JPS61106523A - Purification of cracked hydrocarbon - Google Patents

Purification of cracked hydrocarbon

Info

Publication number
JPS61106523A
JPS61106523A JP59229361A JP22936184A JPS61106523A JP S61106523 A JPS61106523 A JP S61106523A JP 59229361 A JP59229361 A JP 59229361A JP 22936184 A JP22936184 A JP 22936184A JP S61106523 A JPS61106523 A JP S61106523A
Authority
JP
Japan
Prior art keywords
methane
hydrogen
gas
expander
components
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59229361A
Other languages
Japanese (ja)
Other versions
JPH0234327B2 (en
Inventor
Okiya Saitou
斎藤 興哉
Masataka Hiraide
政隆 平出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP59229361A priority Critical patent/JPS61106523A/en
Publication of JPS61106523A publication Critical patent/JPS61106523A/en
Publication of JPH0234327B2 publication Critical patent/JPH0234327B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0252Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0204Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
    • F25J3/0219Refinery gas, cracking gas, coke oven gas, gaseous mixtures containing aliphatic unsaturated CnHm or gaseous mixtures of undefined nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0233Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/0228Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
    • F25J3/0238Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/74Refluxing the column with at least a part of the partially condensed overhead gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2205/00Processes or apparatus using other separation and/or other processing means
    • F25J2205/02Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum
    • F25J2205/04Processes or apparatus using other separation and/or other processing means using simple phase separation in a vessel or drum in the feed line, i.e. upstream of the fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/12Refinery or petrochemical off-gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/04Internal refrigeration with work-producing gas expansion loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:The excess hydrogen gas in the overall system is extracted in the separation and purification process of hydrogen and methane during the separation of cracked hydrocarbon, and cooled with an expander, to effect the recovery of the energy, utilization of the hydrogen as a refrigerant, and lowering of the energy consumption of the system. CONSTITUTION:The cracked hydrocarbon gas stream containing hydrogen, methane, ethylene, ethane and a high-boiling hydrocarbon components is separated into (A) methane and components having lower boiling point than methane and (B) ethane and components having higher boiling point than ethane (step 1). The component containing methane and the components having lower boiling point than methane are separated to obtain purified hydrogen gas (step 2). In the above purification process of cracked hydrocarbon, the hydrogen gas excess in the overall system and the accompanying methane gas are branched in the step 2, cooled by the expander C-2, and used as a refrigerant of the above process. An expander for the separation and removal of hydrogen and methane can be used also as the above expander and the expander may be combined with the methane gas compressor V-2.

Description

【発明の詳細な説明】 本発明は、炭化水素分解物の低温精製法に関し、さらに
詳しくは、石油、天然ガス等を原料として、例えば熱分
解によりエチレン等を製造するプラントにおける炭化水
素分解物の低温精製法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a low-temperature refining method for hydrocarbon decomposition products, and more specifically to a method for refining hydrocarbon decomposition products in a plant that produces ethylene, etc., by thermal decomposition using petroleum, natural gas, etc. as raw materials. Concerning low temperature purification methods.

炭化水素熱分解物から水素、メタン等の副生軽質留分、
エチレン等の特定重質留分およびエタン等の副生重質留
分とを分離する方法、並びに副生水素と副生メタンを分
離精製する方法は従来から種々提案され、実用に供され
ているが、エチレン等の特定留分が副生軽質留分に同伴
されるのを防止し、エチレン等の得率増加を図ることは
、運転コストの低減および省エネルギーの観点から非常
に重要なことである。
By-product light fractions such as hydrogen and methane from hydrocarbon pyrolysis products,
Various methods for separating specific heavy fractions such as ethylene and by-product heavy fractions such as ethane, and methods for separating and refining by-product hydrogen and by-product methane have been proposed and put into practical use. However, it is very important to prevent specific fractions such as ethylene from being entrained in by-product light fractions and to increase the yield of ethylene, etc. from the viewpoint of reducing operating costs and saving energy. .

従来の炭化水素分解物の分離精製設備(例えば特開昭5
7−108192号公報)の典型的な系統図を第2図に
示す。この設備は、供給物処理工程1、脱メタン塔工程
3および水素、メタン分離精製工程2から構成される。
Conventional hydrocarbon decomposition product separation and purification equipment (for example, JP-A-5
7-108192) is shown in FIG. 2. This equipment consists of a feed treatment step 1, a demethanizer step 3, and a hydrogen and methane separation and purification step 2.

炭化水素の熱分解により得られる分解ガスは、分解に供
給される原料および分解方法によりその成分組成は変化
するが、通常、代表的成分として硫化水素、炭酸ガス等
の酸性ガス、水素、メタン、エチレン、プロピレン、ブ
タジェン等の04炭化水素、さらに高沸点の炭化水素と
分解時に使用する水蒸気により構成される。酸性ガスお
よび水分を除去した分解ガスは、多段圧縮機で最終的に
約35kg/cjG程度にまで圧縮される。供給物処理
工程1では、コンプレッサー等で圧縮高圧化された水素
、メタン、エチレン、エタン、さらに重質留分を含む分
解ガスFを91      ラ978・9・ 10およ
び11を介して順次・熱交換器E−1、E−2)E−3
およびE−4に通し、ライン4.5および6を通る冷媒
(プロピレン冷媒やエチレン冷媒)により逐次、冷却、
低温化する。上記低温化によって逐次生成した大部分の
エチレンを含む凝縮液は、気液分離ドラムD−1、D−
2およびD−3でガスと分離され、それぞれライン12
.13.14および15を通り、脱メタン塔工程3の脱
メタン塔T−2に送られる。
The composition of the cracked gas obtained by thermal decomposition of hydrocarbons varies depending on the raw materials supplied for cracking and the cracking method, but typical components usually include hydrogen sulfide, acidic gases such as carbon dioxide, hydrogen, methane, It is composed of 04 hydrocarbons such as ethylene, propylene, butadiene, high boiling point hydrocarbons, and steam used during decomposition. The cracked gas from which acidic gas and moisture have been removed is finally compressed to about 35 kg/cjG in a multistage compressor. In the feed processing step 1, the cracked gas F containing hydrogen, methane, ethylene, ethane, and heavy fractions compressed to high pressure by a compressor etc. is sequentially heat-exchanged through 91 la 978, 9, 10, and 11. Equipment E-1, E-2) E-3
and E-4, and are sequentially cooled by refrigerant (propylene refrigerant or ethylene refrigerant) passing through lines 4.5 and 6.
lower temperature. The condensate containing most of ethylene successively generated by the above temperature reduction is transported to the gas-liquid separation drums D-1 and D-
2 and D-3, and are separated from the gas by lines 12 and D-3, respectively.
.. 13, 14 and 15, and is sent to demethanizer T-2 of demethanizer step 3.

この冷却は一般的に一60℃から一110℃程度まで行
なわれ、その冷却程度はメタン中にリークするエチレン
の損失許容度により決定される。一方、最終段の精留塔
T−1で分離された水素、メタンを主成分とするガスは
、ライン16を介して水素、メタン分離精製工程2に送
られる。水素、メタン分離精製工程2での主としてメタ
ンから構成される凝縮液の一部は供給物処理工程1の精
留塔↑−1の還流液として供給され、また脱メタン塔工
程3の脱メタン塔T−2の塔頂ガスが水素、メタン分離
精製工程2での水素、メタン混合ガス冷却器E−5の冷
媒として供給されるようになっている。
This cooling is generally carried out to about 160°C to 1110°C, and the degree of cooling is determined by the tolerance for loss of ethylene leaking into methane. On the other hand, the gas mainly composed of hydrogen and methane separated in the final stage rectification column T-1 is sent to the hydrogen and methane separation and purification step 2 via the line 16. A part of the condensate mainly composed of methane in the hydrogen and methane separation and purification step 2 is supplied as a reflux liquid to the rectification column ↑-1 in the feed treatment step 1, and is also supplied to the demethanizer in the demethanizer step 3. The top gas of T-2 is supplied as hydrogen and a refrigerant to the hydrogen and methane mixed gas cooler E-5 in the methane separation and purification step 2.

脱メタン塔工程3は、前記供給物処理工程1から供給さ
れる凝縮液を脱メタン塔T−2に受は入れ、前記凝縮液
成分であるエチレン、エタン等の重質留分中に残存する
水素、メタン等の軽質留分を最終的にエチレン以上の重
質留分から分離精製するものである。脱メタン塔T−2
は、塔本体30と、コンデンサー31、還流ドラム32
および還流ポンプ33からなる還流系統と、リボイラ3
4とを備えている。脱メタン塔T−2の塔頂からは残存
水素、メタンを含む留分が抜き出され、一方、塔底から
はエチレンおよびエタン等の重質留分Eが抜き出される
In the demethanizer step 3, the condensate supplied from the feed treatment step 1 is received in the demethanizer T-2, and the condensate components remaining in heavy fractions such as ethylene and ethane are removed. Light fractions such as hydrogen and methane are ultimately separated and purified from heavy fractions containing ethylene and higher. Demethanizer tower T-2
is a column main body 30, a condenser 31, and a reflux drum 32.
and a reflux system consisting of a reflux pump 33, and a reboiler 3.
4. A fraction containing residual hydrogen and methane is extracted from the top of the demethanizer T-2, while a heavy fraction E such as ethylene and ethane is extracted from the bottom of the column.

次に、水素、メタン分離精製工程2は、前記供給物処理
工程1から供給される、主として水素、メタンから構成
される混合ガスをジュール−トムソン効果を利用した深
冷分離法により最終的に約95 m o 12%程度の
水素ガスとメタンを主成分とする液に分離精製するもの
である。供給混合ガスは、ライン16から順次、第1段
冷却器E−5、第1段分離ドラムD−4、第2段冷却器
E−6および第2段分離ドラムD−5を通って精製され
、最終的にライン21および22からそれぞれ高圧およ
び低圧メタンガスが、並びにライン23から精製水素ガ
スが取出される。冷却器E−5およびE−6に使用され
る冷媒は、分離ドラムD−4およびD−5からの凝縮メ
タン液(ライン21.22)と精製水素ガス(ライン2
3)が用いられる。
Next, in the hydrogen and methane separation and purification step 2, the mixed gas mainly consisting of hydrogen and methane supplied from the feed processing step 1 is finally approximately It separates and refines the liquid into a liquid whose main components are hydrogen gas and methane of about 95 m o 12%. The feed mixed gas is purified from line 16 through sequentially the first stage cooler E-5, the first stage separation drum D-4, the second stage cooler E-6 and the second stage separation drum D-5. , and finally high-pressure and low-pressure methane gas from lines 21 and 22, respectively, and purified hydrogen gas from line 23. The refrigerants used in coolers E-5 and E-6 are condensed methane liquid (lines 21.22) and purified hydrogen gas (line 2) from separation drums D-4 and D-5.
3) is used.

この際、水素の相当部は設備能力を助けるために冷媒メ
タン液に吹き込まれ、その分圧効果によりより低温の冷
媒メタン液の生成する。残りの水素はさらに一部がエチ
レンプラント内で水添用として消費され、必要量が含ま
れる微量の一酸化炭素を除去した後、製品水素として払
い出される。その残りは燃料として消費される。
At this time, a considerable portion of hydrogen is blown into the refrigerant methane liquid to support the equipment capacity, and its partial pressure effect produces a lower temperature refrigerant methane liquid. A portion of the remaining hydrogen is further consumed for hydrogenation within the ethylene plant, and after removing the necessary trace amount of carbon monoxide, it is discharged as product hydrogen. The rest is consumed as fuel.

一方、冷却過程で凝縮し、脱メタン塔へ供給されたエチ
レンおよび高沸点成分は、熔解する水素およびメタンを
脱メタン塔での精留操作により最終的に分離し、塔底留
分として精製されて次工程に供給される。この際、分離
された水素およびメタンは塔頂ガス成分として取出され
、膨脹機や熱交換器を経由してその持っている冷熱を有
効に回収された後、燃料として払い出され、消費される
On the other hand, the ethylene and high-boiling components condensed during the cooling process and supplied to the demethanizer are purified as a bottom fraction by finally separating the dissolved hydrogen and methane by rectification in the demethanizer. and then supplied to the next process. At this time, the separated hydrogen and methane are taken out as gas components at the top of the tower, and after effectively recovering their cold energy through an expander and heat exchanger, they are discharged as fuel and consumed. .

上記従来法における各部の物質収支のデータの一例を第
1表に示した。
Table 1 shows an example of material balance data for each part in the conventional method.

第1表 (発明が解決しようとする問題点) 第2図のプロセスは、水素、メタン分離精製工程と前記
冷却工程の最終部での精留塔との組合わせj(t   
   効果′″1す・lly中9リー′t″″f tz
 71)U収を図ると共に、脱メタン塔の還流域、すな
わち脱メタン塔塔頂凝縮器で使用する高価な冷媒の使用
量の低減化を図ったものであるが、低温冷媒の多量消費
に多くのエネルギーを必要とする欠点がある。すなわち
、上記方法において問題となる点は、エチレンをメタン
等のより軽質成分から分離するために一100℃程度の
高価なエチレン冷媒等を多量に必要とし、それらのため
のエネルギー消費が非常に大きいこと、そして分離され
た水素の処理効率がよなくないこと等である。
Table 1 (Problems to be Solved by the Invention) The process shown in Figure 2 consists of a combination j(t
Effect ``1 s・lly 9 lee ``t''''f tz
71) This is intended to increase U yield and reduce the amount of expensive refrigerant used in the reflux region of the demethanizer, that is, the top condenser of the demethanizer. The disadvantage is that it requires a lot of energy. In other words, the problem with the above method is that in order to separate ethylene from lighter components such as methane, a large amount of expensive ethylene refrigerant with a temperature of about -100°C is required, and the energy consumption for this is extremely large. Also, the processing efficiency of the separated hydrogen is not good.

本発明の目的は、上記従来技術に鑑み、圧縮、冷却等に
要するエネルギー消費を低減した炭化水素分解物の精製
法を提供することにある。
An object of the present invention is to provide a method for purifying hydrocarbon decomposition products that reduces energy consumption required for compression, cooling, etc., in view of the above-mentioned prior art.

(問題点を解決するための手段) 本発明は、水素、メタン、エチレン、エタンおよび高沸
点炭化水素成分を含む炭化水素分解物のガス流から、メ
タンおよびそれより低沸点成分とエチレンおよびそれよ
り高沸点成分とに分離する工程と、メタンおよびそれよ
り低沸点成分をさらに分離して水素ガスを精製する工程
とを有する炭化水素分解物の精製法において、水素を精
製する最終工程の前段階から分離精製後の必要水素量を
差引いて過剰となる分の水素ガスおよびこれに同伴する
メタンガスを分岐し、膨脹機により低温化した後、前記
工程の冷媒として利用することを特徴とする。
(Means for Solving the Problems) The present invention provides a method for converting a hydrocarbon decomposition product gas stream containing hydrogen, methane, ethylene, ethane and high boiling point hydrocarbon components into methane and lower boiling point components and ethylene and lower boiling point components. In a method for purifying hydrocarbon decomposition products, which includes a step of separating high-boiling point components and a step of further separating methane and lower-boiling point components to purify hydrogen gas, from a step before the final step of refining hydrogen. The method is characterized in that the excess hydrogen gas and the accompanying methane gas after subtracting the required amount of hydrogen after separation and purification are branched, lowered in temperature by an expander, and then used as a refrigerant in the step.

本発明において、過剰となる分の水素ガスを低温化する
ための膨脹機としては、エチレン、エタンおよびそれよ
り高沸点の炭化水素成分中に溶解する水素およびメタン
を分離除去するための脱メタン塔の塔頂水素およびメタ
ンガスの膨脹機(C−1)を兼用することが好ましい。
In the present invention, the expander for lowering the temperature of excess hydrogen gas is a demethanizer for separating and removing hydrogen and methane dissolved in ethylene, ethane, and hydrocarbon components with higher boiling points. It is preferable to use the overhead hydrogen and methane gas expander (C-1).

また前記膨脹機(C−1)を、システムの残ガスとして
払い出されるメタンガスの圧縮fi(C−2)を組合わ
せ、該圧縮機の所要動力の全部または一部を負担させる
ことにより、より大きい省エネルギー効果を得ることが
できる。
In addition, by combining the expander (C-1) with the compressor fi (C-2) of methane gas discharged as residual gas from the system, the compressor can bear all or part of the power required for the compressor. Energy saving effects can be obtained.

本発明は、処理流量と圧縮比を基に適正に設計、製作さ
れた圧縮機により約35kg/cnlG程度に昇圧され
た分解ガスを逐次冷却し、生成する凝縮液を脱メタン塔
に供給し、溶解する水素、メタンを塔頂オフガスとして
除去し、そのオフガスを膨脹機を経て冷媒として利用し
、該冷熱を回収された後のガスを燃料等として利用する
点は、従来技術と同じであるが、分解ガスの冷却工程で
分離され、水素とメタンとの分離精製工程に送られて約
−125℃程度に冷却されたガスを、従来のようにその
全量を冷却し、精製水素(約95%程度)と残メタン液
とに分離する水素、メタン分離精製工程の最終段に送ら
ずに、その一部をライン40から分岐し、これを前記脱
メタン塔30の塔頂オフガスと合流させ、膨脹機C−1
を通して冷媒として有効に利用するようにした点が従来
技術と異なる。
The present invention sequentially cools cracked gas that has been pressurized to about 35 kg/cnlG using a compressor that is appropriately designed and manufactured based on the processing flow rate and compression ratio, and supplies the resulting condensate to a demethanizer. It is the same as the conventional technology in that dissolved hydrogen and methane are removed as off-gas at the top of the tower, the off-gas is used as a refrigerant through an expander, and the gas after recovering the cold heat is used as fuel etc. , the gas separated in the cracked gas cooling process, sent to the hydrogen and methane separation and purification process, and cooled to approximately -125°C is cooled in its entirety as in the conventional method, and purified hydrogen (approximately 95% The hydrogen to be separated into the residual methane liquid (30%) and the remaining methane liquid is not sent to the final stage of the methane separation and purification process, but a part of it is branched from the line 40, combined with the top off-gas of the demethanizer 30, and expanded. Machine C-1
It differs from the conventional technology in that it is effectively used as a refrigerant through the air.

従来の設備および方法においては、炭化水素の熱分解に
より生成する水素量と、プラント内でアセチレン等の水
添用および製品として払い出す必要水素量との差で過剰
となる水素は、エネルギー消費の観点から十分有効に活
用した後、燃料系に放出しているとはいえなかった。し
かし本発明においては、その過剰となる水素をより有効
に利用することにより、これら分離精製での省エネルギ
ーを図るようにした点に特色がある。すなわち、本発明
は、メタンとの分離における水素、メタン分離精製工程
の最終段に送る前段階で過剰分の水素とそれに同伴する
多量のメタンをライン40で分岐し、その分岐ガスを膨
脹機c−iによツソ減圧化処理することにより、高圧分
岐ガスの持つエネルギーを動力として回収すると同時に
一層価値の高い冷媒を得、これらの冷媒からの冷熱回収
により、より省エネルギー化を可能としたものである。
In conventional equipment and methods, excess hydrogen due to the difference between the amount of hydrogen produced by thermal decomposition of hydrocarbons and the amount of hydrogen required for hydrogenation of acetylene etc. in the plant and discharged as products is used to reduce energy consumption. It could not be said that the waste was released into the fuel system after being used effectively. However, the present invention is characterized in that the excess hydrogen is utilized more effectively to save energy in these separation and purification processes. That is, the present invention branches excess hydrogen and a large amount of methane accompanying it in the line 40 before sending it to the final stage of the hydrogen separation and methane separation and purification process in the separation from methane, and the branched gas is sent to the expander c. By performing pressure reduction treatment using -i, the energy of the high-pressure branched gas is recovered as power, and at the same time, a more valuable refrigerant is obtained, and by recovering the cold heat from these refrigerants, it is possible to further save energy. be.

第2表は、従来例と比較した本発明の実施例におけるエ
ネルギー消費データを示したものである。
Table 2 shows energy consumption data for the embodiment of the present invention compared to the conventional example.

この場合の物質収支はいずれも第1表に′記載したもの
と大略同値である。この結果から明らかなように、本発
明においては顕著な省エネルギー効果が得られることが
わかる。
The material balances in this case are approximately the same as those listed in Table 1. As is clear from these results, it can be seen that the present invention provides a significant energy saving effect.

以下余白 i □ 第2表 * 使用する一100℃レベルのエチレン冷媒に係る冷
凍圧縮機の所要動力を示す。
Space below i □ Table 2 * Shows the required power of the refrigeration compressor related to the ethylene refrigerant used at the -100°C level.

(発明の効果) 本発明によれば、水素、メタン分離精製工程において、
システム全体として過剰分となる水素ガスを取出し、こ
れを膨脹機により減圧化して動力回収を行なうと同時に
冷媒としての価値を高めた上で有効利用することにより
、システム全体の冷却用動力を低減し、省エネルギー化
を図ることができる。
(Effect of the invention) According to the present invention, in the hydrogen and methane separation and purification process,
By extracting excess hydrogen gas from the system and reducing the pressure in an expander to recover power, at the same time increasing its value as a refrigerant and using it effectively, the power required for cooling the entire system is reduced. , energy saving can be achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例を示す炭化水素分解物の精
製法の装置系統図、第2図は、従来の同様な炭化水素分
解物の精製法を示す装置系統図である。 1・・・分解ガス(供給物)処理工程、2・・・水素、
メタン分離精製工程、3・・・脱メタン塔工程、E−1
、E−2)E−3、E−4・・・分解ガスの冷却用熱交
換器、E−9、E−10・・・冷熱回収熱交換器、D−
1、D−2)D−3・・・気液分離ドラム、T−1・・
・精留塔、T−2・・・脱メタン塔、C−1・・・膨脹
機、C−2・・・圧縮機、40・・・分岐ライン。 代理人 弁理士 川 北 武 長 第1図 T−1−一一顆路塔 T−2−−−Jltメタンj合
FIG. 1 is an apparatus system diagram showing an embodiment of the present invention for a method for purifying hydrocarbon decomposition products, and FIG. 2 is an apparatus system diagram showing a similar conventional method for refining hydrocarbon decomposition products. 1...Cracked gas (feed) treatment step, 2...Hydrogen,
Methane separation and purification step, 3... Demethanizer step, E-1
, E-2) E-3, E-4...Cracked gas cooling heat exchanger, E-9, E-10...Cold heat recovery heat exchanger, D-
1, D-2) D-3... Gas-liquid separation drum, T-1...
- Rectification column, T-2... Demethanizer, C-1... Expander, C-2... Compressor, 40... Branch line. Agent Patent Attorney Takeshi Kawakita Figure 1 T-1-11 Road Tower T-2 --- Jlt Methane J Joint

Claims (3)

【特許請求の範囲】[Claims] (1)水素、メタン、エチレン、エタンおよび高沸点炭
化水素成分を含む炭化水素分解物のガス流から、メタン
およびそれより低沸点成分とエチレンおよびそれより高
沸点成分とに分離する工程と、メタンおよびそれより低
沸点成分をさらに分離して水素ガスを精製する工程とを
有する炭化水素分解物の精製法において、水素を精製す
る最終工程の前段階から分離精製後の必要水素量を差引
いて過剰となる分の水素ガスおよびこれに同伴するメタ
ンガスを分岐し、膨脹機により低温化した後、前記工程
の冷媒として利用することを特徴とする炭化水素分解物
の精製法。
(1) separating methane and lower boiling components and ethylene and higher boiling components from a gas stream of hydrocarbon decomposition products containing hydrogen, methane, ethylene, ethane and high boiling hydrocarbon components; In a method for purifying hydrocarbon decomposition products, which comprises a step of further separating lower-boiling point components and purifying hydrogen gas, the amount of hydrogen required after separation and purification is subtracted from the pre-stage of the final step of refining hydrogen to obtain an excess amount of hydrogen gas. A method for purifying hydrocarbon decomposition products, characterized in that hydrogen gas and accompanying methane gas are separated, lowered in temperature by an expander, and then used as a refrigerant in the step.
(2)特許請求の範囲第1項において、前記膨脹機とし
て、エチレン、エタンおよびこれより高沸点の炭化水素
成分中に溶解する水素およびメタンを分離除去するため
の脱メタン塔の塔頂水素およびメタンガスの膨脹機を兼
用することを特徴とする炭化水素分解物の精製法。
(2) In claim 1, the expander includes hydrogen and hydrogen at the top of a demethanizer for separating and removing hydrogen and methane dissolved in ethylene, ethane, and hydrocarbon components with higher boiling points. A method for purifying hydrocarbon decomposition products characterized by using a methane gas expander.
(3)特許請求の範囲第2項において、前記膨脹機をシ
ステムから払い出されるメタンガスの圧縮機と組合わせ
、該圧縮機の所要動力の全部または一部を負担するよう
にしたことを特徴とする炭化水素分解物の精製法。
(3) Claim 2 is characterized in that the expander is combined with a compressor for methane gas discharged from the system, and bears all or part of the power required by the compressor. A method for purifying hydrocarbon decomposition products.
JP59229361A 1984-10-31 1984-10-31 Purification of cracked hydrocarbon Granted JPS61106523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59229361A JPS61106523A (en) 1984-10-31 1984-10-31 Purification of cracked hydrocarbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59229361A JPS61106523A (en) 1984-10-31 1984-10-31 Purification of cracked hydrocarbon

Publications (2)

Publication Number Publication Date
JPS61106523A true JPS61106523A (en) 1986-05-24
JPH0234327B2 JPH0234327B2 (en) 1990-08-02

Family

ID=16890959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59229361A Granted JPS61106523A (en) 1984-10-31 1984-10-31 Purification of cracked hydrocarbon

Country Status (1)

Country Link
JP (1) JPS61106523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529318A (en) * 2016-09-19 2019-10-17 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Steam reforming system and steam reforming process

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174981A (en) * 1974-11-27 1976-06-29 Air Prod & Chem
JPS57108192A (en) * 1980-12-26 1982-07-06 Mitsui Eng & Shipbuild Co Ltd Low temperature refining of cracked hydrocarbon

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5174981A (en) * 1974-11-27 1976-06-29 Air Prod & Chem
JPS57108192A (en) * 1980-12-26 1982-07-06 Mitsui Eng & Shipbuild Co Ltd Low temperature refining of cracked hydrocarbon

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019529318A (en) * 2016-09-19 2019-10-17 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Steam reforming system and steam reforming process

Also Published As

Publication number Publication date
JPH0234327B2 (en) 1990-08-02

Similar Documents

Publication Publication Date Title
US4305733A (en) Method of treating natural gas to obtain a methane rich fuel gas
CA1250220A (en) Process for the separation of a c in2 xx hydrocarbon fraction from natural gas
JP4777976B2 (en) Hydrocarbon gas treatment for rich gas streams.
CA1190470A (en) Method of treating carbon dioxide-containing natural gas
JP2575045B2 (en) Method for recovery and purification of ethylene
US4311496A (en) Preliminary condensation of methane in the fractionation of a gaseous mixture
KR100338278B1 (en) Improved recovery of olefins
US20090205367A1 (en) Combined synthesis gas separation and LNG production method and system
US20020095062A1 (en) Process and installation for separation of a gas mixture containing methane by distillation
US6098424A (en) Process and plant for production of carbon monoxide and hydrogen
US4704146A (en) Liquid carbon dioxide recovery from gas mixtures with methane
WO2005009930A1 (en) Method and apparatus for separating hydrocarbon
WO1993013850A1 (en) Membrane separation process for cracked gases
US2530602A (en) Recovery of the constituents of gaseous mixtures
JPS58195778A (en) Manufacture of carbon monoxide
CN112028731B (en) Method for separating propylene reaction product from propane dehydrogenation
US4242875A (en) Hydrogen cryogenic purification system
JPH0553193B2 (en)
CA1216511A (en) Apparatus and method for recovering light hydrocarbons from hydrogen containing gases
CN105838465A (en) Process and system for preparing liquefied natural gas by utilizing Fischer-Tropsch synthesis tail gas
CN210560161U (en) Fischer-Tropsch synthesis tail gas recycling device
JPS61189233A (en) Method of purifying hydrocarbon decomposition product
EP0256814B1 (en) Cryogenic recovery of high purity hydrogen
JPS61106523A (en) Purification of cracked hydrocarbon
US6343487B1 (en) Advanced heat integrated rectifier system