
JPS5613710A (en) * 1979-07-13 1981-02-10 Nec Corp Material for magnetic element
JPS5659694A (en) * 1979-10-18 1981-05-23 Agency Of Ind Science & Technol Manufacture of thin film
JPS58116739A (en) * 1981-12-29 1983-07-12 Matsushita Electric Ind Co Ltd Controlling method for particle size of film polycrystal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5033114A (en) * 1973-07-27 1975-03-31
JPS5613710A (en) * 1979-07-13 1981-02-10 Nec Corp Material for magnetic element
JPS5659694A (en) * 1979-10-18 1981-05-23 Agency Of Ind Science & Technol Manufacture of thin film
JPS58116739A (en) * 1981-12-29 1983-07-12 Matsushita Electric Ind Co Ltd Controlling method for particle size of film polycrystal

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124213A (en) * 1984-07-03 1986-02-01 エヌ・ベー・フイリツプス・フルーイランペンフアブリケン Method of forming bismuth substituted ferry magnetic garnet film
JPH01110715A (en) * 1987-10-23 1989-04-27 Yaskawa Electric Mfg Co Ltd Formation of ferromagnetic thin film
US6759137B1 (en) 1998-08-28 2004-07-06 Centre National De La Recherche Scientifique, Inc. Opto-magnetic recording medium with a garnet ferrite recording layer, and opto-magnetic information recording/reproducing device

Also Published As

Publication number Publication date
JPH0457637B2 (en) 1992-09-14

Similar Documents

Publication Publication Date Title
Sonnenberg et al. Preparation of biaxially aligned cubic zirconia films on pyrex glass substrates using ion‐beam assisted deposition
US4608142A (en) Method of manufacturing magneto-optic recording film
US5227204A (en) Fabrication of ferrite films using laser deposition
JPS60200887A (en) Manufacture of magnetic film
Goml et al. Sputtered Iron Garner Fills for Magneto-Optical Storage
JPH0354454B2 (en)
US5320881A (en) Fabrication of ferrite films using laser deposition
EP0196332B1 (en) Method of manufacturing photothermomagnetic recording film
Park et al. Chemical composition, microstructure and magnetic characteristics of yttrium iron garnet (YIG, Ce: YIG) thin films grown by rf magnetron sputter techniques
JPH0558251B2 (en)
JP2636860B2 (en) Method for manufacturing thin film for magneto-optical recording
RU2068026C1 (en) Method to produce oriented monocrystalline films of magnetic materials
JPH0254757A (en) Formation of thin polycrystalline film
JPS6276710A (en) Manufacture of magnetic thin film
KR100270074B1 (en) The thin coating method for epitaxial ba-ferrite
JP2777599B2 (en) Manufacturing method of single crystal thin film
JPS6050757B2 (en) Method for manufacturing single crystal film
KR0169583B1 (en) Method for fabricating epitaxial yig thin film
JPH0354443B2 (en)
JPS61111511A (en) Vertically magnetized film element of polycrystalline cobalt ferrite and manufacture thereof
JPH0525618A (en) Thin film forming device and thin film forming method by using this device
JPH02229792A (en) Production of vapor deposited thin film
JPH0377158B2 (en)
Terada et al. Magnetic properties of Pr‐Co and Nd‐Co thin films deposited by ion beam sputtering
JPH0637351B2 (en) Method of manufacturing ferroelectric thin film