JPS61102519A - Controller - Google Patents

Controller

Info

Publication number
JPS61102519A
JPS61102519A JP59224760A JP22476084A JPS61102519A JP S61102519 A JPS61102519 A JP S61102519A JP 59224760 A JP59224760 A JP 59224760A JP 22476084 A JP22476084 A JP 22476084A JP S61102519 A JPS61102519 A JP S61102519A
Authority
JP
Japan
Prior art keywords
vibration
piezoelectric element
tuning fork
amplitude
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59224760A
Other languages
Japanese (ja)
Other versions
JPH036445B2 (en
Inventor
Tsurashi Yamamoto
山本 貫志
Takeshi Hojo
武 北條
Kazuteru Sato
一輝 佐藤
Yoji Okamura
岡村 洋二
Masahiko Saito
雅彦 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Keiki Inc
Original Assignee
Tokyo Keiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Keiki Co Ltd filed Critical Tokyo Keiki Co Ltd
Priority to JP59224760A priority Critical patent/JPS61102519A/en
Priority to US06/790,527 priority patent/US4694696A/en
Publication of JPS61102519A publication Critical patent/JPS61102519A/en
Publication of JPH036445B2 publication Critical patent/JPH036445B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To improve performance by constituting the titled controller in such a manner that the input resistance of a preamplifier which receives the output of a piezoelectric element is set almost to 1/Comega (C: electrostatic capacity of piezoelectric element, omega: angular frequency of oscillation system). CONSTITUTION:The output of a displacement detector (piezoelectric elements 6 and 6A) fitted so as to detect the displacement of a tuning fork is inputted to a driving element made of a piezoelectric element through the controller to constitute one control closed loop. Temperature characteristics of the electrostatic capacity of the displacement detector are of order of 0.001/C deg. in general and gain variation is >=10% assuming that temperature variation is 100 deg.C, so that the characteristics are restricted greatly by the performance of the controller. For the purpose, the resistance value R of the input resistance 34-1 of the preamplifier which receives outputs of the piezoelectric elements 6 and 6A is set to R=1/Comega, so that a high-precision controller which does not have any oscillation amplitude error due to the electrostatic capacity C of the piezoelectric elements 6 and 6A and temperature characteristics of a coefficient of electromechanical coupling is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、振動系の力学的振動を安定に持続せしめるた
めの制御装置に関する。尚、ここで述べる力学的振動と
は、最近の例では、振動ジャイロとか、リングレーザジ
ャイロのディザ−装置等の振動系の振動を挙げることが
できよう。これらは、いずれも質量とバネとから成るか
、慣性能率と捩りバネとから成る力学的共振系である。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a control device for stably sustaining mechanical vibration of a vibration system. Incidentally, the mechanical vibrations mentioned here include, as recent examples, vibrations of vibration systems such as vibrating gyros and dither devices of ring laser gyros. Each of these is a mechanically resonant system consisting of a mass and a spring, or a coefficient of inertia and a torsion spring.

ここでは代表して振動ジャイロを例にとって説明する。Here, explanation will be given using a vibrating gyroscope as a representative example.

〔従来の技術〕[Conventional technology]

先ず、従来公知の振動ジャイロを第4図を参照して説明
する。同図の振動ジャイロに於ては、音叉(1)が撓み
軸(3)を介して、基台(2)上にささえられている。
First, a conventionally known vibrating gyroscope will be explained with reference to FIG. In the vibrating gyroscope shown in the figure, a tuning fork (1) is supported on a base (2) via a bending shaft (3).

撓み軸(3)の中心線は、図示のごとく、音叉(1)の
両脚(11) 、  (11八)の中心線と一致するよ
うになされているので、この中心線を、(Z−Z)軸と
称することにする。(41,(4A)は音叉(1)の両
脚(11) 、  (11A)を振動させるための駆動
装置であり、電歪素子や、電磁フォーサ−など、色々な
ものが使用可能である。駆動装置(41,(4A)へ、
交流電源(5)より駆動用交流 電圧を供給し、音叉(
1)を振動させると、音叉(1)の両脚(11) 。
As shown in the figure, the center line of the bending shaft (3) is made to coincide with the center line of both legs (11) and (118) of the tuning fork (1), so this center line is defined as (Z-Z). ) axis. (41, (4A) is a drive device for vibrating the legs (11), (11A) of the tuning fork (1), and various devices such as electrostrictive elements and electromagnetic forcers can be used. Drive To the device (41, (4A),
Supply AC voltage for driving from the AC power supply (5), and connect the tuning fork (
When vibrating 1), both legs (11) of tuning fork (1).

(IIA)は、(Z−Z)軸に関して互いに対称に振動
する。ある−瞬を考える。この時、第4図のごと(、音
叉(1)の両脚(11) 、  (IIA )の先端は
、それぞれ速度Vで、外方へ運動中であり、全装置が基
台(2)と共に、(Z−Z)軸のまわりに角速度Ωで一
定回転していたとすると、音叉(11の一脚(11)に
は、コリオリの力FCが、他の一脚(11八)には、前
者と平行で向きが反対のコリオリの力F’ctが生ずる
ので、音叉(11は基台(2)に対し、撓み軸(3)を
捩る運動をすることになる。これは、コリオリの力Fc
l1!:Fctのつくる偶力による作用である。
(IIA) vibrate symmetrically with respect to the (Z-Z) axis. Think about a moment. At this time, as shown in FIG. Assuming that it rotates around the (Z-Z) axis at a constant angular velocity Ω, the Coriolis force FC will be applied to one leg (11) of the tuning fork (11), and the former will be applied to the other leg (118). Since a Coriolis force F'ct that is parallel and opposite in direction is generated, the tuning fork (11) makes a movement that twists the deflection axis (3) with respect to the base (2). This is due to the Coriolis force Fc
l1! : This is an effect due to the force couple created by Fct.

音叉(1)は撮動しているので、両脚(11) 、  
(IIA)の動きが反対に内側を向き、その速度が図の
Vと逆方向になると、FC+FC1もまた逆の方向を向
くので、FCとF’ctのつくる偶力も逆向きになる。
Since the tuning fork (1) is being photographed, both legs (11),
When the movement of (IIA) turns inward in the opposite direction and its velocity becomes opposite to V in the figure, FC+FC1 also moves in the opposite direction, so the couple created by FC and F'ct also becomes opposite.

このため、一定角速度Ωが(Z −Z)軸まわりに存在
すると、音叉(1)は基台(2)に対して、(Z−Z)
軸のまわりに捩り振動を生じ、その振幅はFC+pat
の作る偶力に比例するので、結局、角速度Ωに比例する
。よって、音叉(1)の(Z−Z)軸まわりの捩り振動
を検出する捩り検出器(8)を、図示のごとく、音叉(
11の基部に設置し、その出力(7)を検出することで
、角速度Ωを知ることができ、第4図の装置は(Z −
Z”)軸のまわりの角速度Ωの検゛小器として、レート
ジャイロと等価に使用することができる。
Therefore, if a constant angular velocity Ω exists around the (Z - Z) axis, the tuning fork (1) will move at (Z - Z) with respect to the base (2).
Torsional vibration is generated around the axis, and its amplitude is FC+pat
Since it is proportional to the couple created by , it is ultimately proportional to the angular velocity Ω. Therefore, the torsion detector (8) for detecting torsional vibration around the (Z-Z) axis of the tuning fork (1) is connected to the tuning fork (1) as shown in the figure.
By installing the device at the base of 11 and detecting its output (7), the angular velocity Ω can be determined.
It can be used equivalently to a rate gyro as a detector for the angular velocity Ω around the Z'') axis.

従来、もっとも一般的な音叉+11の励振方式は、その
駆動装置(41,(4A)に、一定周波数、一定電圧の
交流電圧を加えることである。音叉(1)をその力学的
共振点で振動させなくてよいのであれば、これは簡単に
して要を得ているが、音叉(1)の共振点を用いないと
、大きな振幅をとりにくく、また電力効率も良くない。
Conventionally, the most common excitation method for the tuning fork +11 is to apply an alternating current voltage of a constant frequency and constant voltage to its driving device (41, (4A).The tuning fork (1) is vibrated at its mechanical resonance point. If there is no need to do this, this is simple and gets the point, but unless the resonance point of the tuning fork (1) is used, it is difficult to obtain a large amplitude, and the power efficiency is also poor.

このため、音叉(1)をその共振点で振動させて使いた
いと言う要求は多く、電源周波数を力学的共振点に一致
せしめ、必要な振幅を得られる電圧に、電源を関節して
使用する。
For this reason, there are many requests to use the tuning fork (1) by vibrating it at its resonance point, so it is necessary to match the power frequency to the mechanical resonance point and adjust the power supply to a voltage that can obtain the required amplitude. .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、従来の、この方法には重大な欠点がある
。すなわち、この種の力学系の共振点は、極めて鋭く、
その共振周波数は、温度に敏感に左右されるので、ある
時点でよい共振状態が得られていても、力学的共振周波
数は周囲の温度変化等により、電気的一定周波数から徐
々にはずれてしまい、振幅が急激に減少し、振動ジャイ
ロとしての特性が忽ち劣化してしまう。よって、従来型
においては、その振動が周囲温度等の影響を受けやすく
、振幅変化が大で、感度が一定しないという欠点があっ
た。また、一定周波数、一定電圧の電源も決して安価な
ものではなく、精度を向上しようとすれば、高価な電源
を使用することとなり、その割に上記の欠点に左右され
て振動ジャイロとしての性能向上が得られないという別
の欠点をも有する。
However, this conventional method has significant drawbacks. In other words, the resonance point of this type of dynamical system is extremely sharp.
The resonant frequency is sensitive to temperature, so even if a good resonant state is obtained at a certain point, the mechanical resonant frequency will gradually deviate from the electrical constant frequency due to changes in the surrounding temperature, etc. The amplitude decreases rapidly, and the characteristics of the vibrating gyro immediately deteriorate. Therefore, the conventional type has disadvantages in that its vibrations are easily affected by ambient temperature, etc., amplitude changes are large, and sensitivity is not constant. In addition, power supplies with constant frequency and constant voltage are not cheap, and if you want to improve accuracy, you will need to use an expensive power supply. It also has another drawback in that it cannot be obtained.

〔問題点を解決するための手段〕[Means for solving problems]

本発明では、固有振動数の共振点を有する振動系と、該
振動系に振動を生ぜしめるための駆動装置と、上記振動
系の振動を検出するための圧電素子より成る変位検出器
と、入力抵抗Rを有し上記圧電素子の出力が人力される
プリアンプとを有する振動系に於て、上記振動糸の振動
を安定に持続せしめるための制御装置を設け、該制御装
置の人醤 子の静電容量、ωは振動系の角周波数)で表わさ、れる
値に選定した制御装置により、上記問題点を解決する。
The present invention includes a vibration system having a resonance point of a natural frequency, a drive device for producing vibration in the vibration system, a displacement detector including a piezoelectric element for detecting the vibration of the vibration system, and an input. In a vibration system having a preamplifier having a resistance R and to which the output of the piezoelectric element is manually operated, a control device is provided for stably sustaining the vibration of the vibrating string, The above problem is solved by a control device selected to have a value expressed by the capacitance (ω is the angular frequency of the vibration system).

〔作用〕[Effect]

本発明の上述の構成によれば、力学的振動系を、温度変
化等の外乱に関係なく、その固有振動数且つ一定の振幅
で継続的に振動させ、上述した従来の諸°問題を全べて
解決するものである。
According to the above-described configuration of the present invention, the mechanical vibration system is caused to vibrate continuously at its natural frequency and constant amplitude, regardless of disturbances such as temperature changes, and all of the above-mentioned conventional problems can be solved. This is the solution.

〔実施例〕〔Example〕

第1図は本発明の一例をジャイロ装置(振動ジャイロ)
に通用した場合の斜視図である。
Figure 1 shows an example of the present invention as a gyro device (vibrating gyro).
FIG.

同図の例においては、平板状の基台(2)上に、その上
面と略々垂直となる如く、短冊状バイモルフから成る入
力角速度Ωを検出するための薄板状の検出用圧電素子(
30)を取付ける。尚、この際、必要に応じて、取付部
(30A )を用いてもよい。
In the example shown in the figure, a thin plate-shaped detection piezoelectric element (2) for detecting an input angular velocity Ω consisting of a rectangular bimorph is placed on a flat base (2) so as to be approximately perpendicular to its upper surface.
30) Install. Incidentally, at this time, a mounting portion (30A) may be used if necessary.

この例では、音叉(1)を、一対の大なる質量を有する
振動質量部(1−1) 、  (1−1)と、これ等の
夫々に連結した撓み部(1−2) 、  (1−2)と
、両撓み部(1−2) 、  (1−2)の各遊端を連
結する基部(1−3)とより構成する。ここで基部(1
−3)の上面に、L字状取付部(1−4)の一方の脚(
1−4a)が略々垂直上方に伸びる如く固定し、他方の
脚(1−4b)が両撓み部(1−2) 、  (1−2
)と略々平行に伸びる如くなすと共に、基部(1−3)
の下面にカウンターウェイト部(1−5)を取り付ける
In this example, a tuning fork (1) is connected to a pair of vibrating mass parts (1-1), (1-1) having large masses, and flexure parts (1-2), (1-1) connected to these parts, respectively. -2), and a base (1-3) that connects the free ends of both the flexible parts (1-2) and (1-2). Here, the base (1
-3), one leg (
1-4a) is fixed so as to extend substantially vertically upward, and the other leg (1-4b) is attached to both flexible portions (1-2) and (1-2).
) and extend approximately parallel to the base (1-3).
Attach the counterweight part (1-5) to the bottom surface of.

上述の如く構成した音叉(1)を、次の如く、薄板状の
振動検出用圧電素子(30)に固定する。即ち、音叉(
11の両撓み部(1−2) 、  (1−2)間の隙間
(g)に、薄板状のバイモルフ型圧電素子(30)の幅
方向(B)が延在する如く、圧電素子(30)の上端に
、L字状取付部(1−4)の脚(1−4b)を固定する
。かくすれば、音叉(1)は、その振動面(音叉面)が
、第1図に示す如く、水平に配置された基台(2)の板
面と略々平行、即ち圧電素子(30)の長手方向(X−
X)と直交する如く、圧電素子(30)に取付けられる
。尚、この場合、両撓み部(1−2) 、  (1−2
)間の隙間(g)は、圧電素子(30)が振動し、音叉
(1)の振動向が傾斜しても、圧電素子(30)と両撓
み部(1−2) 、  (1−2)とが接触しないよう
な値に設定されていると共に、音叉(1)の振動を置部
(1−1) 、  (1−1)及びカウンターウェイト
部(1−5)等が、基台(2)の上面に接触しないよう
に、圧電素子(30)の基台(2)上の晶さは設定され
ている。
The tuning fork (1) configured as described above is fixed to a thin plate-shaped vibration detection piezoelectric element (30) as follows. In other words, a tuning fork (
The piezoelectric element ( 30 ), fix the legs (1-4b) of the L-shaped attachment part (1-4). In this way, the tuning fork (1) has a vibration surface (tuning fork surface) that is approximately parallel to the plate surface of the horizontally arranged base (2), as shown in FIG. Longitudinal direction (X-
It is attached to the piezoelectric element (30) so as to be perpendicular to X). In addition, in this case, both bending parts (1-2), (1-2
) between the piezoelectric element (30) and both bending parts (1-2), (1-2) even if the piezoelectric element (30) vibrates and the direction of vibration of the tuning fork (1) is tilted. ) are set to such values that they do not come in contact with the base ( 2) The crystallinity of the piezoelectric element (30) on the base (2) is set so as not to contact the top surface of the piezoelectric element (30).

音叉(11の変位を検出するため、その両撓み部(1−
2) 、  (1−2)に取り付けた変位検出器(圧電
素子) [(5)、  (6A)の出力は、本発明の制
御装置(35)を介して、音叉(1)の2個の撓み部(
1−2)。
In order to detect the displacement of the tuning fork (11), both of its bending parts (1-
2) Displacement detectors (piezoelectric elements) attached to (1-2) [The outputs of (5) and (6A) are connected to the two tuning forks (1) via the control device (35) of the present invention. Flexible part (
1-2).

(1−2)に取付けられた例えば圧電素子製の駆動素子
+41.(4八)((4A)は図示せず)に人力され、
これにより一つの制御閉ループが構成される。
Drive element +41 made of, for example, a piezoelectric element attached to (1-2). (48) ((4A) not shown) is manually operated,
This constitutes one closed control loop.

ここで振動ジャイロの音叉(1)は、当然のことながら
左右両脚(各へ振動質量部(1−1)及び撓み部(1−
2)より成る)は対称で相等しいとし、−脚の振動支点
Qから見た等価慣性能率をI、復元バネ常数をkとする
ならば、振動ジャイロの力学的運動方程式は各脚で次の
とおりとなる。ここでSはラプラスの演算子である。
Here, the tuning fork (1) of the vibrating gyro naturally has a vibrating mass part (1-1) and a flexible part (1-
2)) are symmetrical and equal, and if the equivalent inertia seen from the vibrating fulcrum Q of the legs is I and the restoring spring constant is k, then the mechanical equation of motion of the vibrating gyro is as follows for each leg: As expected. Here, S is Laplace's operator.

(I S2+k) φ−KV       ・−・(1
)ここで、φは音叉(1)の1脚の振れ角(偏角)で、
■は一対の駆動装置(4)、  (4A)に加える電圧
を示し、Kは駆動装置(4+、  (4A)のゲイン定
数で、KVは駆動装置(41,(4A)の発生トルクを
示す。
(IS2+k) φ−KV ・−・(1
) Here, φ is the swing angle (declination angle) of one leg of the tuning fork (1),
(2) indicates the voltage applied to the pair of drive devices (4), (4A), K is the gain constant of the drive device (4+, (4A)), and KV indicates the generated torque of the drive device (41, (4A)).

(1)式より■とφの間の伝達関数は次のとおりとなる
From equation (1), the transfer function between ■ and φ is as follows.

V  S2+に/1 以上は、音叉(1)に対する空気の抵抗や、その脚肉で
の歪みによるエネルギー損失を全く無視して導いた式で
あり、第1近似としては、これでよいが、実際には、上
記のごときエネルギー損失があるので、これをほぼ振動
角速度に比例するダンピングトルクの存在で代表させる
ならば、(2)式は、次の(3)式のとおりとなる。
V S2+ /1 The above formula was derived completely ignoring the air resistance against the tuning fork (1) and the energy loss due to distortion in the leg meat, and this is fine as a first approximation, but in reality Since there is an energy loss as described above, if this is represented by the presence of a damping torque that is approximately proportional to the vibration angular velocity, equation (2) becomes as shown in equation (3) below.

V  S2+D/I S+に/I ここで1.Dはダンピング項の係数である。V S2+D/I S+/I Here 1. D is the coefficient of the damping term.

第2図は第1図に示す本発明の制御装置(35)の一実
施例を示すブロック線図である。図中、GOIはその力
学系、すなわち制御対象(振動ジャイロ)、を示し、ブ
ロック内はその伝達関数を示す。(IIB)は変位検出
器(6)、  (6A)全体を示し、G2は、そのゲイ
ンである。Vpは上記変位検出器f131.  (6^
)の出力電圧であり、この電圧VPは、プリアンプ(3
4) 、乗算器(12)を介して制御回路(14)に印
加される。制御回路(14)は、代表的には微分操作を
行い、その微分係数をμとする。制御回路(14)の出
力は、初期値電圧Voに、加算器(AD)で加算され、
その出力を増幅器(17)で増幅して、力学的振動系叫
の駆動装置(41,(4^)に加えられ、制御ループが
閉じるよう構成されている。
FIG. 2 is a block diagram showing an embodiment of the control device (35) of the present invention shown in FIG. In the figure, GOI indicates the dynamic system, that is, the controlled object (vibrating gyro), and the inside of the block indicates its transfer function. (IIB) shows the entire displacement detector (6), (6A), and G2 is its gain. Vp is the displacement detector f131. (6^
), and this voltage VP is the output voltage of the preamplifier (3
4) is applied to the control circuit (14) via the multiplier (12). The control circuit (14) typically performs a differential operation and sets the differential coefficient to μ. The output of the control circuit (14) is added to the initial value voltage Vo by an adder (AD),
The output is amplified by an amplifier (17) and applied to the mechanical vibration system drive device (41, (4^)), thereby closing the control loop.

第2図に示す乗算器(12)は、2つの入力信号を有し
、これをそれぞれX、Yとし、乗算器(12)の出力信
号をZとすると、入出力信号の関係は、(12)によっ
て決まる定数である。ここで、上式%式% の出力電圧■P′を一方の入力信号Xとすると、乗算器
(12)の■P′に対するゲインは、他方の人力信号Y
の値に応じて変化する。例えば他方の入力信号Yの値が
乗算器(12)の定数VCと等しいと、乗算器(12)
はゲイン■で、■P′を出力する。
The multiplier (12) shown in FIG. 2 has two input signals, which are respectively X and Y, and the output signal of the multiplier (12) is Z. The relationship between the input and output signals is (12 ) is a constant determined by Here, if the output voltage ■P' of the above formula % is one input signal X, the gain of the multiplier (12) for ■P' is the other human input signal Y
It changes depending on the value of . For example, if the value of the other input signal Y is equal to the constant VC of the multiplier (12), the multiplier (12)
has a gain ■ and outputs ■P'.

第2図で、乗算器(12)のゲイン=1の場合を先ず説
明する。この場合、■P′はそのまま制御回路(14)
に供給されることになるので、第2図の例から■P′を
計算すると、次式のとおりとなる。
In FIG. 2, the case where the gain of the multiplier (12) is 1 will be described first. In this case, ■P' remains as the control circuit (14)
Therefore, if ■P' is calculated from the example shown in FIG. 2, it will be as follows.

・・・・(勾 (4)式はvP′がVOに対応した振幅をもつ振動解に
なることを示しており、(4)式の右辺がD / I 
< G IG2G4(K/I)μであれば、振動は発散
し、D/ I >GI 02 G4  (K/ I )
μであれば、振動は集束し、D/ I = GI G2
 G4  (K/ I )μであれば、一定振幅となる
ことを、表わしている。
(4) Equation shows that vP' becomes an oscillation solution with an amplitude corresponding to VO, and the right side of Equation (4) is D / I
If < G IG2G4(K/I)μ, the vibration diverges, and D/I >GI 02 G4 (K/I)
If μ, the vibrations are focused and D/I = GI G2
G4 (K/I)μ indicates that the amplitude is constant.

ここで、第2図に於て一点鎖線で示したループについて
説明する。電圧■P′はAC−DC変換部(16)にも
加えられる。AC−DC変換部(16)は“、入力電圧
V P/を全波整流し、図示せずも適当な平滑回路によ
りVP′の振幅に対応した直流電圧を出力する。■P′
の直流電圧は、基準電圧を例えばポテンショメータのよ
うな設定素子(15)を通して得られた設定電圧Vlと
、加算器(ADI)で比較され、その偏差信号は、偏差
増幅器(18)に加えられる。偏差増幅器(18)は、
加えられた偏差信号を増幅し、その出力を乗算器(12
)へ供給する。
Here, the loop shown by the dashed line in FIG. 2 will be explained. Voltage ■P' is also applied to the AC-DC converter (16). The AC-DC converter (16) performs full-wave rectification of the input voltage VP/, and outputs a DC voltage corresponding to the amplitude of VP' using a suitable smoothing circuit (not shown).■P'
The DC voltage is compared in an adder (ADI) with a reference voltage Vl obtained through a setting element (15), such as a potentiometer, and the deviation signal is applied to a deviation amplifier (18). The deviation amplifier (18) is
The applied deviation signal is amplified and its output is sent to a multiplier (12
).

さて、このような第2図の装置を起動すると、はじめは
未だ発振していないので、プリアンプ(34)の出力■
P′は零からスタートするから、AC−DC変換部(1
6)の出力は零である。このため偏差増幅器(18)は
G3VIなる出力電圧を発生する。ここで、偏差増幅器
(18)のゲインG3を適当に大きく選んでおくと、G
3 Vl >VCとなり、上記偏差増幅器(18)の出
力電圧は乗算器(12)の定数VCより大となる。これ
により、乗算器(12)はゲイン1以上の状態からスタ
ートするので、D/ I < GI G2 G4  (
K’/ I )μが成り立つように制御回路(14)の
微分係数μを選んでおくと、第2図の一巡閉ループは発
散振動する性質をもち、ω=五フ了の角周波数で正弦波
状の振動を生じ、その振幅は次第に増大する。これは、
ループ−巡の信号がそのように撮動しつつ増大すること
をあられずので、音叉(11もまた、その周波数で力学
的に振動しつつ、その振幅を増大する。これにつれ、A
C−DC変換部(16)の入力端子VP′も増大するの
で、設定電圧V+とAC−DC変換部(16)の出力電
圧との差は次第に減少していき、乗算器(12)に加わ
る偏差増幅器(18)の出力電圧も減少する。このため
、乗算器(12)のゲインは、■P′の増大と共に偏差
増幅器(1日)の出力電圧の減少の影響でどんどん小さ
な値となって行く。従って、この乗算器(12)のゲイ
ンと、制御回路(14)の微分係数μとを来じた等価な
μをμ′であられすと、μ′は起動待最大で、VP′が
大きくなるにつれ、急速に小さくなって行く。このため
、μのかわりにμ′を用いたとき、D/T<GI 02
 G4  (K/I)μ′は、いつまでも保たれず、右
辺のμ′の低下にともない、やがてD/I =GIG2
 G4  (K/I)μ′の条件が満たされ、ここで、
ルー°ブー巡の信号も、音叉+1)の振幅も一定となる
。この点の周辺では、外乱により振幅が増大すると、μ
′は一層小さくなるので、D、/ I >GI 02 
G4  (K/ I )μ′となって、振動は減衰振動
にかわり、元の一定振幅になるよう振幅が制御され、同
様に外乱により、一度振幅が小さくなり、■P′が小と
なれば、μ′が大きくなるので、振動は増大し、やはり
元の一定振幅に向って振幅を制御する。こうして、第2
図の制御ループは、振幅を一定にするような自動制御機
能をもち、且つその周波数を正しく力学的I駆動系の共
振周波数に保つ機能をも、あわせ備えていることがわか
る。一定となる振幅は、μを一度定めてしまえば、接点
電圧Vlと偏差増幅器(18)のゲインとで定まるが、
偏差増幅器(18)の伝達関数に、周波数が低くなるに
従ってゲインが増加するような特性(例えば「比例+積
分」特性)を用いると、振幅の定席値は接点電圧V1の
みによって定まる。これより、設定素子(15)でVI
を変えることにより振幅を任意にきめることができる。
Now, when you start up the device shown in Figure 2, it is not oscillating at first, so the output of the preamplifier (34) ■
Since P' starts from zero, the AC-DC converter (1
The output of 6) is zero. Therefore, the deviation amplifier (18) generates an output voltage G3VI. Here, if the gain G3 of the deviation amplifier (18) is selected appropriately large, G
3 Vl > VC, and the output voltage of the deviation amplifier (18) becomes larger than the constant VC of the multiplier (12). As a result, the multiplier (12) starts with a gain of 1 or more, so D/I < GI G2 G4 (
If the differential coefficient μ of the control circuit (14) is selected so that K'/I) μ holds true, the closed loop in Fig. 2 has the property of divergent oscillation, and has a sinusoidal shape at an angular frequency of ω = 5 cycles. vibration, whose amplitude gradually increases. this is,
Since the loop-circular signal cannot be allowed to increase as it moves, the tuning fork (11) also increases its amplitude while vibrating mechanically at that frequency.
Since the input terminal VP' of the C-DC converter (16) also increases, the difference between the set voltage V+ and the output voltage of the AC-DC converter (16) gradually decreases and is applied to the multiplier (12). The output voltage of the deviation amplifier (18) also decreases. For this reason, the gain of the multiplier (12) becomes smaller and smaller due to the effect of the decrease in the output voltage of the deviation amplifier (1st) as ①P' increases. Therefore, if the equivalent μ obtained by multiplying the gain of this multiplier (12) and the differential coefficient μ of the control circuit (14) is expressed as μ′, μ′ is the maximum before startup, and VP′ becomes large. As time goes by, it rapidly becomes smaller. Therefore, when μ′ is used instead of μ, D/T<GI 02
G4 (K/I) μ' is not maintained forever, and as μ' on the right side decreases, D/I = GIG2
The condition G4 (K/I)μ' is satisfied, where:
The amplitude of both the signal of the loop and the amplitude of the tuning fork +1) is constant. Around this point, as the amplitude increases due to the disturbance, μ
' becomes smaller, so D, / I > GI 02
G4 (K/I)μ', the vibration changes to damped vibration, and the amplitude is controlled to the original constant amplitude.Similarly, due to disturbance, once the amplitude becomes small, ■P' becomes small. , μ′ becomes larger, so the vibration increases, again controlling the amplitude towards the original constant amplitude. Thus, the second
It can be seen that the control loop in the figure has an automatic control function to keep the amplitude constant, and also has a function to keep the frequency correctly at the resonant frequency of the dynamic I drive system. Once μ is determined, the constant amplitude is determined by the contact voltage Vl and the gain of the deviation amplifier (18).
If a characteristic in which the gain increases as the frequency decreases (for example, a "proportional+integral" characteristic) is used for the transfer function of the deviation amplifier (18), the constant value of the amplitude is determined only by the contact voltage V1. From this, with the setting element (15), VI
The amplitude can be arbitrarily determined by changing .

第3図は第1図に不した本発明の制御装置のプリアンプ
(34)と圧電素子+61.  (6Δ)の部分を示す
結線図である。例えば圧電素子より成る変位検出器16
1.  (6A)の各々は、本発明の制御装置に用いた
場合には、自己共振周波数に比して十分低い周波数にお
いて動作しているため、音叉(1)の各脚の振れ角φに
比例した電圧Vp=Kvφの電圧源(6−1)と静電容
量Cとで近似的に構成される。
FIG. 3 shows the preamplifier (34) and piezoelectric element +61 of the control device of the present invention, which are not shown in FIG. It is a wiring diagram showing a part (6Δ). For example, a displacement detector 16 made of a piezoelectric element
1. When each of (6A) is used in the control device of the present invention, since it operates at a sufficiently low frequency compared to the self-resonance frequency, each of (6A) is proportional to the deflection angle φ of each leg of the tuning fork (1). It is approximately constituted by a voltage source (6-1) of voltage Vp=Kvφ and capacitance C.

一方、プリアンフ(34)は、抵抗Rの入力抵抗器(3
4−1) 、演算増幅器(34−2) 、抵抗R1,R
2のフィードバック抵抗器(34−3) 、  (34
−4)より構成される。演算増幅器(34−2)の入力
電圧Viと圧電素子(61,(6A)の出力電圧VPと
の間には、Vi =RC3/ (RC3+1)Vp  
”(5)但し、Sはラプラス演算子である。
On the other hand, the preamp (34) is connected to the input resistor (3
4-1), operational amplifier (34-2), resistors R1, R
2 feedback resistors (34-3), (34
-4). Between the input voltage Vi of the operational amplifier (34-2) and the output voltage VP of the piezoelectric element (61, (6A)), Vi = RC3/ (RC3+1)Vp
”(5) However, S is a Laplace operator.

ここでVPは次式(6)で表わせるので、Vp =Kv
  φsin ωL        ・・・・(6)(
T;振動振幅、ω;音叉の角周波数)この(6)式を(
5)式に代入し、時間領域に変換すれば、次式が得られ
る。
Here, VP can be expressed by the following equation (6), so Vp = Kv
φsin ωL...(6)(
T: vibration amplitude, ω: angular frequency of tuning fork) This equation (6) can be transformed into (
5) By substituting into the equation and converting it to the time domain, the following equation is obtained.

・・・・(7) ここで、ψはR,C等で決まる位相角である。...(7) Here, ψ is a phase angle determined by R, C, etc.

入力電圧Viの振幅と振動振幅の比(ゲイン)一方、変
位検出器(6) 、  (6A)のゲインKvは次式(
9)で表わされる。
Ratio (gain) of the amplitude of the input voltage Vi to the vibration amplitude On the other hand, the gain Kv of the displacement detectors (6) and (6A) is expressed by the following formula (
9).

KV =Kk7 (E          ・−−−<
9>但し、Kは変位検出器の寸法で決まる定数、kは変
位検出器(61,(6^)の電気機器結合係数を表わす
KV = Kk7 (E ・---<
9> However, K is a constant determined by the dimensions of the displacement detector, and k represents the electrical equipment coupling coefficient of the displacement detector (61, (6^)).

(9)式を(8)式に代入すれば となる。If we substitute equation (9) into equation (8), we get becomes.

今、00式に於いて、静電容量C1電気器械結合係数i
が、他の定数に比して温度感度が大なるた・め、これ等
についてのゲインSの温度特性式をつくれば、次式とな
る。
Now, in formula 00, capacitance C1 electrical mechanical coupling coefficient i
However, since the temperature sensitivity is greater than other constants, if a temperature characteristic equation for the gain S is created for these constants, the following equation is obtained.

ここで、 を表わすものとすれば、(11)式は次の如くとなる。here, If it is expressed as , then equation (11) becomes as follows.

(12)式をゼロと置いて、温度感度がない条件を求め
ると、その時の人力抵抗Rは、次式の如く表わせる。
If we set equation (12) to zero and find a condition where there is no temperature sensitivity, the human resistance R at that time can be expressed as in the following equation.

一般に、B>Aなる故に、(13)式は近似的にR=1
/Cω          ・・・・(14)となる。
Generally, since B>A, equation (13) is approximately R=1
/Cω...(14).

向、上述は、本発明を第1図に示した構造のジャイロ装
置(振動ジャイロ)に通用した場合であるが、本発明の
制御装置は、一般の音叉を用いる構造のものは熱論のこ
と、棒や板の振動を利用する構造のものにも適用でき、
要は圧電素子の如き変位検出器を1辰動のビックアンプ
として用いる所で、その温度特性が問題となる場合には
、全て通用して卓効がある。
The above description is based on the case where the present invention is applied to a gyro device (vibration gyro) having the structure shown in FIG. It can also be applied to structures that utilize the vibration of rods or plates.
The point is that a displacement detector such as a piezoelectric element is used as a single-motion big amplifier, and if its temperature characteristics are a problem, it is universally applicable and extremely effective.

又、本発明を、音叉の如き力学的振動系の振動振幅を一
定とする制御ループに用いた場合に就き説明したが、音
叉の振動角速度振幅を一定とする制御ループにも、本発
明が応用出来ることは言うまでもない。更に、レーザジ
ャイロのディザ−装置の振動制御にも、勿論使用し得る
ものである。
Further, although the present invention has been described in the case where it is applied to a control loop that keeps the vibration amplitude of a mechanical vibration system such as a tuning fork constant, the present invention can also be applied to a control loop that keeps the vibration angular velocity amplitude of a tuning fork constant. It goes without saying that it is possible. Furthermore, it can of course be used for vibration control of a dither device of a laser gyro.

〔発明の効果〕〔Effect of the invention〕

変位検出器の静電容量Cの温度特性Bは、一般に、10
−’/’Cのオーダーであり、温度変化を100℃と仮
定すれば、10%以上のゲイン変動となり、制御装置と
しての性能に大きな制約をうける。
The temperature characteristic B of the capacitance C of a displacement detector is generally 10
-'/'C, and if the temperature change is assumed to be 100°C, the gain will fluctuate by 10% or more, which greatly limits the performance of the control device.

本発明によれば、圧電素子(6)、  (6A)の出力
を受けるプリアンプ(34)の入力抵抗Rを、(13)
弐又は(14)式で示す値に選定することに、より、圧
電素子(61,(6^)の静電容量Cや電気器械結合係
数にの温度特性に起因する振動振幅誤差の全くない高t
IIt度の制御装置を得ることが出来る。
According to the present invention, the input resistance R of the preamplifier (34) receiving the output of the piezoelectric element (6), (6A) is set to (13)
By selecting the value shown in equation (14), it is possible to obtain a high vibration amplitude error caused by temperature characteristics in the electrostatic capacitance C and electromechanical coupling coefficient of the piezoelectric element (61, (6^)). t
A control device of IIt degree can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による制御装置を振動ジャイロに適用し
た場合の斜視図、第2図は本発明の一例の系統的ブロッ
ク線図、第3図は本発明の一部の結線図、第4図は従来
の振動ジャイロの一例の斜視図である。 図に於て、+11は音叉、141.  (Δ)は駆動装
置、1(5)は交流電源、(61,(6^)、(IIB
)は変位検出器、(AD)、(ADI)は加算器、αψ
は振動ジャイロ、(12)は乗箆器、(14)は制御回
路、(15)は設定素子、(16)はAC−DC変換部
、(17)は増幅器、(18)は偏差増幅器、(6−1
>は電圧源、(C)は静電容量、(34)はプリアンプ
、(34−1)は人力抵抗器、(34−2)は演算増幅
器、(34−3) 、  (34−4)はフィードバッ
ク抵抗器を夫々示す。 第2図 暮ψ電圧
FIG. 1 is a perspective view of a case where the control device according to the present invention is applied to a vibrating gyroscope, FIG. 2 is a systematic block diagram of an example of the present invention, FIG. 3 is a partial wiring diagram of the present invention, and FIG. The figure is a perspective view of an example of a conventional vibrating gyroscope. In the figure, +11 is a tuning fork, 141. (Δ) is the drive device, 1 (5) is the AC power supply, (61, (6^), (IIB
) is a displacement detector, (AD), (ADI) are adders, αψ
is a vibration gyro, (12) is a multiplier, (14) is a control circuit, (15) is a setting element, (16) is an AC-DC converter, (17) is an amplifier, (18) is a deviation amplifier, ( 6-1
> is a voltage source, (C) is a capacitance, (34) is a preamplifier, (34-1) is a human resistor, (34-2) is an operational amplifier, (34-3) and (34-4) are Feedback resistors are shown respectively. Figure 2 ψ voltage

Claims (1)

【特許請求の範囲】[Claims] 固有振動数の共振点を有する振動系と、該振動系に振動
を生ぜしめるための駆動装置と、上記振動系の振動を検
出するための圧電素子より成る変位検出器と、入力抵抗
Rを有し上記圧電素子の出力が入力されるプリアンプと
を有する振動系に於て、上記振動系の振動を安定に持続
せしめるための制御装置を設け、該制御装置の入力抵抗
Rを略々R≒(1/Cω)(但し、Cは上記圧電素子の
静電容量、ωは振動系の角周波数)で表わされる値に選
定したことを特徴とする制御装置。
A vibration system having a resonance point of a natural frequency, a drive device for producing vibration in the vibration system, a displacement detector consisting of a piezoelectric element for detecting the vibration of the vibration system, and an input resistance R. In a vibration system having a preamplifier into which the output of the piezoelectric element is input, a control device is provided to stably sustain the vibration of the vibration system, and the input resistance R of the control device is approximately R≒( 1/Cω) (where C is the capacitance of the piezoelectric element and ω is the angular frequency of the vibration system).
JP59224760A 1984-10-25 1984-10-25 Controller Granted JPS61102519A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP59224760A JPS61102519A (en) 1984-10-25 1984-10-25 Controller
US06/790,527 US4694696A (en) 1984-10-25 1985-10-23 Vibration-type gyro apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59224760A JPS61102519A (en) 1984-10-25 1984-10-25 Controller

Publications (2)

Publication Number Publication Date
JPS61102519A true JPS61102519A (en) 1986-05-21
JPH036445B2 JPH036445B2 (en) 1991-01-30

Family

ID=16818799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59224760A Granted JPS61102519A (en) 1984-10-25 1984-10-25 Controller

Country Status (1)

Country Link
JP (1) JPS61102519A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338110A (en) * 1986-08-02 1988-02-18 Tokyo Keiki Co Ltd Gyro device
JPH033016U (en) * 1989-05-31 1991-01-14
US6016698A (en) * 1988-08-12 2000-01-25 Murata Manufacturing Co., Ltd. Vibratory gyroscope including piezoelectric electrodes or detectors arranged to be non-parallel and non-perpendicular to coriolis force direction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6338110A (en) * 1986-08-02 1988-02-18 Tokyo Keiki Co Ltd Gyro device
US6016698A (en) * 1988-08-12 2000-01-25 Murata Manufacturing Co., Ltd. Vibratory gyroscope including piezoelectric electrodes or detectors arranged to be non-parallel and non-perpendicular to coriolis force direction
US6016699A (en) * 1988-08-12 2000-01-25 Murata Manufacturing Co., Ltd. Vibrator including piezoelectric electrodes of detectors arranged to be non-parallel and non-perpendicular to Coriolis force direction and vibratory gyroscope using the same
US6161432A (en) * 1988-08-12 2000-12-19 Murata Manufacturing Co., Ltd. Vibrator and vibratory gyroscope using the same
JPH033016U (en) * 1989-05-31 1991-01-14

Also Published As

Publication number Publication date
JPH036445B2 (en) 1991-01-30

Similar Documents

Publication Publication Date Title
US5806364A (en) Vibration-type angular velocity detector having sensorless temperature compensation
US5481914A (en) Electronics for coriolis force and other sensors
US6079272A (en) Gyroscopes and compensation
US6237415B1 (en) Angular velocity sensor
JP4690652B2 (en) Micro electro mechanical system
JP4370331B2 (en) Method for compensating quadrature bias in a Coriolis angular velocity meter, and Coriolis angular velocity meter suitable therefor
US6370937B2 (en) Method of canceling quadrature error in an angular rate sensor
US6621279B2 (en) Drive feedthrough nulling system
US4694696A (en) Vibration-type gyro apparatus
JPH01503089A (en) Servo loop control for Coriolis speed sensor dither drive
US20060117849A1 (en) Vibrating rate gyro with slaving of detection frequency to excitation frequency
WO2016179698A1 (en) Vibratory gyroscope utilizing a nonlinear modal interaction
US6064169A (en) Motor amplitude control circuit in conductor-on-insulator tuning fork gyroscope
JPH10221083A (en) Vibration-type gyro apparatus
JPS61102519A (en) Controller
JP2013061338A (en) Three-mass coupled oscillation technique for mechanically robust micromachined gyroscope
JPS6338110A (en) Gyro device
JPH08278142A (en) Angular velocity sensor
JPS61102518A (en) Oscillation controller
JPH07190784A (en) Angular velocity detecting device
JPS61102517A (en) Oscillation controller
JPH0310113A (en) Gyroscope apparatus
EP0717263A1 (en) Vibrating gyroscope
JPS61102516A (en) Controller
JP2548679B2 (en) Vibrating gyroscope